Pub Date : 2019-07-01DOI: 10.26655/AJNANOMAT.2019.2.3.9
Deepika Sharma, S. Tyagi, Bhavna Kumar
Ocuserts or ophthalmic inserts are “Sterile preparation in the form of solid or semisolid, whose size and shape are specially designed to be applied to the eyes”. The most frequently used dosage forms (ophthalmic solutions and suspensions) are compromised in their effectiveness by several limitations, leading to poor ocular bioavailability. By utilization of the principles of the controlled release as embodied by ocular inserts offers an irritable approach to the problem of prolonging pre-corneal drug residence times. The controlled ocular drug delivery systems increased the efficiency of the drug by enhancing absorption increasing contact time of drug and by reducing drug wastage to the absorption site. Ocuserts were prepared using the solvent casting method. The article discusses about the various structure of the eye, its anatomy with an explanatory diagram. Also, various mechanisms of drug diffusion into an eye with special attention to biological/clinical performances, and potential applications and developments were discussed
{"title":"Novel approaches of treatment via ocusert drug delivery","authors":"Deepika Sharma, S. Tyagi, Bhavna Kumar","doi":"10.26655/AJNANOMAT.2019.2.3.9","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.9","url":null,"abstract":"Ocuserts or ophthalmic inserts are “Sterile preparation in the form of solid or semisolid, whose size and shape are specially designed to be applied to the eyes”. The most frequently used dosage forms (ophthalmic solutions and suspensions) are compromised in their effectiveness by several limitations, leading to poor ocular bioavailability. By utilization of the principles of the controlled release as embodied by ocular inserts offers an irritable approach to the problem of prolonging pre-corneal drug residence times. The controlled ocular drug delivery systems increased the efficiency of the drug by enhancing absorption increasing contact time of drug and by reducing drug wastage to the absorption site. Ocuserts were prepared using the solvent casting method. The article discusses about the various structure of the eye, its anatomy with an explanatory diagram. Also, various mechanisms of drug diffusion into an eye with special attention to biological/clinical performances, and potential applications and developments were discussed","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"12 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91444231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.26655/AJNANOMAT.2019.2.3.7
S. Varshney, N. Madhav
The aim of research work was to formulate bio-flexy films using a novel biopolymer isolated from Rosa polyanthapetals containing tiagabine as a model drug. The soft palate drug delivery helps bypass first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract gets avoided. Tiagabine, anticonvulsant drug possesses t1/2:7-9 hours (low); protein binding: 96%; water solubility: 22mg/L enhances acts as selective GABA reuptake inhibitor. Side effects include abdominal pain, pharyngitis, suicidal thoughts and sudden unexpected death. Rosa polyantha biopolymer used as bio-excipient due to its biodegradability, biocompatibility, non-toxicity, non-reactiveness on soft palatal surface. Physicochemical characterization of biopolymer displayed inbuilt filmability, mucoadhesivity properties. Bio-flexy films were prepared by solvent casting technique. Formulations containing different ratios of nanosized Tiagabine: Rosa polyantha biopolymer (1:0.5, 1:1; 1:3, 1:5, 1:6, 1:10) (FRT1-FRT6) were prepared and compared with nanosized Tiagabine loaded Sodium CMC standard flexy films (FET1-FET6). The percentage yield of Rosa polyantha biopolymer was found to be 2.24±0.01%. Evaluation parameters for formulations revealed Thickness of nanosized Tiagabine loaded bio-flexy films containing Rosa polyantha biopolymer (FRT1-FRT6): 0.027 mm±0.005 to 0.039±0.004 mm, Folding Endurance: 83-130, Surface pH: 7.00±0.04 to 7.00±0.01, Weight Uniformity: 0.008±0.05 to 0.044±0.03, Drug Content Uniformity: 85.6%±0.48 to 94.8%±0.37, Swelling Percentage: 66%±0.2 to 75%±0.1, Percentage Moisture Uptake (PTU): 2.5%±0.14 to 3.8%±0.10. Mucoadhesivity: 90-1440 mins, Mucoretentivity: 110-240 mins. Drug release pattern for formulations FRT1-FRT6 containing Rosa polyantha biopolymer based on the T50% and T80% was found to be FRT5 (1:6) > FRT4 (1:5) > FRT6 (1:10) > FRT1 (1:0.5)> FRT3 (1:3) > FRT2 (1:1). Based on all above mentioned evaluation parameters, FRT5 (containing Tiagabine: Rosa polyantha biopolymer (1:6)) bio-flexy film having R2= 0.9295, Higuchi Matrix as best fit model, follows Fickian Diffusion (Higuchi Matrix) release mechanism, T50%: 7hrs., T80%: 30 hrs. using BITS Software 1.12 was found to be Best formulation.
