Pub Date : 2020-10-17DOI: 10.1142/s0218271820501229
S. Jagannathan, Ramkishor Sharma, T. R. Seshadri
Astrophysical magnetic fields decay primarily via two processes namely, ambipolar diffusion and turbulence. Constraints on the strength and the spectral index of non-helical magnetic fields have been derived earlier in the literature through the effect of the above mentioned processes on the Cosmic Microwave Background (CMB) radiation. A helical component of the magnetic field is also produced in various models of magnetogenesis, which can explain larger coherence length magnetic field. In this study, we focus on studying the effects of post recombination decay of maximally helical magnetic fields through ambipolar diffusion and decaying magnetic turbulence and the impact of this decay on CMB. We find that helical magnetic fields lead to changes in the evolution of baryon temperature and ionization fraction which in turn lead to modifications in the CMB temperature and polarization anisotropy. These modifications are different from those arising due to non-helical magnetic fields with the changes dependent on the strength and the spectral index of the magnetic field power spectra.
{"title":"Imprints of the post-recombination dissipation of helical magnetic field on the Cosmic Microwave Background Radiation","authors":"S. Jagannathan, Ramkishor Sharma, T. R. Seshadri","doi":"10.1142/s0218271820501229","DOIUrl":"https://doi.org/10.1142/s0218271820501229","url":null,"abstract":"Astrophysical magnetic fields decay primarily via two processes namely, ambipolar diffusion and turbulence. Constraints on the strength and the spectral index of non-helical magnetic fields have been derived earlier in the literature through the effect of the above mentioned processes on the Cosmic Microwave Background (CMB) radiation. A helical component of the magnetic field is also produced in various models of magnetogenesis, which can explain larger coherence length magnetic field. In this study, we focus on studying the effects of post recombination decay of maximally helical magnetic fields through ambipolar diffusion and decaying magnetic turbulence and the impact of this decay on CMB. We find that helical magnetic fields lead to changes in the evolution of baryon temperature and ionization fraction which in turn lead to modifications in the CMB temperature and polarization anisotropy. These modifications are different from those arising due to non-helical magnetic fields with the changes dependent on the strength and the spectral index of the magnetic field power spectra.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80534263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-15DOI: 10.1103/physrevd.102.103518
G. Manfredi, J. Rouet, B. Miller, G. Chardin
The presence of complex hierarchical gravitational structures is one of the main features of the observed universe. Here, structure formation is studied both for the standard ($Lambda rm CDM$) cosmological model and for the Dirac-Milne universe, a matter-antimatter symmetric universe that was {gm recently} proposed as an alternative "coasting" cosmological scenario. One-dimensional numerical simulations reveal the analogies and differences between the two models. Although structure formation is faster in the Dirac-Milne universe, both models predict that it ends shortly before the present epoch, at cosmological redshift $z approx 3$ for the Dirac-Milne cosmology, and at $z approx 0.5$ for the $Lambda rm CDM$ universe. The present results suggest that the matter power spectrum observed by the Sloan Digital Sky Survey might be entirely due to the nonlinear evolution of matter and antimatter domains of relatively small initial dimensions, of the order of a few tens of parsecs comoving at cosmological redshift $z =1080$.
