Pub Date : 2024-12-24DOI: 10.1007/s00204-024-03950-9
Zaoqin Yu, Wei Li, Cheng Tian, Yan Cao, Chengliang Zhang
Hepatic sinusoidal obstruction syndrome (HSOS) has gained recognition as a rare form of drug-induced liver injury (DILI) in recent years. Although extensively studied in the context of hematopoietic stem cell transplantation (HSCT), the applicability of this knowledge to drug-induced HSOS remains limited due to distinct etiological factors. The primary causes of drug-induced HSOS include the ingestion of pyrrolizidine alkaloid (PA)-containing plants, as well as the use of chemotherapeutic agents and immunosuppressive drugs. The underlying pathogenesis is not yet fully understood. Noninvasive diagnostic imaging modalities such as ultrasonography, computed tomography, and magnetic resonance imaging play a valuable role in diagnosis. Further research is essential to develop standardized severity grading systems and optimize treatment strategies. This review summarizes the key etiologies, pathological mechanisms, clinical features, diagnostic approaches, severity assessment, and therapeutic options for drug-induced HSOS.
{"title":"Drug-induced hepatic sinusoidal obstruction syndrome: current advances and future perspectives.","authors":"Zaoqin Yu, Wei Li, Cheng Tian, Yan Cao, Chengliang Zhang","doi":"10.1007/s00204-024-03950-9","DOIUrl":"https://doi.org/10.1007/s00204-024-03950-9","url":null,"abstract":"<p><p>Hepatic sinusoidal obstruction syndrome (HSOS) has gained recognition as a rare form of drug-induced liver injury (DILI) in recent years. Although extensively studied in the context of hematopoietic stem cell transplantation (HSCT), the applicability of this knowledge to drug-induced HSOS remains limited due to distinct etiological factors. The primary causes of drug-induced HSOS include the ingestion of pyrrolizidine alkaloid (PA)-containing plants, as well as the use of chemotherapeutic agents and immunosuppressive drugs. The underlying pathogenesis is not yet fully understood. Noninvasive diagnostic imaging modalities such as ultrasonography, computed tomography, and magnetic resonance imaging play a valuable role in diagnosis. Further research is essential to develop standardized severity grading systems and optimize treatment strategies. This review summarizes the key etiologies, pathological mechanisms, clinical features, diagnostic approaches, severity assessment, and therapeutic options for drug-induced HSOS.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1007/s00204-024-03942-9
Brecht Attema, Outi Kummu, Mária Krutáková, Petr Pavek, Jukka Hakkola, Guido J E J Hooiveld, Sander Kersten
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
{"title":"The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity.","authors":"Brecht Attema, Outi Kummu, Mária Krutáková, Petr Pavek, Jukka Hakkola, Guido J E J Hooiveld, Sander Kersten","doi":"10.1007/s00204-024-03942-9","DOIUrl":"https://doi.org/10.1007/s00204-024-03942-9","url":null,"abstract":"<p><p>Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1007/s00204-024-03911-2
Nádia Vital, Maria Cardoso, Michel Kranendonk, Maria João Silva, Henriqueta Louro
Emerging cellulose nanomaterials (CNMs) may have commercial impacts in multiple sectors, being their application particularly explored in the food sector. Thus, their potential adverse effects in the gastrointestinal tract should be evaluated before marketing. This work aimed to assess the safety of two CNMs (CNF–TEMPO and CMF–ENZ) through the investigation of their cytotoxicity, genotoxicity (comet and micronucleus assays), and capacity to induce reactive oxygen species in human intestinal cells, and their mutagenic effect using the Hprt gene mutation assay. Each toxicity endpoint was analysed after cells exposure to a concentration-range of each CNM or to its digested product, obtained by the application of a standardized static in vitro digestion method. The results showed an absence of cytotoxic effects in intestinal cells, up to the highest concentration tested (200 µg/mL or 25 µg/mL, for non-digested and digested CNMs, respectively). Of note, the cytotoxicity of the digestion control limited the top concentration of digested samples (25 µg/mL) for subsequent assays. Application of a battery of in vitro assays showed that CNF–TEMPO and CMF–ENZ do not induce gene mutations or aneugenic/clastogenic effects. However, due to the observed DNA damage induction, a genotoxic potential cannot be excluded, even though in vitro digestion seems to attenuate the effect. The lowest digested CNF–TEMPO concentration induced chromosomal damage in Caco-2 cells, leading to an equivocal outcome. Ongoing research on epigenotoxic effects of these CNMs samples may strengthen the lines of evidence on their safety when ingested, paving the way for their innovative application in the food industry.