{"title":"Bio-flexy film formulation for delivery of tiagabine via oro trans-soft palatal route and its in-vitro stability study approach","authors":"S. Varshney, N. Madhav","doi":"10.26655/AJNANOMAT.2019.2.3.7","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.7","url":null,"abstract":"The aim of research work was to formulate bio-flexy films using a novel biopolymer isolated from Rosa polyanthapetals containing tiagabine as a model drug. The soft palate drug delivery helps bypass first-pass metabolism in the liver and pre-systemic elimination in the gastrointestinal tract gets avoided. Tiagabine, anticonvulsant drug possesses t1/2:7-9 hours (low); protein binding: 96%; water solubility: 22mg/L enhances acts as selective GABA reuptake inhibitor. Side effects include abdominal pain, pharyngitis, suicidal thoughts and sudden unexpected death. Rosa polyantha biopolymer used as bio-excipient due to its biodegradability, biocompatibility, non-toxicity, non-reactiveness on soft palatal surface. Physicochemical characterization of biopolymer displayed inbuilt filmability, mucoadhesivity properties. Bio-flexy films were prepared by solvent casting technique. Formulations containing different ratios of nanosized Tiagabine: Rosa polyantha biopolymer (1:0.5, 1:1; 1:3, 1:5, 1:6, 1:10) (FRT1-FRT6) were prepared and compared with nanosized Tiagabine loaded Sodium CMC standard flexy films (FET1-FET6). The percentage yield of Rosa polyantha biopolymer was found to be 2.24±0.01%. Evaluation parameters for formulations revealed Thickness of nanosized Tiagabine loaded bio-flexy films containing Rosa polyantha biopolymer (FRT1-FRT6): 0.027 mm±0.005 to 0.039±0.004 mm, Folding Endurance: 83-130, Surface pH: 7.00±0.04 to 7.00±0.01, Weight Uniformity: 0.008±0.05 to 0.044±0.03, Drug Content Uniformity: 85.6%±0.48 to 94.8%±0.37, Swelling Percentage: 66%±0.2 to 75%±0.1, Percentage Moisture Uptake (PTU): 2.5%±0.14 to 3.8%±0.10. Mucoadhesivity: 90-1440 mins, Mucoretentivity: 110-240 mins. Drug release pattern for formulations FRT1-FRT6 containing Rosa polyantha biopolymer based on the T50% and T80% was found to be FRT5 (1:6) > FRT4 (1:5) > FRT6 (1:10) > FRT1 (1:0.5)> FRT3 (1:3) > FRT2 (1:1). Based on all above mentioned evaluation parameters, FRT5 (containing Tiagabine: Rosa polyantha biopolymer (1:6)) bio-flexy film having R2= 0.9295, Higuchi Matrix as best fit model, follows Fickian Diffusion (Higuchi Matrix) release mechanism, T50%: 7hrs., T80%: 30 hrs. using BITS Software 1.12 was found to be Best formulation.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"125 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73910042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.26655/AJNANOMAT.2019.2.3.1
M. Upadhyay, M. K. Das, R. Dabrowski, P. Ghosh
Multifunctional additive performance of poly acrylate in presence of selective liquid crystal structures were evaluated by standard ASTM methods. Homopolymer of mixed acrylate (octyl, decyl and dodecyl) was synthesised and characterized by thermo gravimetric, spectroscopy and viscometric methods. Additive performances of the polymer were evaluated as viscosity modifier (VM), thickening agent (TA), pour point depressant (PPD) and anti wear (AW) additive. Physical blend of the polymer with six different types of liquid crystals (LC) were also made and evaluated for their performance. The results indicated that all the LC-blended samples act as better VM, PPD, along with excellent AW and thickening performance compare to the pure polymer sample.