{"title":"Structure formation in a Dirac-Milne universe: Comparison with the standard cosmological model","authors":"G. Manfredi, J. Rouet, B. Miller, G. Chardin","doi":"10.1103/physrevd.102.103518","DOIUrl":"https://doi.org/10.1103/physrevd.102.103518","url":null,"abstract":"The presence of complex hierarchical gravitational structures is one of the main features of the observed universe. Here, structure formation is studied both for the standard ($Lambda rm CDM$) cosmological model and for the Dirac-Milne universe, a matter-antimatter symmetric universe that was {gm recently} proposed as an alternative \"coasting\" cosmological scenario. One-dimensional numerical simulations reveal the analogies and differences between the two models. Although structure formation is faster in the Dirac-Milne universe, both models predict that it ends shortly before the present epoch, at cosmological redshift $z approx 3$ for the Dirac-Milne cosmology, and at $z approx 0.5$ for the $Lambda rm CDM$ universe. The present results suggest that the matter power spectrum observed by the Sloan Digital Sky Survey might be entirely due to the nonlinear evolution of matter and antimatter domains of relatively small initial dimensions, of the order of a few tens of parsecs comoving at cosmological redshift $z =1080$.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82234740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Sunyaev-Zeldovich (SZ) effect provides a powerful cosmological probe, which traditionally is approached independently as cluster number count (CNC) or power spectrum (PS) analysis. Here, we devise a new method for analysing the $y$-map by introducing the survey completeness function, conventionally only used in the CNC analysis, in the $yy$-PS modeling. This provides a systematic method, based mainly on SZ observables, for obtaining two complementary $y$-maps, one incorporating detected/resolved clusters and the other relying only on diffuse/unresolved SZ contributions. We use the catalogue of clusters obtained in the Planck CNC analysis to define the completeness function linking these two $y$-maps. The split depends on the chosen signal-to-noise detection threshold, which we vary in our discussion. We carefully propagate the effect of completeness cuts on the non-Gaussian error contributions in the $yy$-PS analysis, highlighting the benefits of masking massive clusters. Our analysis of the Planck $yy$-PS for the unresolved component yields a mass bias of $b=0.15pm0.04$, consistent with the standard value ($bapprox0.2$), in comparison to $b=0.4pm 0.05$ for the total $yy$-PS. We find indications for this drift being driven by the CIB-tSZ cross correlation, which dominantly originates from clusters in the resolved component of the $y$-map. Another possible explanation is the presence of a mass-dependent bias, which has been theoretically motivated and can be quantified with our novel method. We furthermore find first hints for the presence of the 2-halo terms in the $yy$-PS. Finally, the proposed method provides a new framework for combining the complementary information of the CNC and PS analyses in upcoming SZ surveys.
{"title":"Removing the giants and learning from the crowd: A new SZ power spectrum method and revised Compton y-map analysis","authors":"A. Rotti, B. Bolliet, J. Chluba, M. Remazeilles","doi":"10.1093/MNRAS/STAB469","DOIUrl":"https://doi.org/10.1093/MNRAS/STAB469","url":null,"abstract":"The Sunyaev-Zeldovich (SZ) effect provides a powerful cosmological probe, which traditionally is approached independently as cluster number count (CNC) or power spectrum (PS) analysis. Here, we devise a new method for analysing the $y$-map by introducing the survey completeness function, conventionally only used in the CNC analysis, in the $yy$-PS modeling. This provides a systematic method, based mainly on SZ observables, for obtaining two complementary $y$-maps, one incorporating detected/resolved clusters and the other relying only on diffuse/unresolved SZ contributions. We use the catalogue of clusters obtained in the Planck CNC analysis to define the completeness function linking these two $y$-maps. The split depends on the chosen signal-to-noise detection threshold, which we vary in our discussion. We carefully propagate the effect of completeness cuts on the non-Gaussian error contributions in the $yy$-PS analysis, highlighting the benefits of masking massive clusters. Our analysis of the Planck $yy$-PS for the unresolved component yields a mass bias of $b=0.15pm0.04$, consistent with the standard value ($bapprox0.2$), in comparison to $b=0.4pm 0.05$ for the total $yy$-PS. We find indications for this drift being driven by the CIB-tSZ cross correlation, which dominantly originates from clusters in the resolved component of the $y$-map. Another possible explanation is the presence of a mass-dependent bias, which has been theoretically motivated and can be quantified with our novel method. We furthermore find first hints for the presence of the 2-halo terms in the $yy$-PS. Finally, the proposed method provides a new framework for combining the complementary information of the CNC and PS analyses in upcoming SZ surveys.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83443128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-14DOI: 10.1103/PHYSREVD.103.083513
C. Tian, S. Anselmi, M. Carney, J. Giblin, J. Mertens, G. Starkman
The curvature of a spacetime, either in a topological sense, or averaged over super-horizon-sized patches, is often equated with the global curvature term that appears in Friedmann's equation. In general, however, the Universe is inhomogeneous, and gravity is a nonlinear theory, thus any curvature perturbations violate the assumptions of the FLRW model; it is not necessarily true that local curvature, averaged over patches of constant-time surfaces, will reproduce the observational effects of global symmetry. Further, the curvature of a constant-time hypersurface is not an observable quantity, and can only be inferred indirectly. Here, we examine the behavior of curvature modes on hypersurfaces of a perturbed spacetime in an exact fully relativistic setting, and how this curvature corresponds with that inferred by observers. We also note the point at which observations become sensitive to the impact of curvature sourced by inhomogeneities on inferred average properties, finding general agreement with past literature.
