Pub Date : 2018-11-28DOI: 10.1146/annurev-astro-081817-051819
A. Gal-yam
Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. ▪ SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events. ▪ Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of [Formula: see text] mag at peak appears to separate SLSNe-I from the normal population. ▪ SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations. ▪ SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. ▪ SLSNe-II are not nearly as well studied, lacking information based on large-sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ([Formula: see text] M[Formula: see text]). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.
{"title":"The Most Luminous Supernovae","authors":"A. Gal-yam","doi":"10.1146/annurev-astro-081817-051819","DOIUrl":"https://doi.org/10.1146/annurev-astro-081817-051819","url":null,"abstract":"Over a decade ago, a group of supernova explosions with peak luminosities far exceeding (often by >100 times) those of normal events has been identified. These superluminous supernovae (SLSNe) have been a focus of intensive study. I review the accumulated observations and discuss the implications for the physics of these extreme explosions. ▪ SLSNe can be classified into hydrogen-poor (SLSNe-I) and hydrogen-rich (SLSNe-II) events. ▪ Combining photometric and spectroscopic analysis of samples of nearby SLSNe-I and lower-luminosity events, a threshold of [Formula: see text] mag at peak appears to separate SLSNe-I from the normal population. ▪ SLSN-I light curves can be quite complex, presenting both early bumps and late postpeak undulations. ▪ SLSNe-I spectroscopically evolve from an early hot photospheric phase with a blue continuum and weak absorption lines, through a cool photospheric phase resembling spectra of SNe Ic, and into the late nebular phase. ▪ SLSNe-II are not nearly as well studied, lacking information based on large-sample studies. Proposed models for the SLSN power source are challenged to explain all the observations. SLSNe arise from massive progenitors, with some events associated with very massive stars ([Formula: see text] M[Formula: see text]). Host galaxies of SLSNe in the nearby Universe tend to have low mass and subsolar metallicity. SLSNe are rare, with rates <100 times lower than ordinary supernovae. SLSN cosmology and their use as beacons to study the high-redshift Universe offer exciting prospects.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-051819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46292215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-20DOI: 10.1146/annurev-astro-091918-104509
P. Jofr'e, U. Heiter, C. Soubiran
There has been an incredibly large investment in obtaining high-resolution stellar spectra for determining chemical abundances of stars. This information is crucial to answer fundamental questions in astronomy by constraining the formation and evolution scenarios of the Milky Way as well as the stars and planets residing in it. We have just entered a new era, in which chemical abundances of FGK-type stars are being produced at industrial scales, and in which the observations, reduction, and analysis of the data are automatically performed by machines. Here, we review the latest human efforts to assess the accuracy and precision of such industrial abundances by providing insights into the steps and uncertainties associated with the process of determining stellar abundances. We also provide a description of current and forthcoming spectroscopic surveys, focusing on their reported abundances and uncertainties. This allows us to identify which elements and spectral lines are best and why. Finally, we make a brief selection of main scientific questions the community is aiming to answer with abundances. ▪ Uncertainties in abundances need to be disentangled into random and systematic components. ▪ Precision can be increased by applying differential or data-driven methods based on accurate data. ▪ High-resolution and signal-to-noise spectra provide fundamental data that can be used to calibrate lower-resolution and signal-to-noise spectra of millions of stars. ▪ Different survey calibration strategies must agree on a common set of reference stars to create data products that are consistent. ▪ Data products provided by individual groups must be published using standard formats to ensure straightforward applicability.
