Pub Date : 2024-08-27DOI: 10.1038/s41580-024-00769-1
Heng Zhang, Jian-Kang Zhu
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
DNA 甲基化又称 5-甲基胞嘧啶,是一种表观遗传修饰,在植物生长、发育和适应过程中具有重要功能。细胞 DNA 甲基化水平受 DNA 甲基转移酶和去甲基化酶的联合作用严格调控。参与 DNA 甲基化靶向和解释的蛋白质复合物已经确定,揭示了甲基-DNA 结合蛋白和分子伴侣的有趣作用。结构研究和体外重组酶系统为 RNA 引导的 DNA 甲基化(植物中催化从头甲基化的主要途径)提供了机制上的见解。更好地了解调控机制将有助于对 DNA 甲基化状态进行特定位点操作。目前正在为此开发基于 CRISPR-dCas9 的表观基因组编辑工具。鉴于 DNA 甲基化模式可通过减数分裂稳定传递,而且表型变异可产生较大的表型变异,表观基因组编辑可在相同的遗传物质上产生额外的表型变异,因而在作物育种方面大有可为。
{"title":"Epigenetic gene regulation in plants and its potential applications in crop improvement.","authors":"Heng Zhang, Jian-Kang Zhu","doi":"10.1038/s41580-024-00769-1","DOIUrl":"https://doi.org/10.1038/s41580-024-00769-1","url":null,"abstract":"<p><p>DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" ","pages":""},"PeriodicalIF":81.3,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1038/s41571-024-00932-9
Jan Budczies, Daniel Kazdal, Michael Menzel, Susanne Beck, Klaus Kluck, Christian Altbürger, Constantin Schwab, Michael Allgäuer, Aysel Ahadova, Matthias Kloor, Peter Schirmacher, Solange Peters, Alwin Krämer, Petros Christopoulos, Albrecht Stenzinger
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology. Tumour mutational burden (TMB), reflecting the number of mutations present in the DNA of a tumour, is a biologically appealing biomarker of a response to immune-checkpoint inhibitors (ICIs). Nonetheless, the clinical predictive value of TMB for ICI response has thus far been mixed, with robust associations seen only for a few ICI-responsive cancer types. In this Review, the authors summarize the available data on TMB and discuss ongoing research efforts to improve the clinical utility of this biomarker.
{"title":"Tumour mutational burden: clinical utility, challenges and emerging improvements","authors":"Jan Budczies, Daniel Kazdal, Michael Menzel, Susanne Beck, Klaus Kluck, Christian Altbürger, Constantin Schwab, Michael Allgäuer, Aysel Ahadova, Matthias Kloor, Peter Schirmacher, Solange Peters, Alwin Krämer, Petros Christopoulos, Albrecht Stenzinger","doi":"10.1038/s41571-024-00932-9","DOIUrl":"10.1038/s41571-024-00932-9","url":null,"abstract":"Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology. Tumour mutational burden (TMB), reflecting the number of mutations present in the DNA of a tumour, is a biologically appealing biomarker of a response to immune-checkpoint inhibitors (ICIs). Nonetheless, the clinical predictive value of TMB for ICI response has thus far been mixed, with robust associations seen only for a few ICI-responsive cancer types. In this Review, the authors summarize the available data on TMB and discuss ongoing research efforts to improve the clinical utility of this biomarker.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"21 10","pages":"725-742"},"PeriodicalIF":81.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41571-024-00932-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1038/s41571-024-00935-6
Maxwell R. Lloyd, Komal Jhaveri, Kevin Kalinsky, Aditya Bardia, Seth A. Wander
Anti-oestrogen-based therapies, often combined with a CDK4/6 inhibitor, are the current standard-of-care first-line therapy for patients with advanced-stage hormone receptor-positive (HR+) breast cancer. Resistance to anti-oestrogen agents inevitably occurs, mediated by oestrogen receptor (ER)-dependent or ER-independent mechanisms that drive tumour progression. Emerging endocrine therapies include, but are not limited to, next-generation oral ER degraders and proteolysis targeting chimeras, which might be particularly effective in patients with ESR1-mutant breast cancer. Furthermore, cancers harbouring driver alterations in oncogenic signalling pathways, including AKT and PI3K, might be susceptible to novel combination strategies involving targeted inhibitors. Next-generation CDK2/4 inhibitors are an area of active clinical investigation, and efforts are ongoing to evaluate the role of sequential CDK inhibition. Approved and emerging antibody–drug conjugates exploiting novel target antigens have also demonstrated promising clinical activity. These novel agents, as well as further identification and characterization of predictive biomarkers, will hopefully continue to improve clinical outcomes, reduce the incidence of toxicities, and limit the extent of overtreatment in this population. In this Review, we describe the evolving treatment paradigm for patients with metastatic HR+ breast cancer in light of the growing armamentarium of drugs and biomarkers that will help to shape the future therapeutic landscape. These strategies are expected to involve tumour molecular profiling to enable the delivery of precision medicine. Patients with advanced-stage hormone receptor-positive (HR+) breast cancer typically receive first-line treatment with anti-oestrogen-based agents, often combined with a CDK4/6 inhibitor, although resistance remains common. The authors of this Review discuss how a variety of novel endocrine therapies together with tumour molecular profiling could shape the future therapeutic landscape for these patients.