{"title":"Synergistic effect of liquid crystals on the additive performance of poly acrylate in lubricating oil","authors":"M. Upadhyay, M. K. Das, R. Dabrowski, P. Ghosh","doi":"10.26655/AJNANOMAT.2019.2.3.1","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.1","url":null,"abstract":"Multifunctional additive performance of poly acrylate in presence of selective liquid crystal structures were evaluated by standard ASTM methods. Homopolymer of mixed acrylate (octyl, decyl and dodecyl) was synthesised and characterized by thermo gravimetric, spectroscopy and viscometric methods. Additive performances of the polymer were evaluated as viscosity modifier (VM), thickening agent (TA), pour point depressant (PPD) and anti wear (AW) additive. Physical blend of the polymer with six different types of liquid crystals (LC) were also made and evaluated for their performance. The results indicated that all the LC-blended samples act as better VM, PPD, along with excellent AW and thickening performance compare to the pure polymer sample.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74579752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.26655/AJNANOMAT.2019.2.3.3
M. Mahinroosta
Thermal decomposition of ammonium perchlorate was improved via addition of transition metals and metal oxides. This work investigates the thermal decomposition of the ammonium perchlorate under the catalytic effect of the commercial nano-TiO2 (nTiO2). Characterization of nTiO2 showed that its average particle size ranged from 10 to 25 nm with a relatively spherical morphology. Ammonium perchlorate and nTiO2 mixes were prepared by adding three different nTiO2 mass fractionsof 1, 2, and 3 wt% to pure ammonium perchlorate. The results of thermogravimetry analysis revealed that the addition of nTiO2 to pure ammonium perchlorate resulted in a significant decline in its decomposition temperature. The most observed decrease in the decomposition temperature was 61 °C resulted from the addition of 3 wt.% nTiO2.
{"title":"Thermal decomposition of ammonium perchlorate-commercial nano-TiO2 mixed powder","authors":"M. Mahinroosta","doi":"10.26655/AJNANOMAT.2019.2.3.3","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.3","url":null,"abstract":"Thermal decomposition of ammonium perchlorate was improved via addition of transition metals and metal oxides. This work investigates the thermal decomposition of the ammonium perchlorate under the catalytic effect of the commercial nano-TiO2 (nTiO2). Characterization of nTiO2 showed that its average particle size ranged from 10 to 25 nm with a relatively spherical morphology. Ammonium perchlorate and nTiO2 mixes were prepared by adding three different nTiO2 mass fractionsof 1, 2, and 3 wt% to pure ammonium perchlorate. The results of thermogravimetry analysis revealed that the addition of nTiO2 to pure ammonium perchlorate resulted in a significant decline in its decomposition temperature. The most observed decrease in the decomposition temperature was 61 °C resulted from the addition of 3 wt.% nTiO2.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76460113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.26655/AJNANOMAT.2019.2.3.2
O. Amusan, H. Louis, Adejoke T. Hamzat, Amusan Oluwatobi Omotola, O. Oyebanji, Ayodeji T. Alagbe, T. Magu
In this research study, Achatina achatinashells was used as the source of raw material to produce calcium oxide which was used as a catalyst in the production of biodiesel. The main aim of this study was to investigate the effect of varying temperatures on the calcium oxide formed using A. achatina during the calcination process for their possible use as a heterogeneous catalyst in the production of biodiesel. The shells were first grinded and then calcinated at different temperatures ranging from 0 °C to 1000 °C. After calcination, the CaCO3 present in the A. achatinashell was converted to calcium oxide. The obtained calcium oxide was characterized using Fourier transform infrared spectroscopy (FT-IR). The asymmetric stretching of the CO32- (cm-1) absorption was not proportional with the increasing temperature as it was observed over the plane vibrational modes of CO32-(cm-1). Also, the O-Hstretching band (cm-1) at 100 °C and 800 °C had similar absorption values. Pearson correlation revealed both negative and positive relationship between the absorption rate and the temperature, disclosed a significant difference at pA. achatina shell is a suitable catalyst in the production of Biodiesel because it is readily available and has no adverse effect on the environment.
