Galaxies and clusters embedded in the large-scale structure of the Universe are observed to align in preferential directions. Galaxy alignment has been established as a potential probe for cosmological information, but the application of cluster alignments for these purposes remains unexplored. Clusters are observed to have a higher alignment amplitude than galaxies, but because galaxies are much more numerous, the trade-off in detectability between the two signals remains unclear. We present forecasts comparing cluster and galaxy alignments for two extragalactic survey set-ups: a currently-available low redshift survey (SDSS) and an upcoming higher redshift survey (LSST). For SDSS, we rely on the publicly available redMaPPer catalogue to describe the cluster sample. For LSST, we perform estimations of the expected number counts while we extrapolate the alignment measurements from SDSS. Clusters in SDSS have typically higher alignment signal-to-noise than galaxies. For LSST, the cluster alignment signals quickly wash out with redshift due to a relatively low number count and a decreasing alignment amplitude. Nevertheless, a potential strong-suit of clusters is in their interplay with weak lensing: intrinsic alignments can be more easily isolated for clusters than for galaxies. The signal-to-noise of cluster alignment can in general be improved by isolating close pairs along the line of sight.
{"title":"Galaxy clusters as intrinsic alignment tracers: present and future","authors":"Casper J. G. Vedder, N. E. Chisari","doi":"10.1093/mnras/staa3633","DOIUrl":"https://doi.org/10.1093/mnras/staa3633","url":null,"abstract":"Galaxies and clusters embedded in the large-scale structure of the Universe are observed to align in preferential directions. Galaxy alignment has been established as a potential probe for cosmological information, but the application of cluster alignments for these purposes remains unexplored. Clusters are observed to have a higher alignment amplitude than galaxies, but because galaxies are much more numerous, the trade-off in detectability between the two signals remains unclear. We present forecasts comparing cluster and galaxy alignments for two extragalactic survey set-ups: a currently-available low redshift survey (SDSS) and an upcoming higher redshift survey (LSST). For SDSS, we rely on the publicly available redMaPPer catalogue to describe the cluster sample. For LSST, we perform estimations of the expected number counts while we extrapolate the alignment measurements from SDSS. Clusters in SDSS have typically higher alignment signal-to-noise than galaxies. For LSST, the cluster alignment signals quickly wash out with redshift due to a relatively low number count and a decreasing alignment amplitude. Nevertheless, a potential strong-suit of clusters is in their interplay with weak lensing: intrinsic alignments can be more easily isolated for clusters than for galaxies. The signal-to-noise of cluster alignment can in general be improved by isolating close pairs along the line of sight.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79791488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-12DOI: 10.1103/PhysRevD.103.103538
Fiona McCarthy, S. Foreman, A. V. Engelen
A measurement of the sum of neutrino masses is one of the main applications of upcoming measurements of gravitational lensing of the cosmic microwave background (CMB). This measurement can be confounded by modelling uncertainties related to so-called "baryonic effects" on the clustering of matter, arising from gas dynamics, star formation, and feedback from active galactic nuclei and supernovae. In particular, a wrong assumption about the form of baryonic effects on CMB lensing can bias a neutrino mass measurement by a significant fraction of the statistical uncertainty. In this paper, we investigate three methods for mitigating this bias: (1) restricting the use of small-scale CMB lensing information when constraining neutrino mass; (2) using an external tracer to remove the low-redshift contribution to a CMB lensing map; and (3) marginalizing over a parametric model for baryonic effects on large-scale structure. We test these methods using Fisher matrix forecasts for experiments resembling the Simons Observatory and CMB-S4, using a variety of recent hydrodynamical simulations to represent the range of possible baryonic effects, and using cosmic shear measured by the Rubin Observatory's LSST as the tracer in method (2). We find that a combination of (1) and (2), or (3) on its own, will be effective in reducing the bias induced by baryonic effects on a neutrino mass measurement to a negligible level, without a significant increase in the associated statistical uncertainty.
