Pub Date : 2024-12-16DOI: 10.1007/s00204-024-03921-0
Barbara Witt, Sharleen Friese, Vanessa Walther, Franziska Ebert, Julia Bornhorst, Tanja Schwerdtle
Copper (Cu) is an essential trace element involved in fundamental physiological processes in the human body. Even slight disturbances in the physiological Cu homeostasis are associated with the manifestation of neurodegenerative diseases. While suggesting a crucial role of Cu in the pathogenesis, the exact mechanisms of Cu neurotoxicity involved in the onset and progression of neurological diseases are far from understood. This study focuses on the molecular and cellular mechanisms of Cu-mediated neurotoxicity in human brain cells. First, the cytotoxic potential of Cu was studied in fully differentiated, human neurons (LUHMES cells). Lysosomal integrity was considerably affected following incubation with 420 µM CuSO4 for 48 h. Further mechanistic studies revealed mitochondria and neuronal network as most susceptible target organelles (already at 100 µM CuSO4, 48 h), while the generation of reactive oxygen species turned out to be a rather later consequence of Cu toxicity. Besides Cu, the homeostasis of other elements might be involved and are likely to contribute to the pathology of Cu-mediated neurological disorders. Besides Cu, also effects on the cellular levels of magnesium, calcium, iron, and manganese were observed in the neurons, presumably aggravating the consequences of Cu neurotoxicity. In conclusion, insights in the underlying mode of action will foster the development of treatment strategies against Cu-mediated neurological diseases. Particularly, the interplay of Cu with other elements might provide a powerful diagnostic tool and might be used as therapeutic approach.
铜(Cu)是人体基本生理过程中不可或缺的微量元素。即使是轻微的铜生理平衡紊乱也与神经退行性疾病的表现有关。虽然 Cu 在致病过程中起着至关重要的作用,但人们对 Cu 神经毒性参与神经系统疾病发病和进展的确切机制还知之甚少。本研究的重点是铜介导的人脑细胞神经毒性的分子和细胞机制。首先,研究了铜在完全分化的人类神经元(LUHMES 细胞)中的细胞毒性潜力。进一步的机理研究发现线粒体和神经元网络是最易受影响的目标细胞器(在 100 µM CuSO4 培养 48 小时后已经出现),而活性氧的产生则是铜毒性较晚出现的结果。除铜之外,其他元素的平衡也可能参与其中,并有可能导致铜介导的神经系统疾病的病理变化。除了铜,神经元中的镁、钙、铁和锰的细胞水平也受到了影响,这可能会加重铜神经毒性的后果。总之,对潜在作用模式的深入了解将促进针对铜介导的神经系统疾病的治疗策略的开发。特别是,铜与其他元素的相互作用可能会提供一种强有力的诊断工具,并可用作治疗方法。
{"title":"Cellular mechanisms of copper neurotoxicity in human, differentiated neurons","authors":"Barbara Witt, Sharleen Friese, Vanessa Walther, Franziska Ebert, Julia Bornhorst, Tanja Schwerdtle","doi":"10.1007/s00204-024-03921-0","DOIUrl":"10.1007/s00204-024-03921-0","url":null,"abstract":"<div><p>Copper (Cu) is an essential trace element involved in fundamental physiological processes in the human body. Even slight disturbances in the physiological Cu homeostasis are associated with the manifestation of neurodegenerative diseases. While suggesting a crucial role of Cu in the pathogenesis, the exact mechanisms of Cu neurotoxicity involved in the onset and progression of neurological diseases are far from understood. This study focuses on the molecular and cellular mechanisms of Cu-mediated neurotoxicity in human brain cells. First, the cytotoxic potential of Cu was studied in fully differentiated, human neurons (LUHMES cells). Lysosomal integrity was considerably affected following incubation with 420 µM CuSO<sub>4</sub> for 48 h. Further mechanistic studies revealed mitochondria and neuronal network as most susceptible target organelles (already at 100 µM CuSO<sub>4</sub>, 48 h), while the generation of reactive oxygen species turned out to be a rather later consequence of Cu toxicity. Besides Cu, the homeostasis of other elements might be involved and are likely to contribute to the pathology of Cu-mediated neurological disorders. Besides Cu, also effects on the cellular levels of magnesium, calcium, iron, and manganese were observed in the neurons, presumably aggravating the consequences of Cu neurotoxicity. In conclusion, insights in the underlying mode of action will foster the development of treatment strategies against Cu-mediated neurological diseases. Particularly, the interplay of Cu with other elements might provide a powerful diagnostic tool and might be used as therapeutic approach.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"689 - 699"},"PeriodicalIF":4.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774975/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity. Animal experiments and human studies were conducted to reveal expression patterns of miR-451a and miR-486-5p in bone marrow and peripheral blood after benzene exposure, along with their correlations with erythrocyte indices. In C57BL/6J mice exposed to benzene, the expression levels of miR-451a and miR-486-5p in bone marrow decreased, which also positively correlated with red blood cell count (RBC), hemoglobin (Hb), and hematocrit (HCT). Conversely, in peripheral blood of C57BL/6J mice, the expression levels of the two miRNAs increased and showed a negative correlation with the three erythroid indices. Subsequent validation in bone marrow samples of chronic benzene poisoning patients and peripheral blood of workers from petrochemical plant confirmed significant correlations between miR-451a and miR-486-5p expression levels and red blood cell parameters. Furthermore, receiver operator characteristic (ROC) curve analyses revealed that miR-451a emerged as a potential biomarker for benzene-induced hematotoxicity, exhibiting superior discriminatory power compared to miR-486-5p and conventional erythroid indices. Additionally, in vitro experiments using K562 cells revealed differential regulatory effects of benzene metabolite hydroquinone (HQ) on miR-451a expression based on erythroid differentiation status. These findings emphasized the important role of miR-451a and miR-486-5p in benzene-induced erythrogenesis disruption, offering valuable insights for biomarker development and therapeutic interventions.