{"title":"Synthesis and characterization of CaO catalyst obtained from achatina achatina and its application in biodiesel production","authors":"O. Amusan, H. Louis, Adejoke T. Hamzat, Amusan Oluwatobi Omotola, O. Oyebanji, Ayodeji T. Alagbe, T. Magu","doi":"10.26655/AJNANOMAT.2019.2.3.2","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.2","url":null,"abstract":"In this research study, Achatina achatinashells was used as the source of raw material to produce calcium oxide which was used as a catalyst in the production of biodiesel. The main aim of this study was to investigate the effect of varying temperatures on the calcium oxide formed using A. achatina during the calcination process for their possible use as a heterogeneous catalyst in the production of biodiesel. The shells were first grinded and then calcinated at different temperatures ranging from 0 °C to 1000 °C. After calcination, the CaCO3 present in the A. achatinashell was converted to calcium oxide. The obtained calcium oxide was characterized using Fourier transform infrared spectroscopy (FT-IR). The asymmetric stretching of the CO32- (cm-1) absorption was not proportional with the increasing temperature as it was observed over the plane vibrational modes of CO32-(cm-1). Also, the O-Hstretching band (cm-1) at 100 °C and 800 °C had similar absorption values. Pearson correlation revealed both negative and positive relationship between the absorption rate and the temperature, disclosed a significant difference at pA. achatina shell is a suitable catalyst in the production of Biodiesel because it is readily available and has no adverse effect on the environment.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77497228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.26655/AJNANOMAT.2019.2.3.5
V. Nayagam, K. Palanisamy, Dons Thiraviadoss
The medicinal plant residue obtained to synthesis AgNPs is the thrust area of research today. The present research work emphasis on the AgNPs synthesized from a medicinal plant residue Artocarpus altilis whose secondary metabolites bear responsible for the confined size of the AgNPs. Further, the AgNPs were analyzed for Physico-chemical analysis, where FT-IR Peak value gives the functional groups of A. altilis. FESEM analyses show surface morphology with 44 nm. EDAX analyses of show metal precursor involved in the process. XRD patterns show the crystalline structure. The AgNPs was analysised for the antibacterial assay against five human pathogens. Finally, cyto-toxic activity of AgNPs was analyzed with two human cancer cell lines namely MCF 7 lung cancer cell line and A549 breast cancer cell line. Hence, the novel and eco-friendly AgNPs are safe with its biocompatibility which becomes a promising agent in the biomedical precisely.
{"title":"Cyto-toxicity and oligodynamic effect of bio-synthesized silver nanoparticles from plant residue of Artocarpus altilis and its spectroscopic analysis","authors":"V. Nayagam, K. Palanisamy, Dons Thiraviadoss","doi":"10.26655/AJNANOMAT.2019.2.3.5","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.5","url":null,"abstract":"The medicinal plant residue obtained to synthesis AgNPs is the thrust area of research today. The present research work emphasis on the AgNPs synthesized from a medicinal plant residue Artocarpus altilis whose secondary metabolites bear responsible for the confined size of the AgNPs. Further, the AgNPs were analyzed for Physico-chemical analysis, where FT-IR Peak value gives the functional groups of A. altilis. FESEM analyses show surface morphology with 44 nm. EDAX analyses of show metal precursor involved in the process. XRD patterns show the crystalline structure. The AgNPs was analysised for the antibacterial assay against five human pathogens. Finally, cyto-toxic activity of AgNPs was analyzed with two human cancer cell lines namely MCF 7 lung cancer cell line and A549 breast cancer cell line. Hence, the novel and eco-friendly AgNPs are safe with its biocompatibility which becomes a promising agent in the biomedical precisely.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"97 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81620174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.26655/AJNANOMAT.2019.2.3.8
N. Raghavendra