{"title":"Avoiding baryonic feedback effects on neutrino mass measurements from CMB lensing","authors":"Fiona McCarthy, S. Foreman, A. V. Engelen","doi":"10.1103/PhysRevD.103.103538","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.103538","url":null,"abstract":"A measurement of the sum of neutrino masses is one of the main applications of upcoming measurements of gravitational lensing of the cosmic microwave background (CMB). This measurement can be confounded by modelling uncertainties related to so-called \"baryonic effects\" on the clustering of matter, arising from gas dynamics, star formation, and feedback from active galactic nuclei and supernovae. In particular, a wrong assumption about the form of baryonic effects on CMB lensing can bias a neutrino mass measurement by a significant fraction of the statistical uncertainty. In this paper, we investigate three methods for mitigating this bias: (1) restricting the use of small-scale CMB lensing information when constraining neutrino mass; (2) using an external tracer to remove the low-redshift contribution to a CMB lensing map; and (3) marginalizing over a parametric model for baryonic effects on large-scale structure. We test these methods using Fisher matrix forecasts for experiments resembling the Simons Observatory and CMB-S4, using a variety of recent hydrodynamical simulations to represent the range of possible baryonic effects, and using cosmic shear measured by the Rubin Observatory's LSST as the tracer in method (2). We find that a combination of (1) and (2), or (3) on its own, will be effective in reducing the bias induced by baryonic effects on a neutrino mass measurement to a negligible level, without a significant increase in the associated statistical uncertainty.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"51 7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83402008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federico Dávila-Kurbán, A. Sánchez, M. Lares, A. Ruiz
All estimators of the two-point correlation function are based on a random catalogue, a set of points with no intrinsic clustering following the selection function of a survey. High-accuracy estimates require the use of large random catalogues, which imply a high computational cost. We propose to replace the standard random catalogues by glass-like point distributions or glass catalogues, which are characterized by a power spectrum $P(k)propto k^4$ and exhibit significantly less power than a Poisson distribution with the same number of points on scales larger than the mean inter-particle separation. We show that these distributions can be obtained by iteratively applying the technique of Zeldovich reconstruction commonly used in studies of baryon acoustic oscillations (BAO). We provide a modified version of the widely used Landy-Szalay estimator of the correlation function adapted to the use of glass catalogues and compare its performance with the results obtained using random samples. Our results show that glass-like samples do not add any bias with respect to the results obtained using Poisson distributions. On scales larger than the mean inter-particle separation of the glass catalogues, the modified estimator leads to a significant reduction of the variance of the Legendre multipoles $xi_ell(s)$ with respect to the standard Landy-Szalay results with the same number of points. The size of the glass catalogue required to achieve a given accuracy in the correlation function is significantly smaller than when using random samples. Even considering the small additional cost of constructing the glass catalogues, their use could help to drastically reduce the computational cost of configuration-space clustering analysis of future surveys while maintaining high-accuracy requirements.
{"title":"Improved two-point correlation function estimates using glass-like distributions as a reference sample","authors":"Federico Dávila-Kurbán, A. Sánchez, M. Lares, A. Ruiz","doi":"10.1093/mnras/stab1622","DOIUrl":"https://doi.org/10.1093/mnras/stab1622","url":null,"abstract":"All estimators of the two-point correlation function are based on a random catalogue, a set of points with no intrinsic clustering following the selection function of a survey. High-accuracy estimates require the use of large random catalogues, which imply a high computational cost. We propose to replace the standard random catalogues by glass-like point distributions or glass catalogues, which are characterized by a power spectrum $P(k)propto k^4$ and exhibit significantly less power than a Poisson distribution with the same number of points on scales larger than the mean inter-particle separation. We show that these distributions can be obtained by iteratively applying the technique of Zeldovich reconstruction commonly used in studies of baryon acoustic oscillations (BAO). We provide a modified version of the widely used Landy-Szalay estimator of the correlation function adapted to the use of glass catalogues and compare its performance with the results obtained using random samples. Our results show that glass-like samples do not add any bias with respect to the results obtained using Poisson distributions. On scales larger than the mean inter-particle separation of the glass catalogues, the modified estimator leads to a significant reduction of the variance of the Legendre multipoles $xi_ell(s)$ with respect to the standard Landy-Szalay results with the same number of points. The size of the glass catalogue required to achieve a given accuracy in the correlation function is significantly smaller than when using random samples. Even considering the small additional cost of constructing the glass catalogues, their use could help to drastically reduce the computational cost of configuration-space clustering analysis of future surveys while maintaining high-accuracy requirements.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"2014 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88105883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-11DOI: 10.1103/PHYSREVRESEARCH.3.013193
T. Kahniashvili, A. Brandenburg, G. Gogoberidze, Sayan Mandal, A. Pol
We perform direct numerical simulations to compute the net circular polarization of gravitational waves from helical (chiral) turbulent sources in the early universe for a variety of initial conditions, including driven (stationary) and decaying turbulence. We investigate the resulting gravitational wave signal assuming different turbulence geneses such as magnetically or kinetically driven cases. Under realistic physical conditions in the early universe we compute numerically for the first time the total (integrated over all wavenumbers) polarization degree of the gravitational waves. We find that the spectral polarization degree strongly depends on the initial conditions. The peak of the spectral polarization degree occurs at twice the typical wavenumber of the source, as expected, and for fully helical decaying turbulence, it reaches its maximum (100%) only at the peak. We determine the temporal evolution of the turbulent sources as well as the resulting gravitational waves, showing that the dominant contribution to their spectral energy density happens shortly after the source activation. Only through an artificially prolonged decay of the turbulence can further increase of the gravitational wave amplitude be achieved. We estimate the detection prospects for the net polarization arguing that its detection contains clean information (including the generation mechanisms, time and strength) about the sources of possible parity violations in the early universe.