{"title":"Precision therapeutics and emerging strategies for HR-positive metastatic breast cancer","authors":"Maxwell R. Lloyd, Komal Jhaveri, Kevin Kalinsky, Aditya Bardia, Seth A. Wander","doi":"10.1038/s41571-024-00935-6","DOIUrl":"10.1038/s41571-024-00935-6","url":null,"abstract":"Anti-oestrogen-based therapies, often combined with a CDK4/6 inhibitor, are the current standard-of-care first-line therapy for patients with advanced-stage hormone receptor-positive (HR+) breast cancer. Resistance to anti-oestrogen agents inevitably occurs, mediated by oestrogen receptor (ER)-dependent or ER-independent mechanisms that drive tumour progression. Emerging endocrine therapies include, but are not limited to, next-generation oral ER degraders and proteolysis targeting chimeras, which might be particularly effective in patients with ESR1-mutant breast cancer. Furthermore, cancers harbouring driver alterations in oncogenic signalling pathways, including AKT and PI3K, might be susceptible to novel combination strategies involving targeted inhibitors. Next-generation CDK2/4 inhibitors are an area of active clinical investigation, and efforts are ongoing to evaluate the role of sequential CDK inhibition. Approved and emerging antibody–drug conjugates exploiting novel target antigens have also demonstrated promising clinical activity. These novel agents, as well as further identification and characterization of predictive biomarkers, will hopefully continue to improve clinical outcomes, reduce the incidence of toxicities, and limit the extent of overtreatment in this population. In this Review, we describe the evolving treatment paradigm for patients with metastatic HR+ breast cancer in light of the growing armamentarium of drugs and biomarkers that will help to shape the future therapeutic landscape. These strategies are expected to involve tumour molecular profiling to enable the delivery of precision medicine. Patients with advanced-stage hormone receptor-positive (HR+) breast cancer typically receive first-line treatment with anti-oestrogen-based agents, often combined with a CDK4/6 inhibitor, although resistance remains common. The authors of this Review discuss how a variety of novel endocrine therapies together with tumour molecular profiling could shape the future therapeutic landscape for these patients.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"21 10","pages":"743-761"},"PeriodicalIF":81.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1038/s41580-024-00768-2
Gunsagar S. Gulati, Jeremy Philip D’Silva, Yunhe Liu, Linghua Wang, Aaron M. Newman
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
{"title":"Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics","authors":"Gunsagar S. Gulati, Jeremy Philip D’Silva, Yunhe Liu, Linghua Wang, Aaron M. Newman","doi":"10.1038/s41580-024-00768-2","DOIUrl":"https://doi.org/10.1038/s41580-024-00768-2","url":null,"abstract":"<p>Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"97 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1038/s41571-024-00938-3
Fatemeh Ardeshir-Larijani, Suresh S. Ramalingam
In the past 2 years, substantial improvements have been made in the management of advanced-stage EGFR-mutant non-small-cell lung cancer. Recent studies have suggested added benefit from the combination of third-generation tyrosine-kinase inhibitors with either chemotherapy or a bispecific antibody targeting EGFR and MET. Herein, we summarize these advances and their implications for clinical practice.
{"title":"The MARIPOSA trials — implications for the treatment of EGFR-mutant NSCLC","authors":"Fatemeh Ardeshir-Larijani, Suresh S. Ramalingam","doi":"10.1038/s41571-024-00938-3","DOIUrl":"10.1038/s41571-024-00938-3","url":null,"abstract":"In the past 2 years, substantial improvements have been made in the management of advanced-stage EGFR-mutant non-small-cell lung cancer. Recent studies have suggested added benefit from the combination of third-generation tyrosine-kinase inhibitors with either chemotherapy or a bispecific antibody targeting EGFR and MET. Herein, we summarize these advances and their implications for clinical practice.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"21 11","pages":"767-768"},"PeriodicalIF":81.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1038/s41571-024-00930-x
Keri Toner, Chase D. McCann, Catherine M. Bollard
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies. Several different viruses have a role in cancer pathogenesis, contributing to the development of various haematological malignancies and solid tumours via diverse, multifaceted mechanisms. However, this viral aetiology presents a unique opportunity for adoptive virus-specific T cell (VST) therapy. This Review summarizes the mechanisms of viral carcinogenesis and describes the current clinical experience with adoptive cellular immunotherapies for virus-related cancers, predominantly using non-genetically modified VSTs. The authors also discuss challenges and future directions for the ongoing clinical development of VST therapies.