{"title":"Question of measuring spatial curvature in an inhomogeneous universe","authors":"C. Tian, S. Anselmi, M. Carney, J. Giblin, J. Mertens, G. Starkman","doi":"10.1103/PHYSREVD.103.083513","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.083513","url":null,"abstract":"The curvature of a spacetime, either in a topological sense, or averaged over super-horizon-sized patches, is often equated with the global curvature term that appears in Friedmann's equation. In general, however, the Universe is inhomogeneous, and gravity is a nonlinear theory, thus any curvature perturbations violate the assumptions of the FLRW model; it is not necessarily true that local curvature, averaged over patches of constant-time surfaces, will reproduce the observational effects of global symmetry. Further, the curvature of a constant-time hypersurface is not an observable quantity, and can only be inferred indirectly. Here, we examine the behavior of curvature modes on hypersurfaces of a perturbed spacetime in an exact fully relativistic setting, and how this curvature corresponds with that inferred by observers. We also note the point at which observations become sensitive to the impact of curvature sourced by inhomogeneities on inferred average properties, finding general agreement with past literature.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74556895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We study the effect of dark matter (DM) being encapsulated in primordial black holes (PBHs) on the power spectrum of density fluctuations $P(k)$; we also look at its effect on the abundance of haloes and their clustering. We allow the growth of Poisson fluctuations since matter and radiation equality and study both monochromatic and extended PBH mass distributions. We present updated monochromatic black hole mass constraints by demanding $ 10^4$h$^{-1}M_odot$ are excluded from conforming all of the dark matter in the Universe. We also apply this condition to our extended Press-Schechter (PS) mass functions, and find that the Poisson power is scale dependent even before applying evolution, due to the change of the mass density in PBHs with redshift, and therefore with scale, as they start affecting the gravitational potential at different times. We find that characteristic masses $M^*leq10^2 $h$^{-1}M_odot$ are allowed, {leaving only two characteristic PBH mass windows of PS mass functions when combining with previous constraints, at $M^*sim10^2$h$^{-1}M_odot$ and $sim10^{-8}$h$^{-1}M_odot$ where all of the DM can be in PBHs. The resulting dark matter halo mass functions within these windows are similar} to those resulting from cold dark matter made of fundamental particles, but as soon as the parameters produce unrealistic $P(k)$, the resulting halo mass functions and their bias as a function of halo mass deviate strongly from the behaviour measured in the real Universe.
我们研究了暗物质(DM)被包裹在原始黑洞(PBHs)中对密度波动功率谱的影响$P(k)$;我们还研究了它对光晕丰度及其聚集的影响。由于物质和辐射相等,我们允许泊松波动的增长,并研究了单色和扩展PBH质量分布。我们提出了更新的单色黑洞质量约束,要求$ 10^4$ h $^{-1}M_odot$不符合宇宙中所有的暗物质。我们还将这一条件应用于扩展的Press-Schechter (PS)质量函数,并发现泊松功率甚至在应用演化之前就与尺度相关,这是由于pbh的质量密度随着红移而变化,因此随着尺度而变化,因为它们开始影响不同时间的引力势。我们发现特征质量$M^*leq10^2 $ h $^{-1}M_odot$是允许的,{结合之前的约束,PS质量函数只留下两个特征PBH质量窗口,在$M^*sim10^2$ h $^{-1}M_odot$和$sim10^{-8}$ h $^{-1}M_odot$,所有DM都可以在PBH中。由此产生的暗物质晕质量函数在这些窗口内与}由基本粒子组成的冷暗物质的质量函数相似,但一旦参数产生不切实际的$P(k)$,由此产生的晕质量函数及其作为晕质量函数的偏差就会严重偏离在真实宇宙中测量到的行为。
{"title":"Power spectrum of density fluctuations, halo abundances, and clustering with primordial black holes","authors":"N. Padilla, J. Magaña, Joaquín Sureda, I. Araya","doi":"10.1093/MNRAS/STAB1115","DOIUrl":"https://doi.org/10.1093/MNRAS/STAB1115","url":null,"abstract":"We study the effect of dark matter (DM) being encapsulated in primordial black holes (PBHs) on the power spectrum of density fluctuations $P(k)$; we also look at its effect on the abundance of haloes and their clustering. We allow the growth of Poisson fluctuations since matter and radiation equality and study both monochromatic and extended PBH mass distributions. We present updated monochromatic black hole mass constraints by demanding $ 10^4$h$^{-1}M_odot$ are excluded from conforming all of the dark matter in the Universe. We also apply this condition to our extended Press-Schechter (PS) mass functions, and find that the Poisson power is scale dependent even before applying evolution, due to the change of the mass density in PBHs with redshift, and therefore with scale, as they start affecting the gravitational potential at different times. We find that characteristic masses $M^*leq10^2 $h$^{-1}M_odot$ are allowed, {leaving only two characteristic PBH mass windows of PS mass functions when combining with previous constraints, at $M^*sim10^2$h$^{-1}M_odot$ and $sim10^{-8}$h$^{-1}M_odot$ where all of the DM can be in PBHs. The resulting dark matter halo mass functions within these windows are similar} to those resulting from cold dark matter made of fundamental particles, but as soon as the parameters produce unrealistic $P(k)$, the resulting halo mass functions and their bias as a function of halo mass deviate strongly from the behaviour measured in the real Universe.