{"title":"Evaluation of the cyto- and genotoxicity of two types of cellulose nanomaterials using human intestinal cells and in vitro digestion simulation","authors":"Nádia Vital, Maria Cardoso, Michel Kranendonk, Maria João Silva, Henriqueta Louro","doi":"10.1007/s00204-024-03911-2","DOIUrl":"10.1007/s00204-024-03911-2","url":null,"abstract":"<div><p>Emerging cellulose nanomaterials (CNMs) may have commercial impacts in multiple sectors, being their application particularly explored in the food sector. Thus, their potential adverse effects in the gastrointestinal tract should be evaluated before marketing. This work aimed to assess the safety of two CNMs (CNF–TEMPO and CMF–ENZ) through the investigation of their cytotoxicity, genotoxicity (comet and micronucleus assays), and capacity to induce reactive oxygen species in human intestinal cells, and their mutagenic effect using the <i>Hprt</i> gene mutation assay. Each toxicity endpoint was analysed after cells exposure to a concentration-range of each CNM or to its digested product, obtained by the application of a standardized static in vitro digestion method. The results showed an absence of cytotoxic effects in intestinal cells, up to the highest concentration tested (200 µg/mL or 25 µg/mL, for non-digested and digested CNMs, respectively). Of note, the cytotoxicity of the digestion control limited the top concentration of digested samples (25 µg/mL) for subsequent assays. Application of a battery of in vitro assays showed that CNF–TEMPO and CMF–ENZ do not induce gene mutations or aneugenic/clastogenic effects. However, due to the observed DNA damage induction, a genotoxic potential cannot be excluded, even though in vitro digestion seems to attenuate the effect. The lowest digested CNF–TEMPO concentration induced chromosomal damage in Caco-2 cells, leading to an equivocal outcome. Ongoing research on epigenotoxic effects of these CNMs samples may strengthen the lines of evidence on their safety when ingested, paving the way for their innovative application in the food industry.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"575 - 596"},"PeriodicalIF":4.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1007/s00204-024-03938-5
Elisabeth Eckert, Thomas Jäger, Edgar Leibold, Michael Bader, Thomas Göen, Julia Hiller
2-Phenoxyethanol (PhE) is an amphiphilic organic compound frequently used as a broad-spectrum preservative in cosmetic products and other consumer goods. PhE is also used as a biocidal component in occupational settings. A previous volunteer study by our working group following oral exposure to PhE showed that PhE is almost completely taken up into the human body followed by an extensive metabolization and fast urinary elimination. However, with respect to the importance of transdermal uptake, we now conducted another volunteer study applying dermal PhE exposure: five volunteers were dermally exposed with 0.4 mg/kg body weight of PhE each on a specified 800 cm2 skin area using non-occlusive conditions. Subsequently, blood and urine samples were collected up to 48 h post-exposure. The present study illustrates the fast transdermal uptake of PhE. Following systemic resorption, PhE was extensively metabolized and rapidly eliminated in urine mainly in form of the metabolites PhAA (phenoxyacetic acid) and 4-OH-PhAA (4-hydroxyphenoxyacetic acid) accounting together for over 99% of the renally excreted PhE dose. The absolute urinary recovery rate of PhE was observed to be significantly lower following dermal exposure compared to oral uptake indicating a dermal resorption rate of PhE of about 45% in humans. The present study provides for the first time detailed insights into human biotransformation and toxicokinetics of PhE after dermal exposure, thus establishing a reliable strategy for human biomonitoring of PhE. The here presented results may thus be useful for further toxicokinetic modeling and forward dosimetry.