{"title":"miR-451a and miR-486-5p: biomarkers for benzene-induced hematotoxicity","authors":"Yanrong Lv, Zongxin Li, Yuncong Chen, Fei Qin, Qilong Liao, Zhaorui Zhang, Qifei Deng, Qing Liu, Zihao Long, Qing Wang, Wen Chen, Yongmei Xiao, Xiumei Xing","doi":"10.1007/s00204-024-03923-y","DOIUrl":"10.1007/s00204-024-03923-y","url":null,"abstract":"<div><p>The hematopoietic system is the primary target of benzene exposure. Whether peripheral blood miRNA can serve as sensitive biomarkers for benzene-induced hematopoietic damage has attracted considerable attention. This study focuses on exploring the role of miR-451a and miR-486-5p in benzene-induced erythroid damage and assessing their potential as biomarkers of benzene-induced hematotoxicity. Animal experiments and human studies were conducted to reveal expression patterns of miR-451a and miR-486-5p in bone marrow and peripheral blood after benzene exposure, along with their correlations with erythrocyte indices. In C57BL/6J mice exposed to benzene, the expression levels of miR-451a and miR-486-5p in bone marrow decreased, which also positively correlated with red blood cell count (RBC), hemoglobin (Hb), and hematocrit (HCT). Conversely, in peripheral blood of C57BL/6J mice, the expression levels of the two miRNAs increased and showed a negative correlation with the three erythroid indices. Subsequent validation in bone marrow samples of chronic benzene poisoning patients and peripheral blood of workers from petrochemical plant confirmed significant correlations between miR-451a and miR-486-5p expression levels and red blood cell parameters. Furthermore, receiver operator characteristic (ROC) curve analyses revealed that miR-451a emerged as a potential biomarker for benzene-induced hematotoxicity, exhibiting superior discriminatory power compared to miR-486-5p and conventional erythroid indices. Additionally, in vitro experiments using K562 cells revealed differential regulatory effects of benzene metabolite hydroquinone (HQ) on miR-451a expression based on erythroid differentiation status. These findings emphasized the important role of miR-451a and miR-486-5p in benzene-induced erythrogenesis disruption, offering valuable insights for biomarker development and therapeutic interventions.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"717 - 728"},"PeriodicalIF":4.8,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s00204-024-03927-8
Pavan K Madasu, Thyageshwar Chandran
Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation. Recent outbreaks and increasing demands for lab-scale meat assert the necessity for producing toxoids. In the current study, we have carried out the comparative structural and functional analysis of Shiga with ricin for N-glycosidase activity. Primary structural analysis indicates that Shiga is more flexible than ricin and one active site residue Gly121 (ricin), has been mutated to Ser (Shiga). Tertiary structure analysis confirms the conserved active site residue confirmation. Further, molecular dynamic studies indicate that the mutated Ser residue of Shiga imparts flexibility besides interacting with the conserved GAGA loop of 28s rRNA and contributes free energy of -5.39 kcal/mol. We have observed a decreasing trend line of average free binding energy with an average of -23 kcal/mol. The residue interaction network indicates that Arg is the key residue that protonates and initiates the N-glycosidase activity. Overall, these structural studies provide molecular insights into the N-glycosidase mechanism and serve as a prospect for the development of toxoids.