{"title":"Circular polarization of gravitational waves from early-Universe helical turbulence","authors":"T. Kahniashvili, A. Brandenburg, G. Gogoberidze, Sayan Mandal, A. Pol","doi":"10.1103/PHYSREVRESEARCH.3.013193","DOIUrl":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013193","url":null,"abstract":"We perform direct numerical simulations to compute the net circular polarization of gravitational waves from helical (chiral) turbulent sources in the early universe for a variety of initial conditions, including driven (stationary) and decaying turbulence. We investigate the resulting gravitational wave signal assuming different turbulence geneses such as magnetically or kinetically driven cases. Under realistic physical conditions in the early universe we compute numerically for the first time the total (integrated over all wavenumbers) polarization degree of the gravitational waves. We find that the spectral polarization degree strongly depends on the initial conditions. The peak of the spectral polarization degree occurs at twice the typical wavenumber of the source, as expected, and for fully helical decaying turbulence, it reaches its maximum (100%) only at the peak. We determine the temporal evolution of the turbulent sources as well as the resulting gravitational waves, showing that the dominant contribution to their spectral energy density happens shortly after the source activation. Only through an artificially prolonged decay of the turbulence can further increase of the gravitational wave amplitude be achieved. We estimate the detection prospects for the net polarization arguing that its detection contains clean information (including the generation mechanisms, time and strength) about the sources of possible parity violations in the early universe.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77572829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.21468/SciPostPhys.10.6.153
M. Bartelmann, Johannes Dombrowski, Sara Konrad, E. Kozlikin, R. Lilow, C. Littek, Christophe Pixius, F. Fabis
We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically $lesssim10,%$ up to wave numbers $klesssim10,h,mathrm{Mpc}^{-1}$ at redshift $z = 0$. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically $lesssim 5,%$. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel'dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.
{"title":"Kinetic field theory: Non-linear cosmic power spectra in the mean-field approximation","authors":"M. Bartelmann, Johannes Dombrowski, Sara Konrad, E. Kozlikin, R. Lilow, C. Littek, Christophe Pixius, F. Fabis","doi":"10.21468/SciPostPhys.10.6.153","DOIUrl":"https://doi.org/10.21468/SciPostPhys.10.6.153","url":null,"abstract":"We use the recently developed Kinetic Field Theory (KFT) for cosmic structure formation to show how non-linear power spectra for cosmic density fluctuations can be calculated in a mean-field approximation to the particle interactions. Our main result is a simple, closed and analytic, approximate expression for this power spectrum. This expression has two parameters characterising non-linear structure growth which can be calibrated within KFT itself. Using this self-calibration, the non-linear power spectrum agrees with results obtained from numerical simulations to within typically $lesssim10,%$ up to wave numbers $klesssim10,h,mathrm{Mpc}^{-1}$ at redshift $z = 0$. Adjusting the two parameters to optimise agreement with numerical simulations, the relative difference to numerical results shrinks to typically $lesssim 5,%$. As part of the derivation of our mean-field approximation, we show that the effective interaction potential between dark-matter particles relative to Zel'dovich trajectories is sourced by non-linear cosmic density fluctuations only, and is approximately of Yukawa rather than Newtonian shape.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85288866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-09DOI: 10.1103/PHYSREVD.103.043529
A. Chudaykin, D. Gorbunov, Nikita Nedelko