{"title":"Dermal penetration of 2-phenoxyethanol in humans: in vivo metabolism and toxicokinetics.","authors":"Elisabeth Eckert, Thomas Jäger, Edgar Leibold, Michael Bader, Thomas Göen, Julia Hiller","doi":"10.1007/s00204-024-03938-5","DOIUrl":"https://doi.org/10.1007/s00204-024-03938-5","url":null,"abstract":"<p><p>2-Phenoxyethanol (PhE) is an amphiphilic organic compound frequently used as a broad-spectrum preservative in cosmetic products and other consumer goods. PhE is also used as a biocidal component in occupational settings. A previous volunteer study by our working group following oral exposure to PhE showed that PhE is almost completely taken up into the human body followed by an extensive metabolization and fast urinary elimination. However, with respect to the importance of transdermal uptake, we now conducted another volunteer study applying dermal PhE exposure: five volunteers were dermally exposed with 0.4 mg/kg body weight of PhE each on a specified 800 cm<sup>2</sup> skin area using non-occlusive conditions. Subsequently, blood and urine samples were collected up to 48 h post-exposure. The present study illustrates the fast transdermal uptake of PhE. Following systemic resorption, PhE was extensively metabolized and rapidly eliminated in urine mainly in form of the metabolites PhAA (phenoxyacetic acid) and 4-OH-PhAA (4-hydroxyphenoxyacetic acid) accounting together for over 99% of the renally excreted PhE dose. The absolute urinary recovery rate of PhE was observed to be significantly lower following dermal exposure compared to oral uptake indicating a dermal resorption rate of PhE of about 45% in humans. The present study provides for the first time detailed insights into human biotransformation and toxicokinetics of PhE after dermal exposure, thus establishing a reliable strategy for human biomonitoring of PhE. The here presented results may thus be useful for further toxicokinetic modeling and forward dosimetry.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1007/s00204-024-03931-y
Fritzi Ott, Christiane Körner, Knut Krohn, Janett Fischer, Georg Damm, Daniel Seehofer, Thomas Berg, Madlen Matz-Soja
The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway. As a result, the Hh pathway has emerged as a promising target for therapeutic intervention. However, little is known about the effects of Hh modulators on healthy hepatocytes. In our study, we investigated the effects of the Hh agonists SAG (300 nM) and triamcinolone acetonide (40 µM), as well as the antagonists RU-SKI 43 (100 nM), cyclopamine (5 µM), budesonide (25 µM), GANT61 (0.5 µM), and vismodegib (1 µM) on healthy mouse and human primary hepatocytes in vitro. We employed toxicological, transcriptomic, proteomic, and functional assays, including proliferation and Seahorse assays. Our results show that these compounds significantly impact metabolic pathways such as lipid and glucose metabolism at both transcriptional and protein levels. Mechanistically, our data suggest the involvement of both canonical and non-canonical Hedgehog pathways, a phenomenon not previously described in hepatocytes. These findings highlight the diverse effects of these compounds on signaling and key metabolic functions in the liver, which emphasizes the need to investigate the hepatic Hh cascade and its metabolic control in depth. As the compounds regulate different aspects of metabolism, they need to be carefully studied in appropriate model systems for specific therapeutic use.