{"title":"In silico structural and mechanistic sights into the N-glycosidase mechanism of Shiga toxin.","authors":"Pavan K Madasu, Thyageshwar Chandran","doi":"10.1007/s00204-024-03927-8","DOIUrl":"https://doi.org/10.1007/s00204-024-03927-8","url":null,"abstract":"<p><p>Shiga toxin is the leading cause of food poisoning in the world. It is structurally similar to the plant type II ribosome-inactivating proteins (RIPs) and retains N-glycosidase activity. It acts specifically by depurinating the specific adenine A4605 of human 28S rRNA, ultimately inhibiting translation. Recent outbreaks and increasing demands for lab-scale meat assert the necessity for producing toxoids. In the current study, we have carried out the comparative structural and functional analysis of Shiga with ricin for N-glycosidase activity. Primary structural analysis indicates that Shiga is more flexible than ricin and one active site residue Gly121 (ricin), has been mutated to Ser (Shiga). Tertiary structure analysis confirms the conserved active site residue confirmation. Further, molecular dynamic studies indicate that the mutated Ser residue of Shiga imparts flexibility besides interacting with the conserved GAGA loop of 28s rRNA and contributes free energy of -5.39 kcal/mol. We have observed a decreasing trend line of average free binding energy with an average of -23 kcal/mol. The residue interaction network indicates that Arg is the key residue that protonates and initiates the N-glycosidase activity. Overall, these structural studies provide molecular insights into the N-glycosidase mechanism and serve as a prospect for the development of toxoids.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-12DOI: 10.1007/s00204-024-03926-9
Natalie C. Sondermann, Afaque A. Momin, Stefan T. Arold, Thomas Haarmann-Stemmann
For many years, polybrominated diphenyl ethers (PBDEs) were used as flame retardants in a large number of consumer products. Even though international law meanwhile prohibits the production and usage of PBDEs, these persistent and bioaccumulative chemicals still leak into the environment, and are frequently detected in wildlife and humans. Population-based studies reveal positive correlations between human PBDE exposure and various adverse health effects, emphasizing that a better understanding of the mode of action of these polybrominated chemicals is urgently needed. Therefore, we investigated the effect of two widespread PBDEs, namely BDE-47 and BDE-99, on epidermal growth factor receptor (EGFR) activity in human cells. Recent studies showed that the EGFR is not only orchestrating cellular functions, but also serves as a cell-surface receptor for dioxins, phenolic benzotriazoles and related organic pollutants. Results from in silico docking analyses, AlphaLISA-based receptor binding studies and SDS-PAGE/Western blot analyses revealed that BDE-47 and BDE-99 inhibit the growth factor-triggered activation of EGFR by binding to its extracellular domain. In keratinocytes, PBDEs also inhibit amphiregulin-induced and EGFR-mediated DNA synthesis as well as the EGFR-triggered trans-repression of the aryl hydrocarbon receptor signaling pathway. Our data identify EGFR as a cell-surface receptor for PBDEs and shed light on a novel mode of action of these ubiquitous and persistent chemicals. This finding may contribute to an improved hazard assessment of PBDEs and structurally related flame retardants.
{"title":"Polybrominated diphenyl ether flame retardants inhibit growth factor-induced activation of EGFR by binding to its extracellular domain","authors":"Natalie C. Sondermann, Afaque A. Momin, Stefan T. Arold, Thomas Haarmann-Stemmann","doi":"10.1007/s00204-024-03926-9","DOIUrl":"10.1007/s00204-024-03926-9","url":null,"abstract":"<div><p>For many years, polybrominated diphenyl ethers (PBDEs) were used as flame retardants in a large number of consumer products. Even though international law meanwhile prohibits the production and usage of PBDEs, these persistent and bioaccumulative chemicals still leak into the environment, and are frequently detected in wildlife and humans. Population-based studies reveal positive correlations between human PBDE exposure and various adverse health effects, emphasizing that a better understanding of the mode of action of these polybrominated chemicals is urgently needed. Therefore, we investigated the effect of two widespread PBDEs, namely BDE-47 and BDE-99, on epidermal growth factor receptor (EGFR) activity in human cells. Recent studies showed that the EGFR is not only orchestrating cellular functions, but also serves as a cell-surface receptor for dioxins, phenolic benzotriazoles and related organic pollutants. Results from in silico docking analyses, AlphaLISA-based receptor binding studies and SDS-PAGE/Western blot analyses revealed that BDE-47 and BDE-99 inhibit the growth factor-triggered activation of EGFR by binding to its extracellular domain. In keratinocytes, PBDEs also inhibit amphiregulin-induced and EGFR-mediated DNA synthesis as well as the EGFR-triggered trans-repression of the aryl hydrocarbon receptor signaling pathway. Our data identify EGFR as a cell-surface receptor for PBDEs and shed light on a novel mode of action of these ubiquitous and persistent chemicals. This finding may contribute to an improved hazard assessment of PBDEs and structurally related flame retardants.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"745 - 753"},"PeriodicalIF":4.8,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-11DOI: 10.1007/s00204-024-03924-x
