Pub Date : 2023-09-05Epub Date: 2023-06-02DOI: 10.1146/annurev-phyto-021622-103440
Kyle Fletcher, Richard Michelmore
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
{"title":"Genome-Enabled Insights into Downy Mildew Biology and Evolution.","authors":"Kyle Fletcher, Richard Michelmore","doi":"10.1146/annurev-phyto-021622-103440","DOIUrl":"10.1146/annurev-phyto-021622-103440","url":null,"abstract":"<p><p>Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP <i>Peronospora effusa</i> revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"165-183"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-10DOI: 10.1146/annurev-phyto-021622-125009
Alexandra J Weisberg, Yu Wu, Jeff H Chang, Erh-Min Lai, Chih-Horng Kuo
Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.
{"title":"Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics.","authors":"Alexandra J Weisberg, Yu Wu, Jeff H Chang, Erh-Min Lai, Chih-Horng Kuo","doi":"10.1146/annurev-phyto-021622-125009","DOIUrl":"10.1146/annurev-phyto-021622-125009","url":null,"abstract":"<p><p>Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"1-23"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-30DOI: 10.1146/annurev-phyto-020620-120425
Pedro Murúa, Andrea Garvetto, Suhelen Egan, Claire M M Gachon
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
{"title":"The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity.","authors":"Pedro Murúa, Andrea Garvetto, Suhelen Egan, Claire M M Gachon","doi":"10.1146/annurev-phyto-020620-120425","DOIUrl":"10.1146/annurev-phyto-020620-120425","url":null,"abstract":"<p><p>Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"231-255"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-18DOI: 10.1146/annurev-phyto-021722-035135
Dov Prusky, Gianfranco Romanazzi
Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.
{"title":"Induced Resistance in Fruit and Vegetables: A Host Physiological Response Limiting Postharvest Disease Development.","authors":"Dov Prusky, Gianfranco Romanazzi","doi":"10.1146/annurev-phyto-021722-035135","DOIUrl":"10.1146/annurev-phyto-021722-035135","url":null,"abstract":"<p><p>Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"279-300"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-30DOI: 10.1146/annurev-phyto-021621-114026
Jeffrey C Anderson
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
{"title":"Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria.","authors":"Jeffrey C Anderson","doi":"10.1146/annurev-phyto-021621-114026","DOIUrl":"10.1146/annurev-phyto-021621-114026","url":null,"abstract":"<p><p>Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"49-71"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-30DOI: 10.1146/annurev-phyto-021622-110443
Gautier Langin, Manuel González-Fuente, Suayib Üstün
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
{"title":"The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation.","authors":"Gautier Langin, Manuel González-Fuente, Suayib Üstün","doi":"10.1146/annurev-phyto-021622-110443","DOIUrl":"10.1146/annurev-phyto-021622-110443","url":null,"abstract":"<p><p>The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"351-375"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-31DOI: 10.1146/annurev-phyto-021621-114618
John Hammond, Qi Huang, Ramon Jordan, Ellis Meekes, Adrian Fox, Ines Vazquez-Iglesias, Anna Maria Vaira, Andrea Copetta, Catia Delmiglio
Since the 1950s, there have been major changes in the scope, value, and organization of the ornamental plant industry. With fewer individual producers and a strong trend toward consolidation and globalization, increasing quantities of diverse plant genera and species are being shipped internationally. Many more ornamentals are propagated vegetatively instead of by seed, further contributing to disease spread. These factors have led to global movement of pathogens to countries where they were not formerly known. The emergence of some previously undescribed pathogens has been facilitated by high-throughput sequencing, but biological studies are often lacking, so their roles in economic diseases are not yet known. Case studies of diseases in selected ornamentals discuss the factors involved in their spread, control measures to reduce their economic impact, and some potential effects on agronomic crops. Advances in diagnostic techniques are discussed, and parallels are drawn to the international movement of human diseases.