在各种血液恶性肿瘤和实体瘤中,各种病毒作为肿瘤发生的主要驱动因素,其作用已得到充分证实。事实上,据估计,每年约有 150 万患者被诊断出患有与病毒相关的癌症。主要的人类肿瘤病毒包括 Epstein-Barr 病毒(EBV)、卡波西肉瘤相关疱疹病毒(KSHV)、乙型肝炎病毒和丙型肝炎病毒(HBV 和 HCV)、人类乳头瘤病毒(HPV)、人类 T 淋巴细胞病毒 1 型(HTLV1)和梅克尔细胞多瘤病毒(MCPyV)。此外,虽然人类免疫缺陷病毒(HIV)本身并不致癌,但它与免疫抑制有关,而免疫抑制会导致艾滋病定义癌症(特别是卡波西肉瘤、侵袭性 B 细胞非霍奇金淋巴瘤和宫颈癌)的发生。鉴于适应性 T 细胞介导的免疫反应对控制病毒感染至关重要,越来越多的研究正集中于评估治疗病毒相关癌症的病毒特异性 T 细胞疗法。在本综述中,我们将简要概述病毒在这些恶性肿瘤发病机制中的作用,然后介绍迄今为止病毒特异性 T 细胞疗法领域取得的进展,并评估这些疗法在治疗甚至可能预防病毒相关恶性肿瘤方面的潜在作用。
{"title":"Applications of cell therapy in the treatment of virus-associated cancers","authors":"Keri Toner, Chase D. McCann, Catherine M. Bollard","doi":"10.1038/s41571-024-00930-x","DOIUrl":"10.1038/s41571-024-00930-x","url":null,"abstract":"A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein–Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies. Several different viruses have a role in cancer pathogenesis, contributing to the development of various haematological malignancies and solid tumours via diverse, multifaceted mechanisms. However, this viral aetiology presents a unique opportunity for adoptive virus-specific T cell (VST) therapy. This Review summarizes the mechanisms of viral carcinogenesis and describes the current clinical experience with adoptive cellular immunotherapies for virus-related cancers, predominantly using non-genetically modified VSTs. The authors also discuss challenges and future directions for the ongoing clinical development of VST therapies.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"21 10","pages":"709-724"},"PeriodicalIF":81.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1038/s41580-024-00774-4
Eytan Zlotorynski
Stresses induce de-crowding and fluidization of the cytoplasm, which promotes the formation of biomolecular condensates.
压力会导致细胞质去拥挤化和流动化,从而促进生物分子凝聚物的形成。
{"title":"Far from the cytoplasmic crowd","authors":"Eytan Zlotorynski","doi":"10.1038/s41580-024-00774-4","DOIUrl":"10.1038/s41580-024-00774-4","url":null,"abstract":"Stresses induce de-crowding and fluidization of the cytoplasm, which promotes the formation of biomolecular condensates.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"25 10","pages":"761-761"},"PeriodicalIF":81.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1038/s41580-024-00757-5
Ralph A. Nixon, David C. Rubinsztein
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy–lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic–lysosomal function in neuronal health and disease. The autophagy–lysosome pathway eliminates damaged organelles and aggregation-prone proteins, which is particularly important in neurons, where clearance of such substrates is restricted. Autophagy or lysosome deficiencies, often exacerbated by ageing, impact neuronal function and cause neurodegenerative diseases such as Alzheimer disease or Parkinson disease.
{"title":"Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases","authors":"Ralph A. Nixon, David C. Rubinsztein","doi":"10.1038/s41580-024-00757-5","DOIUrl":"10.1038/s41580-024-00757-5","url":null,"abstract":"Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy–lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic–lysosomal function in neuronal health and disease. The autophagy–lysosome pathway eliminates damaged organelles and aggregation-prone proteins, which is particularly important in neurons, where clearance of such substrates is restricted. Autophagy or lysosome deficiencies, often exacerbated by ageing, impact neuronal function and cause neurodegenerative diseases such as Alzheimer disease or Parkinson disease.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"25 11","pages":"926-946"},"PeriodicalIF":81.3,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1038/s41580-024-00763-7
Jian Huang, Xiaojing Pan, Nieng Yan
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery. Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.
{"title":"Structural biology and molecular pharmacology of voltage-gated ion channels","authors":"Jian Huang, Xiaojing Pan, Nieng Yan","doi":"10.1038/s41580-024-00763-7","DOIUrl":"10.1038/s41580-024-00763-7","url":null,"abstract":"Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure–function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery. Voltage-gated ion channels (VGICs) regulate ion permeability in multiple physiological processes, thereby representing important disease targets. This Review discusses how advances in cryo-electron microscopy have contributed to our understanding of VGIC structures and mechanisms and their interactions with drugs.","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":"25 11","pages":"904-925"},"PeriodicalIF":81.3,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}