This research article explores the results of the ion-solvent interaction with the aid of electrical conductivity law of benzoic acid in triple distilled water and different amounts of methanol at 293 K, 303 K, 313 K, and 323 K. The specific conductance obtained from the conductivity meter was examined using Shedlovsky and Kraus-Bray plots. The limiting molar conductance ) values obtained using the Shedlovsky and Kraus-Bray models. values obtained from theShedlovsky and Kraus-Bray models were found to be in good agreement with each other. The association constant (Ka) values obtained from the Shedlovsky plots, whereas dissociation constant (Kd) values obtained from the Kraus-Bray plots. The thermodynamic parameters such as activation energy (Ea), free energy of adsorption (∆Ga), adsorption enthalpy (∆Ha) and adsorption entropy (∆Sa) values are evaluated in order to study the nature of ion-solvent interaction. The negative ∆Ga values showed the spontaneous ion-pair association process
{"title":"Conductometric study on the benzoic acid in water+methanol systems at different solution temperatures","authors":"N. Raghavendra","doi":"10.26655/AJNANOMAT.2019.2.3.8","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.8","url":null,"abstract":"This research article explores the results of the ion-solvent interaction with the aid of electrical conductivity law of benzoic acid in triple distilled water and different amounts of methanol at 293 K, 303 K, 313 K, and 323 K. The specific conductance obtained from the conductivity meter was examined using Shedlovsky and Kraus-Bray plots. The limiting molar conductance ) values obtained using the Shedlovsky and Kraus-Bray models. values obtained from theShedlovsky and Kraus-Bray models were found to be in good agreement with each other. The association constant (Ka) values obtained from the Shedlovsky plots, whereas dissociation constant (Kd) values obtained from the Kraus-Bray plots. The thermodynamic parameters such as activation energy (Ea), free energy of adsorption (∆Ga), adsorption enthalpy (∆Ha) and adsorption entropy (∆Sa) values are evaluated in order to study the nature of ion-solvent interaction. The negative ∆Ga values showed the spontaneous ion-pair association process","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90754707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.26655/AJNANOMAT.2019.2.3.6
N. Madhav, Bhavana Singh
The aim of the study was to prepare and characterize the nanosize drug loaded bio-flexi films using the novel bioexcipient isolated from the fresh leaves of the piper betle (bioexcipient P) and to explore the potentiality of the lip skin as a novel transvermillion drug delivery system. The bioexcipient prepared using a simplified economical process and was subjected to various physiochemical evaluations along with the spectral analysis including UV, FT-IR, SEM, Mass and 1H NMR. The nanosized bioflexi film formulated with the novel bioexcipient was screened for its functional properties, such as including filmability. Nanosized olanzapine loaded bioflexi films were formulated by using bioexcipient P as a film former and dextrose as a flexicizer. The formulated nanosized bioflexi films were subjected to various tests such as evaluating the, thickness, folding endurance, swelling index and in vitro release. The size of the nanoparticle was found to be 100 nm. The release of the nanosized olanzapine was maintained over 48 h, which was confirmed in in vitro release experiment. The results revealed that this biopolymer had a promising filmability and bioadhesivity. The formulated nanosized bioflexi films are feasible for delivering the olanzapine by transvermillion administration and for drugs that undergo first-pass metabolism.
本研究的目的是利用从番贝鲜叶中分离的新型生物赋形剂(生物赋形剂P)制备和表征纳米级载药生物弹性膜,并探索唇皮作为一种新型横向给药系统的潜力。该生物赋形剂采用简化的经济工艺制备,并进行了各种理化评价以及光谱分析,包括UV, FT-IR, SEM, Mass和1H NMR。用该新型生物赋形剂配制的纳米生物弹性膜对其功能特性进行了筛选,包括成膜性。以生物赋形剂P为成膜剂,葡萄糖为柔韧剂,制备了负载奥氮平的纳米生物柔韧膜。对制备的纳米生物纤维薄膜进行了厚度、折叠耐力、溶胀指数和体外释放度等测试。纳米粒子的大小为100纳米。体外释放实验证实,纳米奥氮平的释放维持在48 h以上。结果表明,该生物聚合物具有良好的成膜性和生物粘附性。所制备的纳米级生物弹性膜可用于奥氮平的横向给药和首过代谢药物。
{"title":"A smart spproach for delivering of nanosized olanzapine using piper betel biopolymer rate controlling flexi films for transvermillion delivery","authors":"N. Madhav, Bhavana Singh","doi":"10.26655/AJNANOMAT.2019.2.3.6","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.2.3.6","url":null,"abstract":"The aim of the study was to prepare and characterize the nanosize drug loaded bio-flexi films using the novel bioexcipient isolated from the fresh leaves of the piper betle (bioexcipient P) and to explore the potentiality of the lip skin as a novel transvermillion drug delivery system. The bioexcipient prepared using a simplified economical process and was subjected to various physiochemical evaluations along with the spectral analysis including UV, FT-IR, SEM, Mass and 1H NMR. The nanosized bioflexi film formulated with the novel bioexcipient was screened for its functional properties, such as including filmability. Nanosized olanzapine loaded bioflexi films were formulated by using bioexcipient P as a film former and dextrose as a flexicizer. The formulated nanosized bioflexi films were subjected to various tests such as evaluating the, thickness, folding endurance, swelling index and in vitro release. The size of the nanoparticle was found to be 100 nm. The release of the nanosized olanzapine was maintained over 48 h, which was confirmed in in vitro release experiment. The results revealed that this biopolymer had a promising filmability and bioadhesivity. The formulated nanosized bioflexi films are feasible for delivering the olanzapine by transvermillion administration and for drugs that undergo first-pass metabolism.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91187392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-16DOI: 10.26655/AJNANOMAT.2019.4.5