{"title":"International Trade and Local Effects of Viral and Bacterial Diseases in Ornamental Plants.","authors":"John Hammond, Qi Huang, Ramon Jordan, Ellis Meekes, Adrian Fox, Ines Vazquez-Iglesias, Anna Maria Vaira, Andrea Copetta, Catia Delmiglio","doi":"10.1146/annurev-phyto-021621-114618","DOIUrl":"10.1146/annurev-phyto-021621-114618","url":null,"abstract":"<p><p>Since the 1950s, there have been major changes in the scope, value, and organization of the ornamental plant industry. With fewer individual producers and a strong trend toward consolidation and globalization, increasing quantities of diverse plant genera and species are being shipped internationally. Many more ornamentals are propagated vegetatively instead of by seed, further contributing to disease spread. These factors have led to global movement of pathogens to countries where they were not formerly known. The emergence of some previously undescribed pathogens has been facilitated by high-throughput sequencing, but biological studies are often lacking, so their roles in economic diseases are not yet known. Case studies of diseases in selected ornamentals discuss the factors involved in their spread, control measures to reduce their economic impact, and some potential effects on agronomic crops. Advances in diagnostic techniques are discussed, and parallels are drawn to the international movement of human diseases.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"73-95"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-02DOI: 10.1146/annurev-phyto-021722-034312
Emilio Montesinos
Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (a) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (b) the need to develop suitable formulations to increase their shelf life and methods of application, (c) the selection of compounds with acceptable toxicological profiles, and (d) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.
{"title":"Functional Peptides for Plant Disease Control.","authors":"Emilio Montesinos","doi":"10.1146/annurev-phyto-021722-034312","DOIUrl":"10.1146/annurev-phyto-021722-034312","url":null,"abstract":"<p><p>Plant disease control requires novel approaches to mitigate the spread of and losses caused by current, emerging, and re-emerging diseases and to adapt plant protection to global climate change and the restrictions on the use of conventional pesticides. Currently, disease management relies mainly on biopesticides, which are required for the sustainable use of plant-protection products. Functional peptides are candidate biopesticides because they originate from living organisms or are synthetic analogs and provide novel mechanisms of action against plant pathogens. Hundreds of compounds exist that cover an extensive range of activities against viruses, bacteria and phytoplasmas, fungi and oomycetes, and nematodes. Natural sources, chemical synthesis, and biotechnological platforms may provide peptides at large scale for the industry and growers. The main challenges for their use in plant disease protection are (<i>a</i>) the requirement of stability in the plant environment and counteracting resistance in pathogen populations, (<i>b</i>) the need to develop suitable formulations to increase their shelf life and methods of application, (<i>c</i>) the selection of compounds with acceptable toxicological profiles, and (<i>d</i>) the high cost of production for agricultural purposes. In the near future, it is expected that several functional peptides will be commercially available for plant disease control, but more effort is needed to validate their efficacy at the field level and fulfill the requirements of the regulatory framework.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"301-324"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10148775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-30DOI: 10.1146/annurev-phyto-021722-024626
Geoffrey M Williams, Matthew D Ginzel, Zhao Ma, Damian C Adams, Faith Campbell, Gary M Lovett, María Belén Pildain, Kenneth F Raffa, Kamal J K Gandhi, Alberto Santini, Richard A Sniezko, Michael J Wingfield, Pierluigi Bonello
Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.
{"title":"The Global Forest Health Crisis: A Public-Good Social Dilemma in Need of International Collective Action.","authors":"Geoffrey M Williams, Matthew D Ginzel, Zhao Ma, Damian C Adams, Faith Campbell, Gary M Lovett, María Belén Pildain, Kenneth F Raffa, Kamal J K Gandhi, Alberto Santini, Richard A Sniezko, Michael J Wingfield, Pierluigi Bonello","doi":"10.1146/annurev-phyto-021722-024626","DOIUrl":"10.1146/annurev-phyto-021722-024626","url":null,"abstract":"<p><p>Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"377-401"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05Epub Date: 2023-05-22DOI: 10.1146/annurev-phyto-021021-041457
J P Dundore-Arias, M Michalska-Smith, M Millican, L L Kinkel
Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond "who is present" to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.
{"title":"More Than the Sum of Its Parts: Unlocking the Power of Network Structure for Understanding Organization and Function in Microbiomes.","authors":"J P Dundore-Arias, M Michalska-Smith, M Millican, L L Kinkel","doi":"10.1146/annurev-phyto-021021-041457","DOIUrl":"10.1146/annurev-phyto-021021-041457","url":null,"abstract":"<p><p>Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond \"who is present\" to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"61 ","pages":"403-423"},"PeriodicalIF":10.2,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}