A promising idea to resolve the long standing Hubble tension is to postulate a new subdominant dark-energy-like component in the pre-recombination Universe which is traditionally termed as the Early Dark Energy (EDE). However, as shown in Refs. cite{Hill:2020osr,Ivanov:2020ril} the cosmic microwave background (CMB) and large-scale structure (LSS) data impose tight constraints on this proposal. Here, we revisit these strong bounds considering the Planck CMB temperature anisotropy data at large angular scales and the SPTPol polarization and lensing measurements. As advocated in Ref. cite{Chudaykin:2020acu}, this combined data approach predicts the CMB lensing effect consistent with the $Lambda$CDM expectation and allows one to efficiently probe both large and small angular scales. Combining Planck and SPTPol CMB data with the full-shape BOSS likelihood and information from photometric LSS surveys in the EDE analysis we found for the Hubble constant $H_0=69.79pm0.99,{rm kms^{-1}Mpc^{-1}}$ and for the EDE fraction $f_{rm EDE}<0.094,(2sigma)$. These bounds obtained without including a local distance ladder measurement of $H_0$ (SH0ES) alleviate the Hubble tension to a $2.5sigma$ level. Including further the SH0ES data we obtain $H_0=71.81pm1.19,{rm kms^{-1}Mpc^{-1}}$ and $f_{rm EDE}=0.088pm0.034$ in full accordance with SH0ES. We also found that a higher value of $H_0$ does not significantly deteriorate the fit to the LSS data. Overall, the EDE scenario is (though weakly) favoured over $Lambda$CDM even after accounting for unconstrained directions in the cosmological parameter space. We conclude that the large-scale Planck temperature and SPTPol polarization measurements along with LSS data do not rule out the EDE model as a resolution of the Hubble tension. This paper underlines the importance of the CMB lensing effect for robust constraints on the EDE scenario.
{"title":"Exploring an early dark energy solution to the Hubble tension with Planck and SPTPol data","authors":"A. Chudaykin, D. Gorbunov, Nikita Nedelko","doi":"10.1103/PHYSREVD.103.043529","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.043529","url":null,"abstract":"A promising idea to resolve the long standing Hubble tension is to postulate a new subdominant dark-energy-like component in the pre-recombination Universe which is traditionally termed as the Early Dark Energy (EDE). However, as shown in Refs. cite{Hill:2020osr,Ivanov:2020ril} the cosmic microwave background (CMB) and large-scale structure (LSS) data impose tight constraints on this proposal. Here, we revisit these strong bounds considering the Planck CMB temperature anisotropy data at large angular scales and the SPTPol polarization and lensing measurements. As advocated in Ref. cite{Chudaykin:2020acu}, this combined data approach predicts the CMB lensing effect consistent with the $Lambda$CDM expectation and allows one to efficiently probe both large and small angular scales. Combining Planck and SPTPol CMB data with the full-shape BOSS likelihood and information from photometric LSS surveys in the EDE analysis we found for the Hubble constant $H_0=69.79pm0.99,{rm kms^{-1}Mpc^{-1}}$ and for the EDE fraction $f_{rm EDE}<0.094,(2sigma)$. These bounds obtained without including a local distance ladder measurement of $H_0$ (SH0ES) alleviate the Hubble tension to a $2.5sigma$ level. Including further the SH0ES data we obtain $H_0=71.81pm1.19,{rm kms^{-1}Mpc^{-1}}$ and $f_{rm EDE}=0.088pm0.034$ in full accordance with SH0ES. We also found that a higher value of $H_0$ does not significantly deteriorate the fit to the LSS data. Overall, the EDE scenario is (though weakly) favoured over $Lambda$CDM even after accounting for unconstrained directions in the cosmological parameter space. We conclude that the large-scale Planck temperature and SPTPol polarization measurements along with LSS data do not rule out the EDE model as a resolution of the Hubble tension. This paper underlines the importance of the CMB lensing effect for robust constraints on the EDE scenario.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72799159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-08DOI: 10.1103/PHYSREVD.103.063522
Qiaoya Wu, Hao-Ran Yu, Shihong Liao, Min Du
Galaxy angular momentum directions (spins) are observable, well described by the Lagrangian tidal torque theory, and proposed to probe the primordial universe. They trace the spins of dark matter halos, and are indicators of protohalos properties in Lagrangian space. We define a Lagrangian spin parameter and tidal twist parameters and quantify their influence on the spin conservation and predictability in the spin mode reconstruction in $N$-body simulations. We conclude that protohalos in a more tidal twisting environments are preferentially more rotation-supported, and more likely to conserve their spin direction through the cosmic evolution. These tidal environments and spin magnitudes are predictable by a density reconstruction in Lagrangian space, and such predictions can improve the correlation between galaxy spins and the initial conditions in the study of constraining the primordial universe by spin mode reconstruction.
