Virginia Teles Dohanik, Luanda Medeiros-Santana, Carolina Gonçalves Santos, Weyder Cristiano Santana, José Eduardo Serrão
The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of Apis mellifera workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.
{"title":"Expression and function of the vitellogenin receptor in the hypopharyngeal glands of the honey bee Apis mellifera (Hymenoptera: Apidae) workers","authors":"Virginia Teles Dohanik, Luanda Medeiros-Santana, Carolina Gonçalves Santos, Weyder Cristiano Santana, José Eduardo Serrão","doi":"10.1002/arch.22120","DOIUrl":"10.1002/arch.22120","url":null,"abstract":"<p>The vitellogenin receptor (VgR) is essential for the uptake and transport of the yolk precursor, vitellogenin (Vg). Vg is synthesized in the fat body, released in the hemolymph, and absorbed in the ovaries, via receptor-mediated endocytosis. Besides its important role in the reproductive pathway, Vg occurs in nonreproductive worker honey bee, suggesting its participation in other pathways. The objective was to verify if the VgR occurs in the hypopharyngeal glands of <i>Apis mellifera</i> workers and how Vg is internalized by these cells. VgR occurrence in the hypopharyngeal glands was evaluated by qPCR analyses of VgR and immunohistochemistry in workers with different tasks. The VgR gene is expressed in the hypopharyngeal glands of workers with higher transcript levels in nurse honey bees. VgR is more expressed in 11-day-old workers from queenright colonies, compared to orphan ones. Nurse workers with developed hypopharyngeal glands present higher VgR transcripts than those with poorly developed glands. The immunohistochemistry results showed the co-localization of Vg, VgR and clathrin (protein that plays a major role in the formation of coated vesicles in endocytosis) in the hypopharyngeal glands, suggesting receptor-mediated endocytosis. The results demonstrate that VgR performs the transport of Vg to the hypopharyngeal glands, supporting the Ovary Ground Plan Hypothesis and contributing to the understanding of the role of this gland in the social context of honey bees.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oleh Demianchuk, Maria Lylyk, Vitalii Balatskiy, Dmytro Gospodaryov, Maria Bayliak
Studies on antiaging remedies in insect models sometimes show discrepancies in results. These discrepancies could be explained by different responses of short- and long-lived strains on the antiaging remedies. The purpose of the study was to test whether life-prolonging effects of alpha-ketoglutarate (AKG), observed in nematodes and fruit flies, would be reproduced in long-lived Drosophila melanogaster flies. Lifespan was assayed in flies kept in demographic cages. Fecundity, proportion of flies capable of negative geotaxis, starvation resistance, time of heat coma onset, levels of triacyglycerols, body glucose, glycogen, activities of glutamate dehydrogenase, catalase, glutathione-S-transferase, hexokinase, phosphofructokinase, pyruvate kinase, lactate, and glutamate dehydrogenases were assessed. Dietary AKG did not affect fly lifespan on the diet with 5% yeast and 5% sucrose (5Y:5S) and on the diet with 9% yeast and 1% sucrose (9Y:1S), but increased lifespan on the low-protein diet (1Y:9S). Twenty-five-day-old female flies fed a 5Y:5S diet with 10 mM AKG for 3 weeks, did not differ from the control group (without AKG) in climbing activity, resistance to heat stress, and starvation. The levels of glucose and glycogen were unaffected but the levels of triacylglycerols were lower in AKG-fed female flies. No differences in activities of glycolytic enzymes, NADPH-producing enzymes, glutamate dehydrogenase, oxygen consumption, and levels of oxidative stress markers were observed between the control and AKG-fed flies. However, AKG-fed flies had lower activities of catalase and glutathione-S-transferase. These results suggest that potential antiaging remedies, such as AKG, may not extend lifespan in long-living organisms despite influencing several metabolic parameters.