{"title":"Accuracy and Precision of Industrial Stellar Abundances","authors":"P. Jofr'e, U. Heiter, C. Soubiran","doi":"10.1146/annurev-astro-091918-104509","DOIUrl":"https://doi.org/10.1146/annurev-astro-091918-104509","url":null,"abstract":"There has been an incredibly large investment in obtaining high-resolution stellar spectra for determining chemical abundances of stars. This information is crucial to answer fundamental questions in astronomy by constraining the formation and evolution scenarios of the Milky Way as well as the stars and planets residing in it. We have just entered a new era, in which chemical abundances of FGK-type stars are being produced at industrial scales, and in which the observations, reduction, and analysis of the data are automatically performed by machines. Here, we review the latest human efforts to assess the accuracy and precision of such industrial abundances by providing insights into the steps and uncertainties associated with the process of determining stellar abundances. We also provide a description of current and forthcoming spectroscopic surveys, focusing on their reported abundances and uncertainties. This allows us to identify which elements and spectral lines are best and why. Finally, we make a brief selection of main scientific questions the community is aiming to answer with abundances. ▪ Uncertainties in abundances need to be disentangled into random and systematic components. ▪ Precision can be increased by applying differential or data-driven methods based on accurate data. ▪ High-resolution and signal-to-noise spectra provide fundamental data that can be used to calibrate lower-resolution and signal-to-noise spectra of millions of stars. ▪ Different survey calibration strategies must agree on a common set of reference stars to create data products that are consistent. ▪ Data products provided by individual groups must be published using standard formats to ensure straightforward applicability.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-091918-104509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45018372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-11-01DOI: 10.1146/annurev-astro-091918-104416
S. Cranmer, A. Winebarger
The corona is a layer of hot plasma that surrounds the Sun, traces out its complex magnetic field, and ultimately expands into interplanetary space as the supersonic solar wind. Although much has been learned in recent decades from advances in observations, theory, and computer simulations, we still have not identified definitively the physical processes that heat the corona and accelerate the solar wind. In this review, we summarize these recent advances and speculate about what else is required to finally understand the fundamental physics of this complex system. Specifically: ▪ We discuss recent subarcsecond observations of the corona, some of which appear to provide evidence for tangled and braided magnetic fields and some of which do not. ▪ We review results from three-dimensional numerical simulations that, despite limitations in dynamic range, reliably contain sufficient heating to produce and maintain the corona. ▪ We provide a new tabulation of scaling relations for a number of proposed coronal heating theories that involve waves, turbulence, braiding, nanoflares, and helicity conservation. An understanding of these processes is important not only for improving our ability to forecast hazardous space-weather events but also for establishing a baseline of knowledge about a well-resolved star that is relevant to other astrophysical systems.
{"title":"The Properties of the Solar Corona and Its Connection to the Solar Wind","authors":"S. Cranmer, A. Winebarger","doi":"10.1146/annurev-astro-091918-104416","DOIUrl":"https://doi.org/10.1146/annurev-astro-091918-104416","url":null,"abstract":"The corona is a layer of hot plasma that surrounds the Sun, traces out its complex magnetic field, and ultimately expands into interplanetary space as the supersonic solar wind. Although much has been learned in recent decades from advances in observations, theory, and computer simulations, we still have not identified definitively the physical processes that heat the corona and accelerate the solar wind. In this review, we summarize these recent advances and speculate about what else is required to finally understand the fundamental physics of this complex system. Specifically: ▪ We discuss recent subarcsecond observations of the corona, some of which appear to provide evidence for tangled and braided magnetic fields and some of which do not. ▪ We review results from three-dimensional numerical simulations that, despite limitations in dynamic range, reliably contain sufficient heating to produce and maintain the corona. ▪ We provide a new tabulation of scaling relations for a number of proposed coronal heating theories that involve waves, turbulence, braiding, nanoflares, and helicity conservation. An understanding of these processes is important not only for improving our ability to forecast hazardous space-weather events but also for establishing a baseline of knowledge about a well-resolved star that is relevant to other astrophysical systems.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-091918-104416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45592192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-20DOI: 10.1146/annurev-astro-091918-104359
C. Aerts, S. Mathis, T. Rogers
Stars lose a significant amount of angular momentum between birth and death, implying that efficient processes transporting it from the core to the surface are active. Space asteroseismology delivered the interior rotation rates of more than a thousand low- and intermediate-mass stars, revealing the following: ▪ Single stars rotate nearly uniformly during the core-hydrogen and core-helium burning phases. ▪ Stellar cores spin up to a factor of 10 faster than the envelope during the red giant phase. ▪ The angular momentum of the helium-burning core of stars is in agreement with the angular momentum of white dwarfs. Observations reveal a strong decrease of core angular momentum when stars have a convective core. Current theory of angular momentum transport fails to explain this. We propose improving the theory with a data-driven approach, whereby angular momentum prescriptions derived frommultidimensional (magneto)hydrodynamical simulations and theoretical considerations are continuously tested against modern observations. The TESS and PLATO space missions have the potential to derive the interior rotation of large samples of stars, including high-mass and metal-poor stars in binaries and clusters. This will provide the powerful observational constraints needed to improve theory and simulations.