{"title":"Spin mode reconstruction in Lagrangian space","authors":"Qiaoya Wu, Hao-Ran Yu, Shihong Liao, Min Du","doi":"10.1103/PHYSREVD.103.063522","DOIUrl":"https://doi.org/10.1103/PHYSREVD.103.063522","url":null,"abstract":"Galaxy angular momentum directions (spins) are observable, well described by the Lagrangian tidal torque theory, and proposed to probe the primordial universe. They trace the spins of dark matter halos, and are indicators of protohalos properties in Lagrangian space. We define a Lagrangian spin parameter and tidal twist parameters and quantify their influence on the spin conservation and predictability in the spin mode reconstruction in $N$-body simulations. We conclude that protohalos in a more tidal twisting environments are preferentially more rotation-supported, and more likely to conserve their spin direction through the cosmic evolution. These tidal environments and spin magnitudes are predictable by a density reconstruction in Lagrangian space, and such predictions can improve the correlation between galaxy spins and the initial conditions in the study of constraining the primordial universe by spin mode reconstruction.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82732063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Doux, E. Baxter, P. Lemos, C. Chang, A. Alarcon, A. Amon, A. Campos, A. Choi, M. Gatti, D. Gruen, M. Jarvis, N. MacCrann, Y. Park, J. Prat, M. Rau, M. Raveri, S. Samuroff, J. DeRose, W. Hartley, B. Hoyle, M. Troxel, J. Zuntz, T. Abbott, M. Aguena, S. Allam, J. Annis, S. Ávila, David Bacon, E. Bertin, S. Bhargava, D. Brooks, D. Burke, M. C. Kind, J. Carretero, R. Cawthon, M. Costanzi, L. Costa, M. Pereira, S. Desai, H. Diehl, J. Dietrich, P. Doel, S. Everett, I. Ferrero, P. Fosalba, J. Frieman, J. Garcı́a-Bellido, D. Gerdes, T. Giannantonio, R. Gruendl, J. Gschwend, G. Gutiérrez, S. Hinton, D. Hollowood, K. Honscheid, E. Huff, D. Huterer, B. Jain, D. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. Maia, F. Menanteau, R. Miquel, R. Morgan, J. Muir, R. Ogando, A. Palmese, F. Paz-Chinchón, A. Plazas, E. Sanchez, Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. Swanson, G. Tarlé, Chun-Hao To, D. Tucker, T. Varga, J. Weller, R. Wilkinson, A. Alarcon,
Beyond-$Lambda$CDM physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analyzed assuming $Lambda$CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of $Lambda$CDM. We find that the DES Y1 data have an acceptable goodness of fit to $Lambda$CDM, with a probability of finding a worse fit by random chance of ${p = 0.046}$. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5%) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the $p$-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.