{"title":"Impact of Hedgehog modulators on signaling pathways in primary murine and human hepatocytes in vitro: insights into liver metabolism.","authors":"Fritzi Ott, Christiane Körner, Knut Krohn, Janett Fischer, Georg Damm, Daniel Seehofer, Thomas Berg, Madlen Matz-Soja","doi":"10.1007/s00204-024-03931-y","DOIUrl":"https://doi.org/10.1007/s00204-024-03931-y","url":null,"abstract":"<p><p>The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway. As a result, the Hh pathway has emerged as a promising target for therapeutic intervention. However, little is known about the effects of Hh modulators on healthy hepatocytes. In our study, we investigated the effects of the Hh agonists SAG (300 nM) and triamcinolone acetonide (40 µM), as well as the antagonists RU-SKI 43 (100 nM), cyclopamine (5 µM), budesonide (25 µM), GANT61 (0.5 µM), and vismodegib (1 µM) on healthy mouse and human primary hepatocytes in vitro. We employed toxicological, transcriptomic, proteomic, and functional assays, including proliferation and Seahorse assays. Our results show that these compounds significantly impact metabolic pathways such as lipid and glucose metabolism at both transcriptional and protein levels. Mechanistically, our data suggest the involvement of both canonical and non-canonical Hedgehog pathways, a phenomenon not previously described in hepatocytes. These findings highlight the diverse effects of these compounds on signaling and key metabolic functions in the liver, which emphasizes the need to investigate the hepatic Hh cascade and its metabolic control in depth. As the compounds regulate different aspects of metabolism, they need to be carefully studied in appropriate model systems for specific therapeutic use.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-23DOI: 10.1007/s00204-024-03934-9
Xiaohua Song, Xinyi Li, Yuzhen Wang, Yi-Jun Wu
Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.
{"title":"Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice.","authors":"Xiaohua Song, Xinyi Li, Yuzhen Wang, Yi-Jun Wu","doi":"10.1007/s00204-024-03934-9","DOIUrl":"https://doi.org/10.1007/s00204-024-03934-9","url":null,"abstract":"<p><p>Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF. In this study, we explored if the intestinal microbial community is involved in regulating the toxicity of CPF. Adult mice were continuously exposed to CPF (4 mg/kg body weight /day) for 10 weeks with or without a 2-week pretreatment of antibiotics to change the ecological structure of intestinal microorganisms in advance. Pathological changes in the liver and kidneys were examined and the biochemical parameters in serum for liver and kidney functions were detected, and changes in the intestinal microbial community of the mice were measured. The results showed that subchronic exposure to low-dose CPF caused an ecological imbalance in the intestinal flora and caused pathological damage to the liver and kidneys. Serum biochemical indicators for liver function such as alanine aminotransferase and total bile acids contents and renal biochemical indicators such as urea nitrogen and creatinine were disrupted. Changes in intestinal microbial community structure by using antibiotics in advance can effectively alleviate the pathological and functional damage to the liver and kidneys caused by CPF exposure. Further analysis showed that intestinal microorganisms such as Saccharibacteria (TM7), Odoribacter, Enterococcus and AF12 genera may be involved in managing the toxicity of CPF. Together, our results indicated that long-term low-dose CPF exposure could induce hepatotoxicity and nephrotoxicity, and liver and kidney damage may be mitigated by altering the ecology of intestinal microorganisms.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-22DOI: 10.1007/s00204-024-03943-8
Andrea Zimmermann, Andrea Scheffschick, René Hänsel, Hannes Borchardt, Jia Li Liu, Sabrina Ehnert, Gerda Schicht, Lena Seidemann, Achim Aigner, Susanne Schiffmann, Andreas Nüssler, Daniel Seehofer, Georg Damm
The development of in vitro hepatocyte cell culture systems is crucial for investigating drug-induced liver injury (DILI). One prerequisite for monitoring DILI related immunologic reactions is the extension of primary human hepatocyte (PHH) cultures towards the inclusion of macrophages. Therefore, we developed and characterized an autologous co-culture system of PHH and primary human hepatic macrophages (hepM) (CoC1). We compared CoC1 with a co-culture of the same PHH batch + M0 macrophages derived from THP1 cells (CoC2) in order to represent a donor independent macrophage reaction. Then, we treated the mono- and co-cultures with drugs that cause DILI-menadione (MEN, 1 or 10 µM, 3 h), diclofenac (DIC, 0.5 or 5 mM, 6 h), or acetaminophen (APAP, 0.5 or 5 mM, 6 h)-and assessed culture stability, cell activity, macrophage differentiation, cytokine production and cell viability. Without drug treatment, CoC1 was the most stable over a culture time of up to 60 h. Cytokine array analysis revealed a proinflammatory profile of PHH mono-cultures due to isolation stress but showed different influences of hepM and M0 on the cytokine profile in the co-cultures. MEN, DIC and APAP treatment led to donor-dependent signs of cell stress and toxicity. HepM can either promote or reduce the DILI effects donor dependently in CoC1. CoC2 are slightly less sensitive than CoC1 in representing DILI. In summary, we present a new autologous co-culture system that can mimic DILI in a donor-dependent manner. This cellular system could be useful for new drug testing strategies and reducing animal testing.