G. Allaedini, S. M. Tasirin
There has been an increase in carbon nanotubes (CNT) uses in different industries; however, its impact on the environment is still under a vast consideration and investigation. In this research study, the soil with staphylococcus has been exposed to pure TiO2 and TiO2/CNT. Also, the community of the staphylococcus was studied using the scanning electron microscopy (SEM). It has been observed that, the microbial community has decreased tremendously after the titanium oxide was doped with CNT. This study suggests that, the TiO2/CNTs can be a much more effective potential material for altering the microbial community compared with the TiO2. These findings could be useful for creating antibacterial agents for the soil using TiO2/CNTs nano hubrid .Further investigation of the TiO2/CNTs mechanism could prove useful for industrial uses or altering microbial communities.
{"title":"Comparison of TiO2 nanoparticles impact with TiO2/CNTs nano hybrid on microbial community of staphylococcus","authors":"G. Allaedini, S. M. Tasirin","doi":"10.26655/AJNANOMAT.2019.4.5","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.4.5","url":null,"abstract":"There has been an increase in carbon nanotubes (CNT) uses in different industries; however, its impact on the environment is still under a vast consideration and investigation. In this research study, the soil with staphylococcus has been exposed to pure TiO2 and TiO2/CNT. Also, the community of the staphylococcus was studied using the scanning electron microscopy (SEM). It has been observed that, the microbial community has decreased tremendously after the titanium oxide was doped with CNT. This study suggests that, the TiO2/CNTs can be a much more effective potential material for altering the microbial community compared with the TiO2. These findings could be useful for creating antibacterial agents for the soil using TiO2/CNTs nano hubrid .Further investigation of the TiO2/CNTs mechanism could prove useful for industrial uses or altering microbial communities.","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78378768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-04-09DOI: 10.26655/AJNANOMAT.2019.4.4
Mostafa Karami, Maryam Maghsoudi, Maria Merajoddin, A. Zare
In this research study, highly effective preparation of 4H-pyrano[2, 3-c]pyrazoles was discussed. The one-pot multi-component reaction between the malononitrile, arylaldehydes and 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one using protic acidic ionic liquid N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate ([TMBSED][TFA]2) under the mild and solvent-free conditions have furnished the title compounds with high yields in short times. Additionally, an attractive mechanism considering dual-functionality of the catalyst was proposed ([TMBSED][TFA]2 with acidic and basic sites).
{"title":"Highly effectual synthesis of 4H-pyrano [2, 3-c] pyrazoles using N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate as a dual-functional catalyst","authors":"Mostafa Karami, Maryam Maghsoudi, Maria Merajoddin, A. Zare","doi":"10.26655/AJNANOMAT.2019.4.4","DOIUrl":"https://doi.org/10.26655/AJNANOMAT.2019.4.4","url":null,"abstract":"In this research study, highly effective preparation of 4H-pyrano[2, 3-c]pyrazoles was discussed. The one-pot multi-component reaction between the malononitrile, arylaldehydes and 3-methyl-1-phenyl-1H-pyrazol-5 (4H)-one using protic acidic ionic liquid N1, N1, N2, N2-tetramethyl-N1, N2-bis (sulfo) ethane-1, 2-diaminium trifluoroacetate ([TMBSED][TFA]2) under the mild and solvent-free conditions have furnished the title compounds with high yields in short times. Additionally, an attractive mechanism considering dual-functionality of the catalyst was proposed ([TMBSED][TFA]2 with acidic and basic sites).","PeriodicalId":8523,"journal":{"name":"Asian Journal of Nanoscience and Materials","volume":"51 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86168813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}