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82178731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We establish a practical method for the joint analysis of anisotropic galaxy two- and three-point correlation functions (2PCF and 3PCF) on the basis of the decomposition formalism of the 3PCF using tri-polar spherical harmonics. We perform such an analysis with MultiDark Patchy mock catalogues to demonstrate and understand the benefit of the anisotropic 3PCF. We focus on scales above $80 h^{-1},{rm Mpc}$, and use information from the shape and the baryon acoustic oscillation (BAO) signals of the 2PCF and 3PCF. We also apply density field reconstruction to increase the signal-noise ratio of BAO in the 2PCF measurement, but not in the 3PCF measurement. In particular, we study in detail the constraints on the angular diameter distance and the Hubble parameter. We build a model of the bispectrum or 3PCF that includes the nonlinear damping of the BAO signal in redshift space. We carefully account for various uncertainties in our analysis including theoretical models of the 3PCF, window function corrections, biases in estimated parameters from the fiducial values, the number of mock realizations to estimate the covariance matrix, and bin size. The joint analysis of the 2PCF and 3PCF monopole and quadrupole components shows a $30%$ a nd $20%$ improvement in Hubble parameter constraints before and after reconstruction of the 2PCF measurements, respectively, compared to the 2PCF analysis alone. This study clearly shows that the anisotropic 3PCF increases cosmological information from galaxy surveys and encourages further development of the modeling of the 3PCF on smaller scales than we consider.
{"title":"Towards a self-consistent analysis of the anisotropic galaxy two- and three-point correlation functions on large scales: application to mock galaxy catalogues","authors":"Naonori S. Sugiyama, S. Saito, F. Beutler, H. Seo","doi":"10.1093/mnras/staa3725","DOIUrl":"https://doi.org/10.1093/mnras/staa3725","url":null,"abstract":"We establish a practical method for the joint analysis of anisotropic galaxy two- and three-point correlation functions (2PCF and 3PCF) on the basis of the decomposition formalism of the 3PCF using tri-polar spherical harmonics. We perform such an analysis with MultiDark Patchy mock catalogues to demonstrate and understand the benefit of the anisotropic 3PCF. We focus on scales above $80 h^{-1},{rm Mpc}$, and use information from the shape and the baryon acoustic oscillation (BAO) signals of the 2PCF and 3PCF. We also apply density field reconstruction to increase the signal-noise ratio of BAO in the 2PCF measurement, but not in the 3PCF measurement. In particular, we study in detail the constraints on the angular diameter distance and the Hubble parameter. We build a model of the bispectrum or 3PCF that includes the nonlinear damping of the BAO signal in redshift space. We carefully account for various uncertainties in our analysis including theoretical models of the 3PCF, window function corrections, biases in estimated parameters from the fiducial values, the number of mock realizations to estimate the covariance matrix, and bin size. The joint analysis of the 2PCF and 3PCF monopole and quadrupole components shows a $30%$ a nd $20%$ improvement in Hubble parameter constraints before and after reconstruction of the 2PCF measurements, respectively, compared to the 2PCF analysis alone. This study clearly shows that the anisotropic 3PCF increases cosmological information from galaxy surveys and encourages further development of the modeling of the 3PCF on smaller scales than we consider.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75561638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The cosmic microwave background (CMB) spectrum provides tight constraints on the thermal history of the universe up to $z sim 2times 10^6$. At higher redshifts thermalization processes become very efficient so that even large energy releases do not leave visible imprints in the CMB spectrum. In this paper we show that the consistency between the accurate determinations of the specific entropy at primordial nucleosynthesis and at the electron-photon decoupling implies that no more than 7.8% of the present day CMB energy density could have been released in the post-nucleosynthesis era. As pointed out by previous studies, primordial nucleosynthesis complements model independent constraints provided by the CMB spectrum, extending them by two orders of magnitude in redshift.
