Pub Date : 2022-03-25Epub Date: 2022-01-06DOI: 10.1146/annurev-food-052720-012228
Seung-Oh Seo, Yong-Su Jin
A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives.
{"title":"Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings.","authors":"Seung-Oh Seo, Yong-Su Jin","doi":"10.1146/annurev-food-052720-012228","DOIUrl":"https://doi.org/10.1146/annurev-food-052720-012228","url":null,"abstract":"<p><p>A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"13 ","pages":"463-488"},"PeriodicalIF":12.4,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39789530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-25Epub Date: 2022-01-06DOI: 10.1146/annurev-food-052720-093515
Sébastien Marze
Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism.
{"title":"Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches.","authors":"Sébastien Marze","doi":"10.1146/annurev-food-052720-093515","DOIUrl":"https://doi.org/10.1146/annurev-food-052720-093515","url":null,"abstract":"<p><p>Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"13 ","pages":"263-286"},"PeriodicalIF":12.4,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39791884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-25Epub Date: 2021-11-16DOI: 10.1146/annurev-food-090821-032332
Jovan Ilić, Ilija Djekic, Igor Tomasevic, Filip Oosterlinck, Marco A van den Berg
To increase the appeal of plant protein-based meat analogs, further progress needs to be made in their sensory perception. Given the limited number of studies on meat analogs, this review focuses on structure, oral processing, and sensory perception of meat and subsequently translates the insights to meat analogs. An extensive number of publications has built the current understanding of meat mechanical and structural properties, but inconsistencies concerning terminology and methodology execution as well as the wide variety in terms of natural origin limit solid conclusions about the control parameters for oral processing and sensory perception. Consumer-relevant textural aspects such as tenderness and juiciness are not directly correlated to single structural features but depend on an interplay of multiple factors and thus require a holistic approach. We discuss the differences in mastication and disintegration of meat and meat analogs and provide an outlook toward converting skeptical consumers into returning customers.
{"title":"Materials Properties, Oral Processing, and Sensory Analysis of Eating Meat and Meat Analogs.","authors":"Jovan Ilić, Ilija Djekic, Igor Tomasevic, Filip Oosterlinck, Marco A van den Berg","doi":"10.1146/annurev-food-090821-032332","DOIUrl":"https://doi.org/10.1146/annurev-food-090821-032332","url":null,"abstract":"<p><p>To increase the appeal of plant protein-based meat analogs, further progress needs to be made in their sensory perception. Given the limited number of studies on meat analogs, this review focuses on structure, oral processing, and sensory perception of meat and subsequently translates the insights to meat analogs. An extensive number of publications has built the current understanding of meat mechanical and structural properties, but inconsistencies concerning terminology and methodology execution as well as the wide variety in terms of natural origin limit solid conclusions about the control parameters for oral processing and sensory perception. Consumer-relevant textural aspects such as tenderness and juiciness are not directly correlated to single structural features but depend on an interplay of multiple factors and thus require a holistic approach. We discuss the differences in mastication and disintegration of meat and meat analogs and provide an outlook toward converting skeptical consumers into returning customers.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"13 ","pages":"193-215"},"PeriodicalIF":12.4,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39629549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2020-12-09DOI: 10.1146/annurev-food-061920-123242
Long Bai, Siqi Huan, Ya Zhu, Guang Chu, David Julian McClements, Orlando J Rojas
In this article, the application of nanocelluloses, especially cellulose nanofibrils and cellulose nanocrystals, as functional ingredients in foods is reviewed. These ingredients offer a sustainable and economic source of natural plant-based nanoparticles. Nanocelluloses are particularly suitable for altering the physicochemical, sensory, and nutritional properties of foods because of their ability to create novel structures. For instance, they can adsorb to air-water or oil-water interfaces and stabilize foams or emulsions, self-assemble in aqueous solutions to form gel networks, and act as fillers or fat replacers. The functionality of nanocelluloses can be extended by chemical functionalization of their surfaces or by using them in combination with other natural food ingredients, such as biosurfactants or biopolymers. As a result, it is possible to create stimuli-responsive, tailorable, and/or active functional biomaterials suitable for a range of foodapplications. In this article, we describe the chemistry, structure, and physicochemical properties of cellulose as well as their relevance for the application of nanocelluloses as functional ingredients in foods. Special emphasis is given to their use as particle stabilizers in Pickering emulsions, but we also discuss their potential application for creating innovative biomaterials with novel functional attributes, such as edible films and packaging. Finally, some of the challenges associated with using nanocelluloses in foods are critically evaluated, including their potential safety and consumer acceptance.