Yubin Han, Hyeon Young Kim, Ha Ryong Kim
Currently, evaluating respiratory sensitization is challenging with a lack of mechanistic understanding and appropriate testing methods. Given the similarities between skin and respiratory sensitization, using defined approach (DA) in OECD Test Guideline (TG) 497 will be helpful. However, adopting skin sensitization DA is not reliable in predicting respiratory sensitization and has not been validated. To address this limitation, we developed an in vitro respiratory sensitization assay (RS assay) to assess the inflammatory responses associated with respiratory sensitization. Additionally, we investigated the applicability of direct peptide reactivity assay (DPRA) for respiratory sensitization testing. Combined with in silico structure–activity relationship (SAR) predictions derived from the respiratory sensitization reactive domain, respiratory sensitization integrated testing strategy (ITS) was established. RS assay showed 80% sensitivity, 100% specificity, and 90% accuracy. The respiratory sensitization ITS demonstrated more higher predictive capacity for respiratory sensitization than an individual test method, with 90% sensitivity, 100% specificity, and 95% accuracy when using the 20 reference chemicals. When using respiratory sensitization ITS, hazard identification and sub-categorization of potency as strong, moderate/weak, and negative were possible. As a non-animal testing approach, the respiratory sensitization ITS represents a significant milestone for regulating respiratory sensitizers.
{"title":"Development of a novel in vitro respiratory sensitization assay and its application in an integrated testing strategy (ITS)","authors":"Yubin Han, Hyeon Young Kim, Ha Ryong Kim","doi":"10.1007/s00204-024-03924-x","DOIUrl":"10.1007/s00204-024-03924-x","url":null,"abstract":"<div><p>Currently, evaluating respiratory sensitization is challenging with a lack of mechanistic understanding and appropriate testing methods. Given the similarities between skin and respiratory sensitization, using defined approach (DA) in OECD Test Guideline (TG) 497 will be helpful. However, adopting skin sensitization DA is not reliable in predicting respiratory sensitization and has not been validated. To address this limitation, we developed an in vitro respiratory sensitization assay (RS assay) to assess the inflammatory responses associated with respiratory sensitization. Additionally, we investigated the applicability of direct peptide reactivity assay (DPRA) for respiratory sensitization testing. Combined with in silico structure–activity relationship (SAR) predictions derived from the respiratory sensitization reactive domain, respiratory sensitization integrated testing strategy (ITS) was established. RS assay showed 80% sensitivity, 100% specificity, and 90% accuracy. The respiratory sensitization ITS demonstrated more higher predictive capacity for respiratory sensitization than an individual test method, with 90% sensitivity, 100% specificity, and 95% accuracy when using the 20 reference chemicals. When using respiratory sensitization ITS, hazard identification and sub-categorization of potency as strong, moderate/weak, and negative were possible. As a non-animal testing approach, the respiratory sensitization ITS represents a significant milestone for regulating respiratory sensitizers.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"775 - 785"},"PeriodicalIF":4.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing use of SARS-CoV-2 mRNA vaccines has raised concerns about their potential toxicological effects, necessitating further investigation to ensure their safety. To address this issue, we aimed to evaluate the toxicological effects of SARS-CoV-2 mRNA vaccine candidates formulated with four different types of lipid nanoparticles in ICR mice, focusing on repeated doses and administration routes. We conducted an extensive analysis in which mice received the mRNA vaccine candidates intramuscularly (50 μg/head) twice at 2-week intervals, followed by necropsy at 2 and 14 dpsi (days post-secondary injection). In addition, we performed a repeated dose toxicity test involving three, four, or five doses and compared the toxicological outcomes between intravenous and intramuscular routes. Our findings revealed that all vaccine candidates significantly induced SARS-CoV-2 spike protein-specific IgG and T cell responses. However, at 2 dpsi, there was a notable temporary decrease in lymphocyte and reticulocyte counts, anemia-related parameters, and significant increases in cardiac damage markers, troponin-I and NT-proBNP. Histopathological analysis revealed severe inflammation and necrosis at the injection site, decreased erythroid cells in bone marrow, cortical atrophy of the thymus, and increased spleen cellularity. While most toxicological changes observed at 2 dpsi had resolved by 14 dpsi, spleen enlargement and injection site damage persisted. Furthermore, repeated doses led to the accumulation of toxicity, and different administration routes resulted in distinct toxicological phenotypes. These findings highlight the potential toxicological risks associated with mRNA vaccines, emphasizing the necessity to carefully consider administration routes and dosage regimens in vaccine safety evaluations, particularly given the presence of bone marrow and immune organ toxicity, which, though eventually reversible, remains a serious concern.