{"title":"Primordial nucleosynthesis constraints on high-z energy releases","authors":"G. De Zotti, M. Bonato","doi":"10.1093/mnras/staa3209","DOIUrl":"https://doi.org/10.1093/mnras/staa3209","url":null,"abstract":"The cosmic microwave background (CMB) spectrum provides tight constraints on the thermal history of the universe up to $z sim 2times 10^6$. At higher redshifts thermalization processes become very efficient so that even large energy releases do not leave visible imprints in the CMB spectrum. In this paper we show that the consistency between the accurate determinations of the specific entropy at primordial nucleosynthesis and at the electron-photon decoupling implies that no more than 7.8% of the present day CMB energy density could have been released in the post-nucleosynthesis era. As pointed out by previous studies, primordial nucleosynthesis complements model independent constraints provided by the CMB spectrum, extending them by two orders of magnitude in redshift.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86681479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-12DOI: 10.1103/PhysRevD.103.083532
P. Carrilho, D. Mulryne, J. Ronayne
We numerically investigate reheating after quadratic inflation with up to 65 fields, focusing on the production of non-Gaussianity. We consider several sets of initial conditions, masses and decay rates. As expected we find that the reheating phase can have a significant effect on the non-Gaussian signal, but that for this number of fields a detectable level of non-Gaussianity requires the initial conditions, mass range and decay rates to be ordered in a particular way. We speculate on whether this might change in the N-flation limit.
{"title":"Non-Gaussianity after many-field reheating","authors":"P. Carrilho, D. Mulryne, J. Ronayne","doi":"10.1103/PhysRevD.103.083532","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.083532","url":null,"abstract":"We numerically investigate reheating after quadratic inflation with up to 65 fields, focusing on the production of non-Gaussianity. We consider several sets of initial conditions, masses and decay rates. As expected we find that the reheating phase can have a significant effect on the non-Gaussian signal, but that for this number of fields a detectable level of non-Gaussianity requires the initial conditions, mass range and decay rates to be ordered in a particular way. We speculate on whether this might change in the N-flation limit.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"115 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79100609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-09DOI: 10.1103/physrevd.103.023506
M. Shirasaki, Naonori S. Sugiyama, R. Takahashi, F. Kitaura
Galaxy bispectrum is a promising probe of inflationary physics in the early universe as a measure of primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode coupling due to non-linear gravitational growth. In this paper, we examine the standard reconstruction method of linear cosmic mass density fields from non-linear galaxy density fields to de-correlate the covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent $N$-body simulations. Our results show that the bispectrum covariance for the post-reconstructed field approaches the Gaussian prediction at scale of $k<0.2, h, {rm Mpc}^{-1}$. We also verify the leading-order PNG-induced bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate the constraining power of the post-reconstructed bispectrum for PNG at redshift of $sim0.5$. Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including anisotropic signals. Assuming a massive galaxy sample in the SDSS Baryon Oscillation Spectroscopic Survey, we find that the post-reconstructed bispectrum can constrain the local-, equilateral- and orthogonal-types of PNG with $Delta f_{rm NL} sim$13, 90 and 42, respectively, improving the constraints with the pre-reconstructed bispectrum by a factor of $1.3-3.2$. In conclusion, the reconstruction plays an essential role in constraining various types of PNG signatures with a level of $Delta f_{rm NL}<1$ from the galaxy bispectrum based on upcoming galaxy surveys.