{"title":"Angular Momentum Transport in Stellar Interiors","authors":"C. Aerts, S. Mathis, T. Rogers","doi":"10.1146/annurev-astro-091918-104359","DOIUrl":"https://doi.org/10.1146/annurev-astro-091918-104359","url":null,"abstract":"Stars lose a significant amount of angular momentum between birth and death, implying that efficient processes transporting it from the core to the surface are active. Space asteroseismology delivered the interior rotation rates of more than a thousand low- and intermediate-mass stars, revealing the following: ▪ Single stars rotate nearly uniformly during the core-hydrogen and core-helium burning phases. ▪ Stellar cores spin up to a factor of 10 faster than the envelope during the red giant phase. ▪ The angular momentum of the helium-burning core of stars is in agreement with the angular momentum of white dwarfs. Observations reveal a strong decrease of core angular momentum when stars have a convective core. Current theory of angular momentum transport fails to explain this. We propose improving the theory with a data-driven approach, whereby angular momentum prescriptions derived frommultidimensional (magneto)hydrodynamical simulations and theoretical considerations are continuously tested against modern observations. The TESS and PLATO space missions have the potential to derive the interior rotation of large samples of stars, including high-mass and metal-poor stars in binaries and clusters. This will provide the powerful observational constraints needed to improve theory and simulations.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-091918-104359","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49386413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/annurev-aa-56-related-articles
{"title":"Related Articles for Volume 56","authors":"","doi":"10.1146/annurev-aa-56-related-articles","DOIUrl":"https://doi.org/10.1146/annurev-aa-56-related-articles","url":null,"abstract":"","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47062692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/annurev-astro-081817-051810
S. Stanimirović, E. Zweibel
It has been known for half a century that the interstellar medium (ISM) of our Galaxy is structured on scales as small as a few hundred kilometers, more than 10 orders of magnitude smaller than typical ISM structures and energy input scales. In this review we focus on neutral and ionized structures on spatial scales of a few to ∼104 AU, which appear to be highly overpressured, as these have the most important role in the dynamics and energy balance of interstellar gas: the tiny scale atomic structures (TSASs) and extreme scattering events (ESEs) as the most overpressured example of the tiny scale ionized structures (TSISs). We review observational results and highlight key physical processes at AU scales. We present evidence for and against microstructures as part of a universal turbulent cascade and as discrete structures, and we review their association with supernova remnants, the Local Bubble, and bright stars. We suggest a number of observational and theoretical programs that could clarify the nature of AU structures. TSAS and TSIS probe spatial scales in the range of what is expected for turbulent dissipation scales and are therefore of key importance for constraining exotic and not-well-understood physical processes that have implications for many areas of astrophysics. The emerging picture is one in which a magnetized, turbulent cascade, driven hard by a local energy source and acting jointly with phenomena such as thermal instability, is the source of these microstructures.