{"title":"Impact of administration routes and dose frequency on the toxicology of SARS-CoV-2 mRNA vaccines in mice model","authors":"Jae-Hun Ahn, Jisun Lee, Gahyun Roh, Na-Young Lee, Hee-Jin Bae, Euna Kwon, Kang-Min Han, Ji-Eun Kim, Hyo-Jung Park, Soyeon Yoo, Sung Pil Kwon, Eun-Kyoung Bang, Gyochang Keum, Jae-Hwan Nam, Byeong-Cheol Kang","doi":"10.1007/s00204-024-03912-1","DOIUrl":"10.1007/s00204-024-03912-1","url":null,"abstract":"<div><p>The increasing use of SARS-CoV-2 mRNA vaccines has raised concerns about their potential toxicological effects, necessitating further investigation to ensure their safety. To address this issue, we aimed to evaluate the toxicological effects of SARS-CoV-2 mRNA vaccine candidates formulated with four different types of lipid nanoparticles in ICR mice, focusing on repeated doses and administration routes. We conducted an extensive analysis in which mice received the mRNA vaccine candidates intramuscularly (50 μg/head) twice at 2-week intervals, followed by necropsy at 2 and 14 dpsi (days post-secondary injection). In addition, we performed a repeated dose toxicity test involving three, four, or five doses and compared the toxicological outcomes between intravenous and intramuscular routes. Our findings revealed that all vaccine candidates significantly induced SARS-CoV-2 spike protein-specific IgG and T cell responses. However, at 2 dpsi, there was a notable temporary decrease in lymphocyte and reticulocyte counts, anemia-related parameters, and significant increases in cardiac damage markers, troponin-I and NT-proBNP. Histopathological analysis revealed severe inflammation and necrosis at the injection site, decreased erythroid cells in bone marrow, cortical atrophy of the thymus, and increased spleen cellularity. While most toxicological changes observed at 2 dpsi had resolved by 14 dpsi, spleen enlargement and injection site damage persisted. Furthermore, repeated doses led to the accumulation of toxicity, and different administration routes resulted in distinct toxicological phenotypes. These findings highlight the potential toxicological risks associated with mRNA vaccines, emphasizing the necessity to carefully consider administration routes and dosage regimens in vaccine safety evaluations, particularly given the presence of bone marrow and immune organ toxicity, which, though eventually reversible, remains a serious concern.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"755 - 773"},"PeriodicalIF":4.8,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1007/s00204-024-03913-0
Mohamed S. Dabour, Mina Y. George, Marianne K. O. Grant, Beshay N. Zordoky
Carfilzomib (CFZ), a second-generation proteasome inhibitor, is a key treatment for multiple myeloma (MM), but its use is associated with significant cardiovascular adverse events (CVAEs), including heart failure and hypertension. Endothelial dysfunction is believed to contribute to these CVAEs. Building on our previous findings that CFZ induces endothelial toxicity and that canagliflozin protects against CFZ-induced endothelial apoptosis, this study aimed to evaluate CFZ-induced endoplasmic reticulum (ER) stress and autophagy in endothelial and MM cells, as well as the impact of canagliflozin on these processes and its impact on the anticancer effects of CFZ in MM cells. Endothelial cells (HUVECs and EA.hy926) and multiple myeloma cells (RPMI8226) were treated with 0.5 µM CFZ, either alone or in combination with canagliflozin (5–20 µM), to assess the effects on ER stress and autophagy in both cell types. CFZ induced ER stress in endothelial and MM cells. In endothelial cells, canagliflozin mitigated CFZ-induced markers of ER stress, while unexpectedly upregulating CFZ-induced CHOP. Whereas, in MM cells, canagliflozin did not alter CFZ-induced ER stress, but instead further upregulated CFZ-induced ATF-4. In addition, CFZ induced autophagy in endothelial cells while inhibiting it in MM cells. Canagliflozin abrogated CFZ-induced autophagy in endothelial cells. In striking contrast to its effects in endothelial cells, canagliflozin enhanced the cytotoxic effects of CFZ in MM cells. Intriguingly, in an innovative co-culture system, canagliflozin enhanced CFZ-induced apoptosis in MM cells while protecting endothelial cells. These findings underscore the dual role of canagliflozin in reducing CFZ-induced endothelial toxicity, while enhancing its cytotoxic effect in MM.