{"title":"Recent Advances in Food Emulsions and Engineering Foodstuffs Using Plant-Based Nanocelluloses.","authors":"Long Bai, Siqi Huan, Ya Zhu, Guang Chu, David Julian McClements, Orlando J Rojas","doi":"10.1146/annurev-food-061920-123242","DOIUrl":"https://doi.org/10.1146/annurev-food-061920-123242","url":null,"abstract":"<p><p>In this article, the application of nanocelluloses, especially cellulose nanofibrils and cellulose nanocrystals, as functional ingredients in foods is reviewed. These ingredients offer a sustainable and economic source of natural plant-based nanoparticles. Nanocelluloses are particularly suitable for altering the physicochemical, sensory, and nutritional properties of foods because of their ability to create novel structures. For instance, they can adsorb to air-water or oil-water interfaces and stabilize foams or emulsions, self-assemble in aqueous solutions to form gel networks, and act as fillers or fat replacers. The functionality of nanocelluloses can be extended by chemical functionalization of their surfaces or by using them in combination with other natural food ingredients, such as biosurfactants or biopolymers. As a result, it is possible to create stimuli-responsive, tailorable, and/or active functional biomaterials suitable for a range of foodapplications. In this article, we describe the chemistry, structure, and physicochemical properties of cellulose as well as their relevance for the application of nanocelluloses as functional ingredients in foods. Special emphasis is given to their use as particle stabilizers in Pickering emulsions, but we also discuss their potential application for creating innovative biomaterials with novel functional attributes, such as edible films and packaging. Finally, some of the challenges associated with using nanocelluloses in foods are critically evaluated, including their potential safety and consumer acceptance.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"383-406"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-food-061920-123242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38693137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2020-12-14DOI: 10.1146/annurev-food-062220-112934
Li-Zhen Deng, Parag Prakash Sutar, Arun S Mujumdar, Yang Tao, Zhongli Pan, Yan-Hong Liu, Hong-Wei Xiao
The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products andmoderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products.
{"title":"Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods.","authors":"Li-Zhen Deng, Parag Prakash Sutar, Arun S Mujumdar, Yang Tao, Zhongli Pan, Yan-Hong Liu, Hong-Wei Xiao","doi":"10.1146/annurev-food-062220-112934","DOIUrl":"https://doi.org/10.1146/annurev-food-062220-112934","url":null,"abstract":"<p><p>The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products andmoderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"287-305"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-food-062220-112934","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38371147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2021-01-19DOI: 10.1146/annurev-food-070620-022551
Saeed M Ghazani, Alejandro G Marangoni
Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter-POP, POS, and SOS-are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ') and stable (β2) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β3 and β1 of POS, respectively.
{"title":"Molecular Origins of Polymorphism in Cocoa Butter.","authors":"Saeed M Ghazani, Alejandro G Marangoni","doi":"10.1146/annurev-food-070620-022551","DOIUrl":"https://doi.org/10.1146/annurev-food-070620-022551","url":null,"abstract":"<p><p>Cocoa butter displays complex crystallization behavior and six crystal polymorphic forms. Although the crystal structure of cocoa butter has been studied extensively, the molecular interactions between cocoa butter triacylglycerols in relation to polymorphic transformations from metastable forms (forms III and IV) to stable crystal forms (forms V and VI) remain largely unknown. In this review, the triclinic polymorphism and melting profiles of the major triacylglycerols in cocoa butter-POP, POS, and SOS-are reviewed, and their binary and ternary phase behaviors in metastable (pseudoβ') and stable (β<sub>2</sub>) crystal forms are discussed. We also attempt to clarify how the transformation of cocoa butter from form IV to V, as a critical step in the tempering of chocolate, is controlled by POS interactions with both POP and SOS. Moreover, we show how the crystal forms V and VI of cocoa butter are templated by crystal forms β<sub>3</sub> and β<sub>1</sub> of POS, respectively.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"567-590"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38836910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2021-01-04DOI: 10.1146/annurev-food-032519-051646
Edoardo Capuano, Anja E M Janssen
Food digestion may be regarded as a physiological interface between food and health. During digestion, the food matrix is broken down and the component nutrients and bioactive compounds are absorbed through a synergy of mechanical, chemical, and biochemical processes. The food matrix modulates the extent and kinetics to which nutrients and bioactive compounds make themselves available for absorption, hence regulating their concentration profile in the blood and their utilization in peripheral tissues. In this review, we discuss the structural and compositional aspects of food that modulate macronutrient digestibility in each step of digestion. We also discuss in silico modeling approaches to describe the effect of the food matrix on macronutrient digestion. The detailed knowledge of how the food matrix is digested can provide a mechanistic basis to elucidate the complex effect of food on human health and design food with improved functionality.
{"title":"Food Matrix and Macronutrient Digestion.","authors":"Edoardo Capuano, Anja E M Janssen","doi":"10.1146/annurev-food-032519-051646","DOIUrl":"https://doi.org/10.1146/annurev-food-032519-051646","url":null,"abstract":"<p><p>Food digestion may be regarded as a physiological interface between food and health. During digestion, the food matrix is broken down and the component nutrients and bioactive compounds are absorbed through a synergy of mechanical, chemical, and biochemical processes. The food matrix modulates the extent and kinetics to which nutrients and bioactive compounds make themselves available for absorption, hence regulating their concentration profile in the blood and their utilization in peripheral tissues. In this review, we discuss the structural and compositional aspects of food that modulate macronutrient digestibility in each step of digestion. We also discuss in silico modeling approaches to describe the effect of the food matrix on macronutrient digestion. The detailed knowledge of how the food matrix is digested can provide a mechanistic basis to elucidate the complex effect of food on human health and design food with improved functionality.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"193-212"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39114224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25DOI: 10.1146/annurev-food-062520-082307
Hazal Turasan, Jozef Kokini
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
{"title":"Novel Nondestructive Biosensors for the Food Industry.","authors":"Hazal Turasan, Jozef Kokini","doi":"10.1146/annurev-food-062520-082307","DOIUrl":"https://doi.org/10.1146/annurev-food-062520-082307","url":null,"abstract":"<p><p>An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"539-566"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25520086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2021-01-11DOI: 10.1146/annurev-food-062420-124437
Edward J Calabrese
This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, Ginkgo biloba, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.