{"title":"Atomic and Ionized Microstructures in the Diffuse Interstellar Medium","authors":"S. Stanimirović, E. Zweibel","doi":"10.1146/annurev-astro-081817-051810","DOIUrl":"https://doi.org/10.1146/annurev-astro-081817-051810","url":null,"abstract":"It has been known for half a century that the interstellar medium (ISM) of our Galaxy is structured on scales as small as a few hundred kilometers, more than 10 orders of magnitude smaller than typical ISM structures and energy input scales. In this review we focus on neutral and ionized structures on spatial scales of a few to ∼104 AU, which appear to be highly overpressured, as these have the most important role in the dynamics and energy balance of interstellar gas: the tiny scale atomic structures (TSASs) and extreme scattering events (ESEs) as the most overpressured example of the tiny scale ionized structures (TSISs). We review observational results and highlight key physical processes at AU scales. We present evidence for and against microstructures as part of a universal turbulent cascade and as discrete structures, and we review their association with supernova remnants, the Local Bubble, and bright stars. We suggest a number of observational and theoretical programs that could clarify the nature of AU structures. TSAS and TSIS probe spatial scales in the range of what is expected for turbulent dissipation scales and are therefore of key importance for constraining exotic and not-well-understood physical processes that have implications for many areas of astrophysics. The emerging picture is one in which a magnetized, turbulent cascade, driven hard by a local energy source and acting jointly with phenomena such as thermal instability, is the source of these microstructures.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-051810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41929711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/annurev-aa-56-071318-100001
S. Faber, E. V. van Dishoeck
{"title":"Introduction","authors":"S. Faber, E. V. van Dishoeck","doi":"10.1146/annurev-aa-56-071318-100001","DOIUrl":"https://doi.org/10.1146/annurev-aa-56-071318-100001","url":null,"abstract":"","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-aa-56-071318-100001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43996446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/ANNUREV-ASTRO-081817-052000
O. Guyon
Over the last two decades, several thousand exoplanets have been identified, and their study has become a high scientific priority. Direct imaging of nearby exoplanets and the circumstellar disks in which they form and evolve is challenging due to the high contrast ratio and small angular separation relative to the central star. Exoplanets are typically within 1 arcsec of, and between 4 and 10 orders of magnitude fainter than, the stars they orbit. To meet these challenges, ground-based telescopes must be equipped with extreme adaptive optics (ExAO) systems optimized to acquire high-contrast images of the immediate surrounding of nearby bright stars. Current ExAO systems have the sensitivity to image thermal emission from young massive planets in near-IR, while future systems deployed on Giant Segmented Mirror Telescopes will image starlight reflected by lower-mass rocky planets. Thanks to rapid progress in optical coronagraphy, wavefront control, and data analysis techniques, direct imaging and spectroscopic characterization of habitable exoplanets will be within reach of the next generation of large ground-based telescopes.
{"title":"Extreme Adaptive Optics","authors":"O. Guyon","doi":"10.1146/ANNUREV-ASTRO-081817-052000","DOIUrl":"https://doi.org/10.1146/ANNUREV-ASTRO-081817-052000","url":null,"abstract":"Over the last two decades, several thousand exoplanets have been identified, and their study has become a high scientific priority. Direct imaging of nearby exoplanets and the circumstellar disks in which they form and evolve is challenging due to the high contrast ratio and small angular separation relative to the central star. Exoplanets are typically within 1 arcsec of, and between 4 and 10 orders of magnitude fainter than, the stars they orbit. To meet these challenges, ground-based telescopes must be equipped with extreme adaptive optics (ExAO) systems optimized to acquire high-contrast images of the immediate surrounding of nearby bright stars. Current ExAO systems have the sensitivity to image thermal emission from young massive planets in near-IR, while future systems deployed on Giant Segmented Mirror Telescopes will image starlight reflected by lower-mass rocky planets. Thanks to rapid progress in optical coronagraphy, wavefront control, and data analysis techniques, direct imaging and spectroscopic characterization of habitable exoplanets will be within reach of the next generation of large ground-based telescopes.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-ASTRO-081817-052000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41390503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/ANNUREV-ASTRO-091916-055320
F. Rigaut, B. Neichel
Since the year 2000, adaptive optics (AO) has seen the emergence of a variety of new concepts addressing particular science needs; multiconjugate adaptive optics (MCAO) is one of them. By correcting the atmospheric turbulence in 3D using several wavefront sensors and a tomographic phase reconstruction approach, MCAO aims to provide uniform diffraction limited images in the near-infrared over fields of view larger than 1 arcmin2, i.e., 10 to 20 times larger in area than classical single conjugated AO. In this review, we give a brief reminder of the AO principles and limitations, and then focus on aspects particular to MCAO, such as tomography and specific MCAO error sources. We present examples and results from past or current systems: MAD (Multiconjugate Adaptive Optics Demonstrator) and GeMS (Gemini MCAO System) for nighttime astronomy and the AO system, at Big Bear for solar astronomy. We examine MCAO performance (Strehl ratio up to 40% in H band and full width at half maximum down to 52 mas in the case of MCAO), with a particular focus on photometric and astrometric accuracy, and conclude with considerations on the future of MCAO in the Extremely Large Telescope and post–HST era.