{"title":"Alpha-ketoglutarate supplementation in long-lived Drosophila melanogaster: Impact on lifespan and metabolic responses","authors":"Oleh Demianchuk, Maria Lylyk, Vitalii Balatskiy, Dmytro Gospodaryov, Maria Bayliak","doi":"10.1002/arch.22116","DOIUrl":"10.1002/arch.22116","url":null,"abstract":"<p>Studies on antiaging remedies in insect models sometimes show discrepancies in results. These discrepancies could be explained by different responses of short- and long-lived strains on the antiaging remedies. The purpose of the study was to test whether life-prolonging effects of alpha-ketoglutarate (AKG), observed in nematodes and fruit flies, would be reproduced in long-lived <i>Drosophila melanogaster</i> flies. Lifespan was assayed in flies kept in demographic cages. Fecundity, proportion of flies capable of negative geotaxis, starvation resistance, time of heat coma onset, levels of triacyglycerols, body glucose, glycogen, activities of glutamate dehydrogenase, catalase, glutathione-<i>S</i>-transferase, hexokinase, phosphofructokinase, pyruvate kinase, lactate, and glutamate dehydrogenases were assessed. Dietary AKG did not affect fly lifespan on the diet with 5% yeast and 5% sucrose (5Y:5S) and on the diet with 9% yeast and 1% sucrose (9Y:1S), but increased lifespan on the low-protein diet (1Y:9S). Twenty-five-day-old female flies fed a 5Y:5S diet with 10 mM AKG for 3 weeks, did not differ from the control group (without AKG) in climbing activity, resistance to heat stress, and starvation. The levels of glucose and glycogen were unaffected but the levels of triacylglycerols were lower in AKG-fed female flies. No differences in activities of glycolytic enzymes, NADPH-producing enzymes, glutamate dehydrogenase, oxygen consumption, and levels of oxidative stress markers were observed between the control and AKG-fed flies. However, AKG-fed flies had lower activities of catalase and glutathione-<i>S</i>-transferase. These results suggest that potential antiaging remedies, such as AKG, may not extend lifespan in long-living organisms despite influencing several metabolic parameters.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (Bombyx mori) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from B. mori Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5′-phosphorylated dsRNAs at the 20-nt site—counted from the 5′-phosphorylated end—and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.
我们在从各种家蚕(Bombyx mori)器官制备的粗提取物中检测到了从双链 RNA(dsRNA)生成 20 核苷酸(nt)RNA 的酶活性。使用基因敲除培养细胞的结果表明,这种切割活性来自于 B. mori Dicer-2(BmDcr2)。生化分析表明,BmDcr2 优先在 20-nt 位点(从 5'- 磷酸化末端开始计算)切割 5'- 磷酸化 dsRNA,切割反应需要 ATP 和镁离子。这是首次报道鳞翅目昆虫中 Dicer-2 的生化特性。BmDcr2 在体外的这种酶特性与体内病毒感染蚕细胞中的小干扰 RNA 特征是一致的。
{"title":"Biochemical characterization of Bombyx mori Dicer-2 that dices double-stranded RNAs into 20-nt small RNA","authors":"Midori Tabara, Mayuko Harada, Kazunori Kuriyama, Takuma Sakamoto, Atsushi Takeda, Toshiyuki Fukuhara, Hiroko Tabunoki","doi":"10.1002/arch.22118","DOIUrl":"10.1002/arch.22118","url":null,"abstract":"<p>We detected enzymatic activity that generates 20-nucleotide (nt) RNA from double-stranded RNAs (dsRNAs) in crude extracts prepared from various silkworm (<i>Bombyx mori</i>) organs. The result using knocked-down cultured cells indicated that this dicing activity originated from <i>B. mori</i> Dicer-2 (BmDcr2). Biochemical analyses revealed that BmDcr2 preferentially cleaves 5′-phosphorylated dsRNAs at the 20-nt site—counted from the 5′-phosphorylated end—and required ATP and magnesium ions for the dicing reaction. This is the first report of the biochemical characterization of Dicer-2 in lepidopteran insects. This enzymatic property of BmDcr2 in vitro is consistent with the in vivo small interfering RNA profile in virus-infected silkworm cells.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140875674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm Bombyx mori were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of doublesex (BmdsxM) and increased the expression ratio of BmdsxM: BmdsxF. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of BmdsxM: BmdsxF, indicating the roles of the two snoRNAs played in the alternative splicing of Bmdsx of silkworm, which will provide new clues for the functional study of snoRNAs in insects.