{"title":"Hormesis Mediates Acquired Resilience: Using Plant-Derived Chemicals to Enhance Health.","authors":"Edward J Calabrese","doi":"10.1146/annurev-food-062420-124437","DOIUrl":"https://doi.org/10.1146/annurev-food-062420-124437","url":null,"abstract":"<p><p>This review provides an assessment of hormesis, a highly conserved evolutionary dose-response adaptive strategy that leads to the development of acquired resilience within well-defined temporal windows. The hormetic-based acquired resilience has a central role in affecting healthy aging, slowing the onset and progression of numerous neurodegenerative and other age-related diseases, and reducing risks and damage due to heart attacks, stroke, and other serious conditions of public health and medical importance. The review provides the historical foundations of hormesis, its dose-response features, its capacity for generalization across biological models and endpoints measured, and its mechanistic foundations. The review also provides a focus on the adaptive features of hormesis, i.e., its capacity to upregulate acquired resilience and how this can be mediated by numerous plant-derived extracts, such as curcumin, ginseng, <i>Ginkgo biloba</i>, resveratrol, and green tea, that induce a broad spectrum of chemopreventive effects via hormesis.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"355-381"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38806022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-03-25Epub Date: 2021-01-20DOI: 10.1146/annurev-food-032818-121443
Shang Lin, Jane W Agger, Casper Wilkens, Anne S Meyer
Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4-O-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.
谷类麸皮和谷物胚乳细胞壁是不同类型阿拉伯木聚糖的主要膳食来源。阿拉伯木聚糖是主要的半纤维素多糖群,存在于单叶草作物的细胞壁中,因此也存在于谷物中。阿拉伯木聚糖多糖由β-(1→4)-连接的木吡喃基残基骨架组成,这些残基携带阿拉伯木酰脲基部分,因此被称为阿拉伯木聚糖。此外,木吡喃酰基残基可以被乙酰化或被4- o -甲基-d-葡萄糖醛酸取代。阿拉伯糖脲基可与阿魏酰基酯化。阿魏酸化阿拉伯糖寡糖通过益生元、免疫调节和/或抗氧化作用发挥有益的生物活性。关于催化阿拉伯糖木聚糖特定结构修饰的微生物酶的新知识可以帮助我们了解这些复杂纤维如何在肠道中转化,并为从麸皮或其他谷物加工侧流中生产阿魏酸化阿拉伯糖木寡糖作为功能性食品成分提供基础。结构知识、生物活性数据和酶学洞察力之间存在差距。本文综述了阿魏酸化阿拉伯糖低聚糖的结构和生物活性,并对催化差异取代阿拉伯糖聚糖特异性变化的酶反应进行了综述。
{"title":"Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification.","authors":"Shang Lin, Jane W Agger, Casper Wilkens, Anne S Meyer","doi":"10.1146/annurev-food-032818-121443","DOIUrl":"https://doi.org/10.1146/annurev-food-032818-121443","url":null,"abstract":"<p><p>Cereal brans and grain endosperm cell walls are key dietary sources of different types of arabinoxylan. Arabinoxylan is the main group of hemicellulosic polysaccharides that are present in the cell walls of monocot grass crops and hence in cereal grains. The arabinoxylan polysaccharides consist of a backbone of β-(1→4)-linked xylopyranosyl residues, which carry arabinofuranosyl moieties, hence the term arabinoxylan. Moreover, the xylopyranosyl residues can be acetylated or substituted by 4-<i>O</i>-methyl-d-glucuronic acid. The arabinofuranosyls may be esterified with a feruloyl group. Feruloylated arabinoxylo-oligosaccharides exert beneficial bioactivities via prebiotic, immunomodulatory, and/or antioxidant effects. New knowledge on microbial enzymes that catalyze specific structural modifications of arabinoxylans can help us understand how these complex fibers are converted in the gut and provide a foundation for the production of feruloylated arabinoxylo-oligosaccharides from brans or other cereal grain processing sidestreams as functional food ingredients. There is a gap between the structural knowledge, bioactivity data, and enzymology insight. Our goal with this review is to present an overview of the structures and bioactivities of feruloylated arabinoxylo-oligosaccharides and review the enzyme reactions that catalyze specific changes in differentially substituted arabinoxylans.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"12 ","pages":"331-354"},"PeriodicalIF":12.4,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38840224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}