{"title":"A new human autologous hepatocyte/macrophage co-culture system that mimics drug-induced liver injury-like inflammation.","authors":"Andrea Zimmermann, Andrea Scheffschick, René Hänsel, Hannes Borchardt, Jia Li Liu, Sabrina Ehnert, Gerda Schicht, Lena Seidemann, Achim Aigner, Susanne Schiffmann, Andreas Nüssler, Daniel Seehofer, Georg Damm","doi":"10.1007/s00204-024-03943-8","DOIUrl":"https://doi.org/10.1007/s00204-024-03943-8","url":null,"abstract":"<p><p>The development of in vitro hepatocyte cell culture systems is crucial for investigating drug-induced liver injury (DILI). One prerequisite for monitoring DILI related immunologic reactions is the extension of primary human hepatocyte (PHH) cultures towards the inclusion of macrophages. Therefore, we developed and characterized an autologous co-culture system of PHH and primary human hepatic macrophages (hepM) (CoC1). We compared CoC1 with a co-culture of the same PHH batch + M0 macrophages derived from THP1 cells (CoC2) in order to represent a donor independent macrophage reaction. Then, we treated the mono- and co-cultures with drugs that cause DILI-menadione (MEN, 1 or 10 µM, 3 h), diclofenac (DIC, 0.5 or 5 mM, 6 h), or acetaminophen (APAP, 0.5 or 5 mM, 6 h)-and assessed culture stability, cell activity, macrophage differentiation, cytokine production and cell viability. Without drug treatment, CoC1 was the most stable over a culture time of up to 60 h. Cytokine array analysis revealed a proinflammatory profile of PHH mono-cultures due to isolation stress but showed different influences of hepM and M0 on the cytokine profile in the co-cultures. MEN, DIC and APAP treatment led to donor-dependent signs of cell stress and toxicity. HepM can either promote or reduce the DILI effects donor dependently in CoC1. CoC2 are slightly less sensitive than CoC1 in representing DILI. In summary, we present a new autologous co-culture system that can mimic DILI in a donor-dependent manner. This cellular system could be useful for new drug testing strategies and reducing animal testing.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1007/s00204-024-03920-1
Sainan Tang, Shanshan Wu, Wenzhe Zhang, Lili Ma, Li Zuo, Hua Wang
Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.