{"title":"Role of small nucleolar RNAs in alternative splicing of the doublesex gene in the silkworm, Bombyx mori","authors":"Yu-Xin Qian, Shi-Gang Guo, Xu-Hui Zhao, Zhong-Wei Li, Reng Qiu, Yun-Chao Kan, Dan-Dan Li","doi":"10.1002/arch.22117","DOIUrl":"https://doi.org/10.1002/arch.22117","url":null,"abstract":"<p>More and more evidence shows that small noncoding RNAs (ncRNAs) play diverse roles in development, stress response and other cellular processes, but functional study of intermediate-size ncRNAs is still rare. Here, the expression profile of 16 intermediate-size ncRNAs in ovary and testis of silkworm <i>Bombyx mori</i> were analyzed. Twelve ncRNAs, including 5 small nucleolar RNAs (snoRNAs) and 7 unclassified ncRNAs, accumulated more in the testis than in the ovary of silkworm, especially Bm-163, Bm-51 and Bm-68. Four ncRNAs (including three orphan snoRNAs and one unclassified ncRNA) had higher expression level in the ovary than in the testis, especially Bm-86. Overexpression of the testis-enriched snoRNA Bm-68 in the female led to the accumulation of male-specific isoform of <i>doublesex</i> (<i>Bmdsx</i><sup><i>M</i></sup>) and increased the expression ratio of <i>Bmdsx</i><sup><i>M</i></sup>: <i>Bmdsx</i><sup><i>F</i></sup>. While overexpression of ovary-enriched snoRNA Bm-86 in the male decreased the expression ratio of <i>Bmdsx</i><sup><i>M</i></sup>: <i>Bmdsx</i><sup><i>F</i></sup>, indicating the roles of the two snoRNAs played in the alternative splicing of <i>Bmdsx</i> of silkworm, which will provide new clues for the functional study of snoRNAs in insects.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"116 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/arch.22117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lang-Lang Gong, Meng-Qi Zhang, Yun-Feng Ma, Hong-Yan Feng, Ya-Qin Zhao, Yang-yuntao Zhou, Ming He, Guy Smagghe, Peng He
The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.
{"title":"RNAi of yellow-y, required for normal cuticle pigmentation, impairs courtship behavior and oviposition in the German cockroach (Blattella germanica)","authors":"Lang-Lang Gong, Meng-Qi Zhang, Yun-Feng Ma, Hong-Yan Feng, Ya-Qin Zhao, Yang-yuntao Zhou, Ming He, Guy Smagghe, Peng He","doi":"10.1002/arch.22114","DOIUrl":"https://doi.org/10.1002/arch.22114","url":null,"abstract":"<p>The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the <i>yellow-y</i> gene in one important model and pest species, namely the German cockroach (<i>Blattella germanica</i>), which is to our knowledge the first time reported. In essence, we identified the <i>yellow-y</i> gene (<i>BgY-y</i>) and characterized its function by using RNA interference (RNAi). Silencing of <i>BgY-y</i> gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of <i>BgY-y</i> impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the <i>yellow-y</i> gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140641959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1–6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.
{"title":"RNAi efficiency is enhanced through knockdown of double-stranded RNA-degrading enzymes in butterfly Papilio xuthus","authors":"Qian Shu, Gui-chun Liu, Jin-wu He, Ping Hu, Zhi-wei Dong, Ruo-ping Zhao, Hong-rui Zhang, Xue-yan Li","doi":"10.1002/arch.22113","DOIUrl":"https://doi.org/10.1002/arch.22113","url":null,"abstract":"<p>The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). <i>Papilio xuthus</i> is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six <i>dsRNase</i> genes (<i>PxdsRNase 1–6</i>) were identified in <i>P. xuthus</i> genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these <i>PxdsRNase</i> genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different <i>PxdsRNase</i> genes had different expression levels at different developmental stages and tissues. The expression of <i>PxdsRNase2</i>, <i>PxdsRNase3</i>, and <i>PxdsRNase6</i> were upregulated significantly through dsGFP injection, and <i>PxdsRNase</i> genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with <i>PxEbony</i>, which acts as a reporter gene, observed that silencing <i>PxdsRNase</i> genes can increase RNAi efficiency significantly. These results confirm that silencing <i>dsRNase</i> genes can improve RNAi efficiency in <i>P. xuthus</i> significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvβFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.
