Nowadays, architectural requirements affect structural design investigations. On the other hand, the pounding effect is one of the crucial effects between two adjacent high-rise buildings under seismic load. Because shear walls experience higher stresses at their ends, end shear walls alleviate these stresses and enhance the effect of shear walls in high-rise buildings. This study aimed to evaluate the impact of end shear walls on the seismic pounding between two adjacent 20-story reinforced concrete buildings subjected to seven far-field seismic records by nonlinear time history analysis. Also, the distance between the two buildings is considered zero. The inclusion of end shear walls was found to significantly reduce seismic pounding effects. Specifically, notable reductions were observed in average pounding displacements and rotational accelerations in the horizontal (X) direction. Average pounding drifts in the X-direction decreased by up to 26%, while average pounding accelerations in the X-direction were reduced by up to 9%. Similarly, pounding accelerations in the vertical (Z) direction and vertical pounding rotations were also substantially reduced. These findings highlight the effectiveness of end shear walls in mitigating seismic pounding and improving the overall seismic performance of adjacent reinforced concrete high-rise buildings subjected to far-fault ground motions.