{"title":"Multiconjugate Adaptive Optics for Astronomy","authors":"F. Rigaut, B. Neichel","doi":"10.1146/ANNUREV-ASTRO-091916-055320","DOIUrl":"https://doi.org/10.1146/ANNUREV-ASTRO-091916-055320","url":null,"abstract":"Since the year 2000, adaptive optics (AO) has seen the emergence of a variety of new concepts addressing particular science needs; multiconjugate adaptive optics (MCAO) is one of them. By correcting the atmospheric turbulence in 3D using several wavefront sensors and a tomographic phase reconstruction approach, MCAO aims to provide uniform diffraction limited images in the near-infrared over fields of view larger than 1 arcmin2, i.e., 10 to 20 times larger in area than classical single conjugated AO. In this review, we give a brief reminder of the AO principles and limitations, and then focus on aspects particular to MCAO, such as tomography and specific MCAO error sources. We present examples and results from past or current systems: MAD (Multiconjugate Adaptive Optics Demonstrator) and GeMS (Gemini MCAO System) for nighttime astronomy and the AO system, at Big Bear for solar astronomy. We examine MCAO performance (Strehl ratio up to 40% in H band and full width at half maximum down to 52 mas in the case of MCAO), with a particular focus on photometric and astrometric accuracy, and conclude with considerations on the future of MCAO in the Extremely Large Telescope and post–HST era.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/ANNUREV-ASTRO-091916-055320","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45068330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-09-14DOI: 10.1146/annurev-astro-081817-052013
K. Walsh
The moniker rubble pile is typically applied to all Solar System bodies >200 m and <∼10 km in diameter; in this size range, there is an abundance of evidence that nearly every object is bound primarily by self-gravity, with significant void space or bulk porosity between irregularly shaped constituent particles. The understanding of this population is derived from wide-ranging population studies of derived shape and spin, decades of observational studies in numerous wavelengths, evidence left behind from impacts on planets and moons, and the in situ study of a few objects via spacecraft flyby or rendezvous. The internal structure, however, which is responsible for the name rubble pile, is never directly observed but belies a violent history. Many or most of the asteroids on near-Earth orbits and those most accessible for rendezvous and in situ study are likely by-products of the continued collisional evolution of the main asteroid belt.
{"title":"Rubble Pile Asteroids","authors":"K. Walsh","doi":"10.1146/annurev-astro-081817-052013","DOIUrl":"https://doi.org/10.1146/annurev-astro-081817-052013","url":null,"abstract":"The moniker rubble pile is typically applied to all Solar System bodies >200 m and <∼10 km in diameter; in this size range, there is an abundance of evidence that nearly every object is bound primarily by self-gravity, with significant void space or bulk porosity between irregularly shaped constituent particles. The understanding of this population is derived from wide-ranging population studies of derived shape and spin, decades of observational studies in numerous wavelengths, evidence left behind from impacts on planets and moons, and the in situ study of a few objects via spacecraft flyby or rendezvous. The internal structure, however, which is responsible for the name rubble pile, is never directly observed but belies a violent history. Many or most of the asteroids on near-Earth orbits and those most accessible for rendezvous and in situ study are likely by-products of the continued collisional evolution of the main asteroid belt.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":33.3,"publicationDate":"2018-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-astro-081817-052013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45406773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}