Foot-and-mouth disease (FMD) is a highly infectious disease of cloven-hoofed animals with a significant economic impact. Early diagnosis and effective prevention and control could reduce the spread of the disease which could possibly minimize economic losses. Epitope characterization based on monoclonal antibodies provide essential information for developing diagnostic assays and vaccine designs. In this study, monoclonal antibodies raised against FMD virus (FMDV) were produced. Sixty-six monoclonal antibodies demonstrated strong reactivity and specificity to FMDV. The purified monoclonal antibodies were further used for bio-panning to select phage expressing specific epitopes from phage-displayed 12 mer-peptide library. The phage peptide sequences were analyzed using multiple sequence alignment and evaluated by peptide ELISA. Two hybridoma clones secreted monoclonal antibodies recognizing linear epitopes on VP2 of FMDV serotype O. The non-neutralizing monoclonal antibody 6F4.D11.B6 recognized the residues 67-78 on antigenic site 2 resinding in VP2, while the neutralizing monoclonal antibody 8D6.B9.C3 recognized a novel linear epitope encompassing residues 115-126 on VP2. This information and the FMDV-specific monoclonal antibodies provide valuable sources for further study and application in diagnosis, therapeutics and vaccine designs to strengthen the disease prevention and control measures.
Therapeutic monoclonal antibodies (mAbs) are crucial in modern medicine due to their effectiveness in treating various diseases. However, the structural complexity of mAbs, particularly their glycosylation patterns, presents challenges for quality control and biosimilarity assessment. This study explores the use of upper-hinge middle-up (UHMU)-level ultra-high-performance liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis to improve N-glycan profiling of mAbs. Two specific enzymes, known as IgG degradation enzymes (IGDEs), were used to selectively cleave therapeutic mAbs above the hinge region to separate antibody subunits for further Fc glycan analysis by means of the UHMU/LC-HRMS workflow. The complexity of the mass spectra of IGDEs-digested mAbs was significantly reduced compared to the intact MS level, enabling reliable assignment and relative quantitation of paired Fc glycoforms. The results of the UHMU/LC-HRMS analysis of nine approved therapeutics highlight the significance of this approach for in-depth glycoform profiling.
PURIFY-OBS-1 is an observational study evaluating the safety and efficacy of Seraph 100® Microbind Affinity Blood Filter (Seraph 100) use for COVID-19 patients with respiratory failure admitted to the intensive care unit (ICU). The Seraph 100 is a hemoperfusion device containing heparin-coated beads that can bind to, and reduce levels of, some circulating pathogens and inflammatory molecules. This study evaluated whether treatment with the Seraph 100 affected circulating and mucosal antibody levels in critically ill COVID-19 subjects. SARS-CoV-2 anti-spike and anti-nucleocapsid IgG and IgA levels in serum were evaluated at enrollment and on days 1, 4, 7, and 28 after Seraph 100 application, while anti-spike and nucleocapsid IgG, IgA, and secretory IgA levels in tracheal aspirates were evaluated at enrollment and on days 1, 2, 3, 7, and 28. Serum samples were also collected from the pre- and post-filter lines at 1 and 4 h following Seraph 100 application to evaluate the direct impact of the filter on circulating antibody levels. Treatment with the Seraph 100 did not alter the levels of circulating or mucosal antibodies in critically ill COVID-19 subjects admitted to the ICU.
Background: Previous studies showed that the fourth SARS-CoV-2 vaccine dose has a protective effect against infection, as well as against severe disease and death. This study aimed to examine whether knowledge of a high-level antibody after the third dose may reduce compliance to the fourth booster dose among healthcare workers (HCWs).
Methods: We conducted a prospective cohort study among HCWs vaccinated with the first three doses at Rambam Healthcare Campus, a tertiary hospital in northern Israel. Participants underwent a serological test before the fourth booster vaccine was offered to all of them, with results provided to participants. The population was divided into two groups, namely those with antibodies below 955 AU/mL and those with 955 AU/mL and higher, a cutoff found protective in a previous study. Multiple logistic regression was carried out to compare the compliance to the fourth booster between the two groups, adjusted for demographic and clinical variables.