{"title":"Immunology and treatments of fatty liver disease","authors":"Sainan Tang, Shanshan Wu, Wenzhe Zhang, Lili Ma, Li Zuo, Hua Wang","doi":"10.1007/s00204-024-03920-1","DOIUrl":"10.1007/s00204-024-03920-1","url":null,"abstract":"<div><p>Alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are two major chronic liver diseases worldwide. The triggers for fatty liver can be derived from external sources such as adipose tissue, the gut, personal diet, and genetics, or internal sources, including immune cell responses, lipotoxicity, hepatocyte death, mitochondrial dysfunction, and extracellular vesicles. However, their pathogenesis varies to some extent. This review summarizes various immune mechanisms and therapeutic targets associated with these two types of fatty liver disease. It describes the gut-liver axis and adipose tissue-liver crosstalk, as well as the roles of different immune cells (both innate and adaptive immune cells) in fatty liver disease. Additionally, mitochondrial dysfunction, extracellular vesicles, microRNAs (miRNAs), and gastrointestinal hormones are also related to the pathogenesis of fatty liver. Understanding the pathogenesis of fatty liver and corresponding therapeutic strategies provides a new perspective for developing novel treatments for fatty liver disease.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 1","pages":"127 - 152"},"PeriodicalIF":4.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1007/s00204-024-03925-w
Chol Seung Lim, Ja Kook Gu, Qiang Ma
Exposure to fibrogenic multi-walled carbon nanotubes (MWCNTs) induces the production of proinflammatory lipid mediators (LMs) in myeloid cells to instigate inflammation. The molecular underpinnings of LM production in nanotoxicity remain unclear. Here we report that PU.1, an ETS domain-containing master regulator of hematopoiesis, critically regulates the induction of arachidonate 5-lypoxygenase (Alox5) and the production of LMs. MWCNTs (Mitsui-7) at 2.5 or 10 µg/mL induced the expression of Alox5 in murine and human macrophages at both mRNA and protein levels, accompanied by marked elevation of chemotactic LM leukotriene B4 (LTB4). Induction is comparable to those by potent M1 inducers. Carbon black, an amorphous carbon material control, did not increase Alox5 expression or LTB4 production at equivalent doses. MWCNTs induced the expression of a heterologous luciferase reporter under the control of the murine Alox5 promoter. Deletional analysis of the 2 kb promoter uncovered multiple inhibitory and activating activities. The proximal 250 bp region had the largest activation that was further increased by MWCNTs. The Alox5 promoter contains four PU box-like enhancers. PU.1 bond to each of the enhancers constitutively, which was further increased by MWCNTs. Knockdown of PU.1 using specific small hairpin-RNA blocked the basal and induced expression of Alox5 and the production of LTB4 as well as prostaglandin E2. The results demonstrate a critical role of PU.1 in mediating MWCNTs-induced expression of Alox5 and production of proinflammatory LMs, revealing a molecular framework where the hematopoietic transcription factor PU.1 is activated to orchestrate multiple proinflammatory responses to sterile particulates.
{"title":"The ETS domain-containing hematopoietic transcription factor PU.1 mediates the induction of arachidonate 5-lipoxygenase by multi-walled carbon nanotubes in macrophages in vitro","authors":"Chol Seung Lim, Ja Kook Gu, Qiang Ma","doi":"10.1007/s00204-024-03925-w","DOIUrl":"10.1007/s00204-024-03925-w","url":null,"abstract":"<div><p>Exposure to fibrogenic multi-walled carbon nanotubes (MWCNTs) induces the production of proinflammatory lipid mediators (LMs) in myeloid cells to instigate inflammation. The molecular underpinnings of LM production in nanotoxicity remain unclear. Here we report that PU.1, an ETS domain-containing master regulator of hematopoiesis, critically regulates the induction of arachidonate 5-lypoxygenase (Alox5) and the production of LMs. MWCNTs (Mitsui-7) at 2.5 or 10 µg/mL induced the expression of Alox5 in murine and human macrophages at both mRNA and protein levels, accompanied by marked elevation of chemotactic LM leukotriene B4 (LTB4). Induction is comparable to those by potent M1 inducers. Carbon black, an amorphous carbon material control, did not increase <i>Alox5</i> expression or LTB4 production at equivalent doses. MWCNTs induced the expression of a heterologous luciferase reporter under the control of the murine <i>Alox5</i> promoter. Deletional analysis of the 2 kb promoter uncovered multiple inhibitory and activating activities. The proximal 250 bp region had the largest activation that was further increased by MWCNTs. The <i>Alox5</i> promoter contains four PU box-like enhancers. PU.1 bond to each of the enhancers constitutively, which was further increased by MWCNTs. Knockdown of PU.1 using specific small hairpin-RNA blocked the basal and induced expression of <i>Alox5</i> and the production of LTB4 as well as prostaglandin E2. The results demonstrate a critical role of PU.1 in mediating MWCNTs-induced expression of <i>Alox5</i> and production of proinflammatory LMs, revealing a molecular framework where the hematopoietic transcription factor PU.1 is activated to orchestrate multiple proinflammatory responses to sterile particulates.