{"title":"Dark energy survey internal consistency tests of the joint cosmological probes analysis with posterior predictive distributions","authors":"C. Doux, E. Baxter, P. Lemos, C. Chang, A. Alarcon, A. Amon, A. Campos, A. Choi, M. Gatti, D. Gruen, M. Jarvis, N. MacCrann, Y. Park, J. Prat, M. Rau, M. Raveri, S. Samuroff, J. DeRose, W. Hartley, B. Hoyle, M. Troxel, J. Zuntz, T. Abbott, M. Aguena, S. Allam, J. Annis, S. Ávila, David Bacon, E. Bertin, S. Bhargava, D. Brooks, D. Burke, M. C. Kind, J. Carretero, R. Cawthon, M. Costanzi, L. Costa, M. Pereira, S. Desai, H. Diehl, J. Dietrich, P. Doel, S. Everett, I. Ferrero, P. Fosalba, J. Frieman, J. Garcı́a-Bellido, D. Gerdes, T. Giannantonio, R. Gruendl, J. Gschwend, G. Gutiérrez, S. Hinton, D. Hollowood, K. Honscheid, E. Huff, D. Huterer, B. Jain, D. James, E. Krause, K. Kuehn, N. Kuropatkin, O. Lahav, C. Lidman, M. Lima, M. Maia, F. Menanteau, R. Miquel, R. Morgan, J. Muir, R. Ogando, A. Palmese, F. Paz-Chinchón, A. Plazas, E. Sanchez, Scarpine, M. Schubnell, S. Serrano, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. Swanson, G. Tarlé, Chun-Hao To, D. Tucker, T. Varga, J. Weller, R. Wilkinson, A. Alarcon,","doi":"10.1093/MNRAS/STAB526","DOIUrl":"https://doi.org/10.1093/MNRAS/STAB526","url":null,"abstract":"Beyond-$Lambda$CDM physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analyzed assuming $Lambda$CDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of $Lambda$CDM. We find that the DES Y1 data have an acceptable goodness of fit to $Lambda$CDM, with a probability of finding a worse fit by random chance of ${p = 0.046}$. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5%) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the $p$-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87543281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-05DOI: 10.1103/PhysRevD.103.103513
R. Arjona, Hai-Nan Lin, S. Nesseris, Li Tang
We use simulated data from strongly lensed gravitational wave events from the Einstein Telescope to forecast constraints on the cosmic distance duality relation, also known as the Etherington relation, which relates the luminosity and angular diameter distances $d_L(z)$ and $d_A(z)$ respectively. In particular, we present a methodology to make robust mocks for the duality parameter $eta(z)equiv frac{d_L(z)}{(1+z)^2 d_A(z)}$ and then we use Genetic Algorithms and Gaussian Processes, two stochastic minimization and symbolic regression subclasses of machine learning methods, to perform model independent forecasts of $eta(z)$. We find that both machine learning approaches are capable of correctly recovering the underlying fiducial model and provide percent-level constraints at intermediate redshifts when applied to future Einstein Telescope data.
{"title":"Machine learning forecasts of the cosmic distance duality relation with strongly lensed gravitational wave events","authors":"R. Arjona, Hai-Nan Lin, S. Nesseris, Li Tang","doi":"10.1103/PhysRevD.103.103513","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.103513","url":null,"abstract":"We use simulated data from strongly lensed gravitational wave events from the Einstein Telescope to forecast constraints on the cosmic distance duality relation, also known as the Etherington relation, which relates the luminosity and angular diameter distances $d_L(z)$ and $d_A(z)$ respectively. In particular, we present a methodology to make robust mocks for the duality parameter $eta(z)equiv frac{d_L(z)}{(1+z)^2 d_A(z)}$ and then we use Genetic Algorithms and Gaussian Processes, two stochastic minimization and symbolic regression subclasses of machine learning methods, to perform model independent forecasts of $eta(z)$. We find that both machine learning approaches are capable of correctly recovering the underlying fiducial model and provide percent-level constraints at intermediate redshifts when applied to future Einstein Telescope data.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90888136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-04DOI: 10.1103/PhysRevD.103.103509
C. Krishnan, E. Colgáin, M. Sheikh-Jabbari, Tao Yang
Hubble tension is routinely presented as a mismatch between the Hubble constant H_0 determined locally and a value inferred from the flat LCDM cosmology. In essence, the tension boils down to a disagreement between two numbers. Here, assuming the tension is cosmological in origin, we predict that within flat LCDM there should be other inferred values of H_0, and that a "running of H_0 with redshift" can be expected. These additional determinations of H_0 may be traced to a difference between the effective equation of state (EoS) of the Universe and the current standard model. We introduce a diagnostic that flags such a running of H_0.
{"title":"Running Hubble Tension and a H0 Diagnostic.","authors":"C. Krishnan, E. Colgáin, M. Sheikh-Jabbari, Tao Yang","doi":"10.1103/PhysRevD.103.103509","DOIUrl":"https://doi.org/10.1103/PhysRevD.103.103509","url":null,"abstract":"Hubble tension is routinely presented as a mismatch between the Hubble constant H_0 determined locally and a value inferred from the flat LCDM cosmology. In essence, the tension boils down to a disagreement between two numbers. Here, assuming the tension is cosmological in origin, we predict that within flat LCDM there should be other inferred values of H_0, and that a \"running of H_0 with redshift\" can be expected. These additional determinations of H_0 may be traced to a difference between the effective equation of state (EoS) of the Universe and the current standard model. We introduce a diagnostic that flags such a running of H_0.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86938039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}