{"title":"Canagliflozin differentially modulates carfilzomib-induced endoplasmic reticulum stress in multiple myeloma and endothelial cells","authors":"Mohamed S. Dabour, Mina Y. George, Marianne K. O. Grant, Beshay N. Zordoky","doi":"10.1007/s00204-024-03913-0","DOIUrl":"10.1007/s00204-024-03913-0","url":null,"abstract":"<div><p>Carfilzomib (CFZ), a second-generation proteasome inhibitor, is a key treatment for multiple myeloma (MM), but its use is associated with significant cardiovascular adverse events (CVAEs), including heart failure and hypertension. Endothelial dysfunction is believed to contribute to these CVAEs. Building on our previous findings that CFZ induces endothelial toxicity and that canagliflozin protects against CFZ-induced endothelial apoptosis, this study aimed to evaluate CFZ-induced endoplasmic reticulum (ER) stress and autophagy in endothelial and MM cells, as well as the impact of canagliflozin on these processes and its impact on the anticancer effects of CFZ in MM cells. Endothelial cells (HUVECs and EA.hy926) and multiple myeloma cells (RPMI8226) were treated with 0.5 µM CFZ, either alone or in combination with canagliflozin (5–20 µM), to assess the effects on ER stress and autophagy in both cell types. CFZ induced ER stress in endothelial and MM cells. In endothelial cells, canagliflozin mitigated CFZ-induced markers of ER stress, while unexpectedly upregulating CFZ-induced CHOP. Whereas, in MM cells, canagliflozin did not alter CFZ-induced ER stress, but instead further upregulated CFZ-induced ATF-4. In addition, CFZ induced autophagy in endothelial cells while inhibiting it in MM cells. Canagliflozin abrogated CFZ-induced autophagy in endothelial cells. In striking contrast to its effects in endothelial cells, canagliflozin enhanced the cytotoxic effects of CFZ in MM cells. Intriguingly, in an innovative co-culture system, canagliflozin enhanced CFZ-induced apoptosis in MM cells while protecting endothelial cells. These findings underscore the dual role of canagliflozin in reducing CFZ-induced endothelial toxicity, while enhancing its cytotoxic effect in MM.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"729 - 744"},"PeriodicalIF":4.8,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-06DOI: 10.1007/s00204-024-03905-0
Lucas Keuter, Marco Fortmann, Matthias Behrens, Hans-Ulrich Humpf
Toxic fungal secondary metabolites, referred to as mycotoxins, emerge in moldy food and feed and constitute a potent but often underestimated health threat for humans and animals. They are structurally diverse and can cause diseases after dietary intake even in low concentrations. To elucidate cellular responses and identify cellular targets of mycotoxins, a bottom-up proteomics approach was used. We investigated the effects of the mycotoxins aflatoxin B1, ochratoxin A, citrinin, deoxynivalenol, nivalenol and penitrem A on the human hepatoblastoma cell line HepG2 and of ochratoxin A and citrinin on the human kidney epithelial cell line IHKE. Incubations were carried out at sub-cytotoxic concentrations to monitor molecular effects before acute cell death mechanisms predominate. Through these experiments, we were able to detect specific cellular responses that point towards the mycotoxins’ mode of action. Besides very well-described mechanisms like the ribotoxicity of the trichothecenes, we observed not yet described effects on different cellular mechanisms. For instance, trichothecenes lowered the apolipoprotein abundance and aflatoxin B1 affected proteins related to inflammation, ribogenesis and mitosis. Ochratoxin A and citrinin upregulated the minichromosomal maintenance complex and nucleotide synthesis in HepG2 and downregulated histones in IHKE. Penitrem A reduced enzyme levels of the sterol biosynthesis. These results will aid in the elucidation of the toxicodynamic properties of this highly relevant class of toxins.