在昆虫体内,启动变态的 20E 反应基因的表达是由 20-羟基蜕皮激素(20E)脉冲触发的。20E 脉冲是通过两个过程产生的:合成(提高 20E 水平)和灭活(降低 20E 滴度)。CYP18A1 具有蜕皮激素 26- 羟化酶的功能,在几种代表性昆虫体内的 20E 清除过程中发挥作用。然而,将 CYP18A1 的 20E 降解活性应用于其他昆虫仍然是一项重大挑战。在这项研究中,我们发现在马铃薯的一种危害性鞘翅目害虫 Henosepilachna vigintioctopunctata 的幼虫期和蛹后期,特别是在幼虫表皮和脂肪体中,Hvcyp18a1 的含量很高。以 Hvcyp18a1 为靶标的 RNA 干扰(RNAi)破坏了化蛹过程。大约 75% 的 Hvcyp18a1 RNAi 幼虫发育停滞,仍然是发育不良的蛹。随后,它们逐渐变黑并最终死亡。在成功化蛹的 Hvcyp18a1 缺失动物中,约有一半成为畸形蛹,外翅和后翅肿胀。从这些畸形蛹中孵化出的成虫外形畸形,前翅和后翅干瘪,被蛹的外膜包裹。此外,Hvcyp18a1的RNAi增加了一个20E受体基因(HvEcR)和四个20E反应转录本(HvE75、HvHR3、HvBrC和HvαFTZ-F1)的表达,同时降低了HvβFTZ-F1的转录。我们的研究结果证实了 CYP18A1 在幼虫化蛹过程中的重要作用,它可能参与了 H. vigintioctopunctata 中 20E 的降解。
{"title":"Molecular characterization of the cytochrome P450 enzyme CYP18A1 in Henosepilachna vigintioctopunctata","authors":"Yu-Xing Zhang, Qiao Tan, Lin Jin, Guo-Qing Li","doi":"10.1002/arch.22111","DOIUrl":"https://doi.org/10.1002/arch.22111","url":null,"abstract":"<p>In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of <i>Hvcyp18a1</i> during the larval and late pupal stages, particularly in the larval epidermis and fat body of <i>Henosepilachna vigintioctopunctata</i>, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting <i>Hvcyp18a1</i> disrupted the pupation. Approximately 75% of the <i>Hvcyp18a1</i> RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the <i>Hvcyp18a1</i>-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of <i>Hvcyp18a1</i> increased the expression of a 20E receptor gene (<i>HvEcR</i>) and four 20E response transcripts (<i>HvE75</i>, <i>HvHR3</i>, <i>HvBrC</i>, and <i>HvαFTZ-F1</i>), while decreased the transcription of <i>HvβFTZ-F1</i>. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in <i>H. vigintioctopunctata</i>.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10−7 and 5 × 10−8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect β-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.