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"597 - 610"},"PeriodicalIF":4.8,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An abundant amount of colon cancers is diagnosed every year, accounting for 9% of malignant tumors. Even with the progress of relevant research, the 5-year survival rate for colon cancer is still less than 60%, indicating that improving the prognosis of colon cancer is still a challenge that needs to be overcome. This study employed the algorithm “scissor” to integrate the single-cell sequencing data and bulk transcriptome data with prognosis information to predict prognosis-associated cells (PAC). Summary-data-based Mendelian randomization (SMR) analysis was conducted using expression quantitative trait loci data and GWAS data to identify genes having causal associations with prognosis phenotype in colon cancer patients and five traditional two-sample Mendelian randomization methods were utilized to confirm the results. Finally, our findings were validated based on two independent external validation datasets, GSE17536 and GSE39582. The real-world tissue dataset with corresponding immunohistochemical (IHC) experiments was utilized to confirm our findings. We determined that the majority of PACs were fibroblasts. On top of that, this study identified ADAMDEC1 as a gene that has a significant causal association with overall survival. ADAMDEC1, highly expressed in highly differentiated fibroblasts, was ascertained its high expression was linked with a better prognosis of patients with colon cancer by the related bulk transcriptome analysis. Our dataset presented that higher IHC scores were associated with a better prognosis for colon cancer, further validating our results. This study has identified ADAMDEC1 as a prognostic protective factor for patients with colon cancer, providing clues for clinical trials and drug experimental target research.
{"title":"A transcriptome-wide association study integrating multi-omics bioinformatics and Mendelian randomization reveals the prognostic value of ADAMDEC1 in colon cancer","authors":"Cong Zhang, Dan Shi, Guichuan Lai, Kangjie Li, Yuan Zhang, Wenlong Li, Haijiao Zeng, Qiaoping Yan, Xiaoni Zhong, Biao Xie","doi":"10.1007/s00204-024-03910-3","DOIUrl":"10.1007/s00204-024-03910-3","url":null,"abstract":"<div><p>An abundant amount of colon cancers is diagnosed every year, accounting for 9% of malignant tumors. Even with the progress of relevant research, the 5-year survival rate for colon cancer is still less than 60%, indicating that improving the prognosis of colon cancer is still a challenge that needs to be overcome. This study employed the algorithm “scissor” to integrate the single-cell sequencing data and bulk transcriptome data with prognosis information to predict prognosis-associated cells (PAC). Summary-data-based Mendelian randomization (SMR) analysis was conducted using expression quantitative trait loci data and GWAS data to identify genes having causal associations with prognosis phenotype in colon cancer patients and five traditional two-sample Mendelian randomization methods were utilized to confirm the results. Finally, our findings were validated based on two independent external validation datasets, GSE17536 and GSE39582. The real-world tissue dataset with corresponding immunohistochemical (IHC) experiments was utilized to confirm our findings. We determined that the majority of PACs were fibroblasts. On top of that, this study identified ADAMDEC1 as a gene that has a significant causal association with overall survival. ADAMDEC1, highly expressed in highly differentiated fibroblasts, was ascertained its high expression was linked with a better prognosis of patients with colon cancer by the related bulk transcriptome analysis. Our dataset presented that higher IHC scores were associated with a better prognosis for colon cancer, further validating our results. This study has identified ADAMDEC1 as a prognostic protective factor for patients with colon cancer, providing clues for clinical trials and drug experimental target research.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"645 - 665"},"PeriodicalIF":4.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}