{"title":"Alterations in the proteomes of HepG2 and IHKE cells inflicted by six selected mycotoxins","authors":"Lucas Keuter, Marco Fortmann, Matthias Behrens, Hans-Ulrich Humpf","doi":"10.1007/s00204-024-03905-0","DOIUrl":"10.1007/s00204-024-03905-0","url":null,"abstract":"<div><p>Toxic fungal secondary metabolites, referred to as mycotoxins, emerge in moldy food and feed and constitute a potent but often underestimated health threat for humans and animals. They are structurally diverse and can cause diseases after dietary intake even in low concentrations. To elucidate cellular responses and identify cellular targets of mycotoxins, a bottom-up proteomics approach was used. We investigated the effects of the mycotoxins aflatoxin B<sub>1</sub>, ochratoxin A, citrinin, deoxynivalenol, nivalenol and penitrem A on the human hepatoblastoma cell line HepG2 and of ochratoxin A and citrinin on the human kidney epithelial cell line IHKE. Incubations were carried out at sub-cytotoxic concentrations to monitor molecular effects before acute cell death mechanisms predominate. Through these experiments, we were able to detect specific cellular responses that point towards the mycotoxins’ mode of action. Besides very well-described mechanisms like the ribotoxicity of the trichothecenes, we observed not yet described effects on different cellular mechanisms. For instance, trichothecenes lowered the apolipoprotein abundance and aflatoxin B<sub>1</sub> affected proteins related to inflammation, ribogenesis and mitosis. Ochratoxin A and citrinin upregulated the minichromosomal maintenance complex and nucleotide synthesis in HepG2 and downregulated histones in IHKE. Penitrem A reduced enzyme levels of the sterol biosynthesis. These results will aid in the elucidation of the toxicodynamic properties of this highly relevant class of toxins.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"701 - 715"},"PeriodicalIF":4.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s00204-024-03904-1
Eduard Isenmann, Dirk W. Lachenmeier, Ulrich Flenker, Alessio Lesch, Sebastian Veit, Patrick Diel
The side effects and safety of cannabidiol (CBD) products are currently discussed in different contexts. Of all adverse effects, hepatotoxic effects have been reported most frequently in previous studies. However, the threshold for liver toxicity of CBD in humans is uncertain due to the lack of adequately designed studies in humans below the lowest observed adverse effect level (LOAEL) of 300 mg/day. In a randomised, three-arm, double-blind, crossover study, the effects of two CBD products (oil and solubilisate (solu) containing 60 mg CBD) were investigated during a high-intensity exercise protocol. Seventeen well-trained subjects (26±4 years, 181±5 cm, 85.6±9.4 kg) participated in the intervention. All subjects were healthy and had no physiological or psychological injuries. Participants were divided into advanced (Ad) and highly advanced (Hi) athletes … They consumed 60 mg of the compound in each microcycle over 7 days. To evaluate possible effects of short-term repeated use of 60 mg CBD on oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), gamma-glutamyl transferase (GGT) and creatinine (CREA) were analysed before and after each microcycle. GOT increased significantly in both performance levels of the placebo groups (Ad: p≤0.001; Hi: p=0.003). This increase was significantly reduced in the Ad group by both CBD oil (p=0.050, ES=0.66) and CBD solu (p=0.027; ES=0.75). GPT also increased significantly in both placebo groups (Ad: p≤0.001; Hi: p=0.032). This increase was significantly reduced in the Ad group by both CBD oil (p=0.027; ES=0.75) and CBD solu (p=0.023; ES=0.77). These effects were not observed in the Hi group for either parameter. Our results show that short-term repeated use of 60 mg CBD can inhibit exercise-induced liver activity. Furthermore, under the conditions of the present study, there was no evidence for hepatotoxic effects of oral intake of CBD at 60 mg for seven days. Nevertheless, despite the inhibitory effect on exercise-induced liver activity, the study provides evidence for the pharmacological effects of CBD on the liver even at low CBD dose and does not exclude adverse effects in sensitive individuals.
{"title":"Short-term repeated oral intake of low dose cannabidiol: effects on liver enzyme activity and creatinine concentration during intense exercise","authors":"Eduard Isenmann, Dirk W. Lachenmeier, Ulrich Flenker, Alessio Lesch, Sebastian Veit, Patrick Diel","doi":"10.1007/s00204-024-03904-1","DOIUrl":"10.1007/s00204-024-03904-1","url":null,"abstract":"<div><p>The side effects and safety of cannabidiol (CBD) products are currently discussed in different contexts. Of all adverse effects, hepatotoxic effects have been reported most frequently in previous studies. However, the threshold for liver toxicity of CBD in humans is uncertain due to the lack of adequately designed studies in humans below the lowest observed adverse effect level (LOAEL) of 300 mg/day. In a randomised, three-arm, double-blind, crossover study, the effects of two CBD products (oil and solubilisate (solu) containing 60 mg CBD) were investigated during a high-intensity exercise protocol. Seventeen well-trained subjects (26±4 years, 181±5 cm, 85.6±9.4 kg) participated in the intervention. All subjects were healthy and had no physiological or psychological injuries. Participants were divided into advanced (Ad) and highly advanced (Hi) athletes … They consumed 60 mg of the compound in each microcycle over 7 days. To evaluate possible effects of short-term repeated use of 60 mg CBD on oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), gamma-glutamyl transferase (GGT) and creatinine (CREA) were analysed before and after each microcycle. GOT increased significantly in both performance levels of the placebo groups (Ad: p≤0.001; Hi: p=0.003). This increase was significantly reduced in the Ad group by both CBD oil (p=0.050, ES=0.66) and CBD solu (p=0.027; ES=0.75). GPT also increased significantly in both placebo groups (Ad: p≤0.001; Hi: p=0.032). This increase was significantly reduced in the Ad group by both CBD oil (p=0.027; ES=0.75) and CBD solu (p=0.023; ES=0.77). These effects were not observed in the Hi group for either parameter. Our results show that short-term repeated use of 60 mg CBD can inhibit exercise-induced liver activity. Furthermore, under the conditions of the present study, there was no evidence for hepatotoxic effects of oral intake of CBD at 60 mg for seven days. Nevertheless, despite the inhibitory effect on exercise-induced liver activity, the study provides evidence for the pharmacological effects of CBD on the liver even at low CBD dose and does not exclude adverse effects in sensitive individuals.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"815 - 824"},"PeriodicalIF":4.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1007/s00204-024-03906-z
Nadja Walle, Christiane Dings, Omar Zaher, Adrian A. Doerr, Benjamin Peters, Matthias W. Laschke, Thorsten Lehr, Michael D. Menger, Peter H. Schmidt, Markus R. Meyer, Nadine Schaefer
Synthetic cannabinoids (SCs) are consumed as an alternative to cannabis. Novel compounds are developed by minor modifications in their chemical structure, e.g. insertion of a carboxamide moiety as a linker, which can potentially lead to altered toxicokinetics (TK). Knowledge on the TK data of SCs, especially structural modified substances, is scarce. Hence, interpretation of toxicological results is challenging. Therefore, the aim of the present study was to evaluate the TK of cumyl-5F-P7AICA in a pig model, which was shown to be suitable for TK studies of SCs. A 200 µg/kg body weight dose of cumyl-5F-P7AICA was administered intravenously (n = 6) or inhalatively (n = 10) via an ultrasonic nebulizer to pigs. Blood specimens were repeatedly drawn over 6 h and the concentrations of cumyl-5F-P7AICA as well as its N-pentanoic acid (NPA) metabolite were determined using a fully validated LC–MS/MS method. Based on the concentration–time profiles, a population TK analysis yielded a three-compartment model for the TK of cumyl-5F-P7AICA, whilst a two-compartment model described the NPA best. The incorporation of transit compartments accounts for the time delay between the appearance of cumyl-5F-P7AICA and NPA in serum. Finally, the model was upscaled to humans using allometric scaling. In comparison to older SCs, a higher volume of distribution was determined for cumyl-5F-P7AICA. No further relevant differences of the TK properties were observed. Insertion of a carboxamide moiety into the chemical structure of SCs does not appear to have only minor influence on the TK.
{"title":"Does a carboxamide moiety alter the toxicokinetics of synthetic cannabinoids? A study after pulmonary and intravenous administration of cumyl-5F-P7AICA to pigs","authors":"Nadja Walle, Christiane Dings, Omar Zaher, Adrian A. Doerr, Benjamin Peters, Matthias W. Laschke, Thorsten Lehr, Michael D. Menger, Peter H. Schmidt, Markus R. Meyer, Nadine Schaefer","doi":"10.1007/s00204-024-03906-z","DOIUrl":"10.1007/s00204-024-03906-z","url":null,"abstract":"<div><p>Synthetic cannabinoids (SCs) are consumed as an alternative to cannabis. Novel compounds are developed by minor modifications in their chemical structure, e.g. insertion of a carboxamide moiety as a linker, which can potentially lead to altered toxicokinetics (TK). Knowledge on the TK data of SCs, especially structural modified substances, is scarce. Hence, interpretation of toxicological results is challenging. Therefore, the aim of the present study was to evaluate the TK of <i>cumyl</i>-5F-P7AICA in a pig model, which was shown to be suitable for TK studies of SCs. A 200 µg/kg body weight dose of <i>cumyl</i>-5F-P7AICA was administered intravenously (n = 6) or inhalatively (n = 10) via an ultrasonic nebulizer to pigs. Blood specimens were repeatedly drawn over 6 h and the concentrations of <i>cumyl</i>-5F-P7AICA as well as its <i>N</i>-pentanoic acid (NPA) metabolite were determined using a fully validated LC–MS/MS method. Based on the concentration–time profiles, a population TK analysis yielded a three-compartment model for the TK of <i>cumyl</i>-5F-P7AICA, whilst a two-compartment model described the NPA best. The incorporation of transit compartments accounts for the time delay between the appearance of <i>cumyl</i>-5F-P7AICA and NPA in serum. Finally, the model was upscaled to humans using allometric scaling. In comparison to older SCs, a higher volume of distribution was determined for <i>cumyl</i>-5F-P7AICA. No further relevant differences of the TK properties were observed. Insertion of a carboxamide moiety into the chemical structure of SCs does not appear to have only minor influence on the TK.</p></div>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":"99 2","pages":"633 - 643"},"PeriodicalIF":4.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}