昆虫的三卤糖酶已被确定为有希望控制害虫的新目标。这些关键酶参与三卤糖的水解,在昆虫的生长和发育过程中发挥着重要作用。本研究评估了植物和微生物化合物(即有效霉素 A、苦杏仁苷和蚜灭多)通过抑制三卤糖酶对蚜虫 Acyrthosiphon pisum 的影响。后者属于蚜科,是植物病毒的主要传播媒介,对农作物危害极大。经证实,Validamycin A 是一种出色的三卤酶抑制剂,其半数最大抑制浓度和抑制常数分别为 2.2 × 10-7 M 和 5 × 10-8 M,对 A. pisum 群体的致死率约为 80%。与有效霉素 A 不同的是,苦杏仁苷和氯雷他定对昆虫的致死效力与其对三卤甲烷酶的抑制作用并不一致,这可能是由于它们被昆虫的β-葡萄糖苷酶水解所致。我们的对接研究表明,这三种化合物都不能与trehalase活性位点结合,这与它们的水解对应物(即validoxylamine A、phloretin和prunasin)不同。到目前为止,Validoxylamine A 是最好的 trhalase 结合剂,其次是 phloretin 和 prunasin。
{"title":"Toxicological, biochemical, and in silico investigations of three trehalase inhibitors for new ways to control aphids","authors":"Virgile Neyman, Maude Quicray, Frédéric Francis, Catherine Michaux","doi":"10.1002/arch.22112","DOIUrl":"https://doi.org/10.1002/arch.22112","url":null,"abstract":"<p>Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on <i>Acyrthosiphon pisum</i> aphid. The latter is part of the <i>Aphididae</i> family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10<sup>−7</sup> and 5 × 10<sup>−8 </sup>M, respectively, with a mortality rate of ~80% on a <i>A. pisum</i> population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect β-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhishan Cao, Olha Bakumenko, Volodymyr Vlasenko, Weihai Li, Jinjun Cao
20-Hydroxyecdysone (20E) plays a vital role in a series of biological processes, via the nuclear receptors, EcR/USP by activating the ecdysone regulatory cascade. To clarify the role of EcR during the development of Grapholita molesta, the complementary DNA of ecdysone receptor isoform B1 (GmEcR-B1) was obtained from the transcriptome of G. molesta and verified by PCR. Alignment analysis revealed that the deduced protein sequence of GmEcR-B1 was highly homologous to EcR proteins identified in other lepidopteran species, especially the EcR-B1 isoform in Spodoptera litura. Quantitative real-time PCR showed that GmEcRs was expressed at all test developmental stages, and the expression level of GmEcRs was relatively higher during the period of the 3rd day of fifth instar larvae to 2nd of pupa than those in other stages. Moreover, the messenger RNA of GmEcRs was much more strongly expressed in the Malpighian tubule and epidermis than those in other tissues, which suggests that this gene may function in a tissue-specific manner during larval development. Silencing of GmEcRs could significantly downregulate the transcriptional level of ecdysone-inducible genes and result in increased mortality during metamorphosis and prolonged prepupal duration. Taken together, the present results indicate that GmEcRs may directly or indirectly affect the development of G. molesta.
{"title":"Molecular characterization and functional analysis of the ecdysone receptor isoform (EcR) from the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae)","authors":"Zhishan Cao, Olha Bakumenko, Volodymyr Vlasenko, Weihai Li, Jinjun Cao","doi":"10.1002/arch.22110","DOIUrl":"https://doi.org/10.1002/arch.22110","url":null,"abstract":"<p>20-Hydroxyecdysone (20E) plays a vital role in a series of biological processes, via the nuclear receptors, EcR/USP by activating the ecdysone regulatory cascade. To clarify the role of EcR during the development of <i>Grapholita molesta</i>, the complementary DNA of ecdysone receptor isoform B1 (<i>GmEcR-B1</i>) was obtained from the transcriptome of <i>G. molesta</i> and verified by PCR. Alignment analysis revealed that the deduced protein sequence of GmEcR-B1 was highly homologous to EcR proteins identified in other lepidopteran species, especially the EcR-B1 isoform in <i>Spodoptera litura</i>. Quantitative real-time PCR showed that <i>GmEcRs</i> was expressed at all test developmental stages, and the expression level of <i>GmEcRs</i> was relatively higher during the period of the 3rd day of fifth instar larvae to 2nd of pupa than those in other stages. Moreover, the messenger RNA of <i>GmEcRs</i> was much more strongly expressed in the Malpighian tubule and epidermis than those in other tissues, which suggests that this gene may function in a tissue-specific manner during larval development. Silencing of <i>GmEcRs</i> could significantly downregulate the transcriptional level of ecdysone-inducible genes and result in increased mortality during metamorphosis and prolonged prepupal duration. Taken together, the present results indicate that <i>GmEcRs</i> may directly or indirectly affect the development of <i>G. molesta</i>.</p>","PeriodicalId":8281,"journal":{"name":"Archives of Insect Biochemistry and Physiology","volume":"115 4","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}