Results: After adjusting for the confounding variables, the compliance was higher in those with antibody levels below 955 AU/mL (OR = 1.41, p = 0.05, 95% CI 1.10-1.96). In addition, male sex and age of 60 years and above were also associated with higher vaccination rates (OR = 2.28, p < 0.001, 95% CI 1.64-3.17), (OR = 1.14, p = 0.043, 95% CI 1.06-1.75), respectively.
Conclusions: Knowledge of the antibody status may affect compliance with the booster dose. Considering waning immunity over time, reduced compliance may affect the protection of HCWs who declined the fourth dose.
We aimed to develop a novel method for measuring the complement-binding ability of anti-blood type antibodies (ab-Abs), the flow cytometry method for the complement C1q test (FCM-C1q) for detecting antibody-mediated rejection (AMR) caused by ab-Abs in ABO-incompatible kidney transplantation (ABOI-KTx). FCM-C1q distribution was surveyed in 44 healthy participants and 43 dialysis patients (Cohort A). The relationship between AMR and FCM-C1q levels was examined along with ab-Ab titers by the flow cytometry method for the IgG test (FCM-IgG) in 62 ABOI-KTx patients (Cohort B). FCM-IgG and C1q levels were significantly higher in type O participants than in A/B participants in Cohort A. There were minimal differences in the distribution of FCM-IgG and C1q between dialysis and healthy participants. Sixteen cases were suspected of acute rejections (ARs) in Cohort B, of whom nine had AR clinically. One patient with severe AMR was highly suspected of hyperacute rejection along with another patient with severe AMR. Their postoperative FCM-C1q and FCM-IgG levels were elevated. Another two patients showed high FCM-IgG and C1q levels before KTx, and these levels remained low after KTx with no or mild rejection. In conclusion, our results suggest that a high positivity rate for FCM-C1q may predict moderate to severe AMR caused by ab-Abs and poor prognosis in ABOI-KTx.
Critical blood shortages plague healthcare systems, particularly in lower-income and middle-income countries. This affects patients requiring regular transfusions and creates challenges during emergencies where universal blood is vital. To address these shortages and support blood banks during emergencies, this study reports a method for increasing the compatibility of blood group A red blood cells (RBCs) by blocking surface antigen-A using anti-A single chain fragment variable (scFv). To enhance stability, the scFv was first modified with the addition of interdomain disulfide bonds. The most effective location for this modification was found to be H44-L232 of mutant-1a scFv. ScFv was then produced from E.coli BL21(DE3) and purified using a three-step process. Purified scFvs were then used to block maximum number of antigens-A on RBCs, and it was found that only monomers were functional, while dimers formed through incorrect domain-swapping were non-functional. These antigen-blocked RBCs displayed no clumping in hemagglutination testing with incompatible blood plasma. The dissociation constant KD was found to be 0.724 μM. Antigen-blocked RBCs have the potential to be given to other blood groups during emergencies. This innovative approach could significantly increase the pool of usable blood, potentially saving countless lives.
This study aimed to identify the 25 most prevalent adverse events (AEs) associated with FDA-approved immune checkpoint inhibitors (ICIs)-specifically, PD-1, PD-L1, CTLA-4, and LAG-3 inhibitors-using data from the FDA Adverse Events Reporting System (FAERS), a publicly available repository of reported drug adverse events, and AERSMine, an open-access pharmacovigilance tool, to investigate these adverse events. For PD-1 inhibitors, the most common AEs were diarrhea, fatigue, and pyrexia, with notable instances of neutropenia and hypothyroidism, particularly with toripalimab and dostarlimab. PD-L1 inhibitors also frequently caused pyrexia, diarrhea, and fatigue, with interstitial lung disease and hypothyroidism showing a class effect, and drug-specific AEs such as hepatotoxicity and chills. CTLA-4 inhibitors predominantly resulted in diarrhea and colitis, with ipilimumab frequently causing pyrexia and rash, while tremelimumab exhibited unique AEs such as biliary tract infection. The LAG-3 inhibitor relatlimab reported fewer AEs, including pyrexia and pneumonia. Rare but significant AEs across all inhibitors included myocarditis and myasthenia gravis. This study provides a detailed overview of the 25 most common AEs associated with ICIs, offering valuable insights for clinical decision-making and AE management. Further research is necessary to elucidate the mechanisms underlying these AEs and to develop targeted interventions to enhance the safety and efficacy of ICI therapy in patients with cancer.