{"title":"Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space","authors":"M. Shirasaki, Naonori S. Sugiyama, R. Takahashi, F. Kitaura","doi":"10.1103/physrevd.103.023506","DOIUrl":"https://doi.org/10.1103/physrevd.103.023506","url":null,"abstract":"Galaxy bispectrum is a promising probe of inflationary physics in the early universe as a measure of primordial non-Gaussianity (PNG), whereas its signal-to-noise ratio is significantly affected by the mode coupling due to non-linear gravitational growth. In this paper, we examine the standard reconstruction method of linear cosmic mass density fields from non-linear galaxy density fields to de-correlate the covariance in redshift-space galaxy bispectra. In particular, we evaluate the covariance of the bispectrum for massive-galaxy-sized dark matter halos with reconstruction by using 4000 independent $N$-body simulations. Our results show that the bispectrum covariance for the post-reconstructed field approaches the Gaussian prediction at scale of $k<0.2, h, {rm Mpc}^{-1}$. We also verify the leading-order PNG-induced bispectrum is not affected by details of the reconstruction with perturbative theory. We then demonstrate the constraining power of the post-reconstructed bispectrum for PNG at redshift of $sim0.5$. Further, we perform a Fisher analysis to make a forecast of PNG constraints by galaxy bispectra including anisotropic signals. Assuming a massive galaxy sample in the SDSS Baryon Oscillation Spectroscopic Survey, we find that the post-reconstructed bispectrum can constrain the local-, equilateral- and orthogonal-types of PNG with $Delta f_{rm NL} sim$13, 90 and 42, respectively, improving the constraints with the pre-reconstructed bispectrum by a factor of $1.3-3.2$. In conclusion, the reconstruction plays an essential role in constraining various types of PNG signatures with a level of $Delta f_{rm NL}<1$ from the galaxy bispectrum based on upcoming galaxy surveys.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89042943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-08DOI: 10.1103/PHYSREVD.103.063501
K. Osato, M. Takada
The thermal Sunyaev-Zel'dovich (tSZ) effect is a powerful probe of cosmology. The statistical errors in the tSZ power spectrum measurements are dominated by the presence of massive clusters in a survey volume that are easy to identify on individual cluster basis. First, we study the impact of super sample covariance (SSC) on the tSZ power spectrum measurements, and find that the sample variance is dominated by the connected non-Gaussian (cNG) covariance arising mainly from Poisson number fluctuations of massive clusters in the survey volume. Second, we find that removing such individually-detected, massive clusters from the analysis significantly reduces the cNG contribution, thereby leading the SSC to be a leading source of the sample variance. We then show, based on Fisher analysis, that the power spectrum measured from the remaining, diffuse tSZ effects can be used to obtain tight constraints on cosmological parameters as well as the hydrostatic mass bias parameter. Our method offers complementary use of individual tSZ cluster counts and the power spectrum measurements of diffuse tSZ signals for cosmology and intracluster gas physics.
{"title":"Super sample covariance of the thermal Sunyaev-Zel’dovich effect","authors":"K. Osato, M. Takada","doi":"10.1103/PHYSREVD.103.063501","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.063501","url":null,"abstract":"The thermal Sunyaev-Zel'dovich (tSZ) effect is a powerful probe of cosmology. The statistical errors in the tSZ power spectrum measurements are dominated by the presence of massive clusters in a survey volume that are easy to identify on individual cluster basis. First, we study the impact of super sample covariance (SSC) on the tSZ power spectrum measurements, and find that the sample variance is dominated by the connected non-Gaussian (cNG) covariance arising mainly from Poisson number fluctuations of massive clusters in the survey volume. Second, we find that removing such individually-detected, massive clusters from the analysis significantly reduces the cNG contribution, thereby leading the SSC to be a leading source of the sample variance. We then show, based on Fisher analysis, that the power spectrum measured from the remaining, diffuse tSZ effects can be used to obtain tight constraints on cosmological parameters as well as the hydrostatic mass bias parameter. Our method offers complementary use of individual tSZ cluster counts and the power spectrum measurements of diffuse tSZ signals for cosmology and intracluster gas physics.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86825205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}