首页 > 最新文献

Atmospheric Chemistry and Physics最新文献

英文 中文
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations 德国农村地区的棕碳气溶胶:来源、化学性质和昼夜变化
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-26 DOI: 10.5194/egusphere-2024-1848
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, Thomas Leisner
Abstract. Brown carbon aerosol (BrC) is one major contributor to atmospheric air pollution in Europe, especially in winter. Therefore, we studied the chemical composition, diurnal variation, and sources of BrC from 17th February to 16th March at a rural location in southwest Germany. In total, 178 potential BrC molecules (including 7 nitro aromatic compounds, NACs) were identified in the particle phase comprising on average 63 ± 32 ng m−3, and 31 potential BrC (including 4 NACs) molecules were identified in the gas phase contributing on average 6.2 ± 5.0 ng m−3 during the whole campaign. The 178 potential BrC molecules only accounted for 2.3 ± 1.5 % of the total organic mass, but can explain 11 ± 11 % of the total BrC absorption at 370 nm, assuming an average mass absorption coefficient at 370 nm (MAC370) of 9.5 m2 g−1. A few BrC molecules dominated the total BrC absorption. In addition, diurnal variations show that gas phase BrC was higher at daytime and lower at night. It was mainly controlled by secondary formation (e.g. photooxidation) and particle-to-gas partitioning. Correspondingly, the particle phase BrC was lower at daytime and higher at nighttime. Secondary formation dominates the particle-phase BrC with 61 ± 21 %, while 39 ± 21 % originated from biomass burning. Furthermore, the particle-phase BrC showed decreasing light absorption due to photochemical aging. This study extends the current understanding of real-time behaviors of brown carbon aerosol in the gas and particle phase at a location characteristic for the central Europe.
摘要棕碳气溶胶(BrC)是造成欧洲大气污染的主要因素之一,尤其是在冬季。因此,我们于 2 月 17 日至 3 月 16 日在德国西南部的一个农村地区研究了褐碳气溶胶的化学成分、昼夜变化和来源。在整个研究过程中,我们总共在颗粒相中发现了 178 个潜在的溴化碳分子(包括 7 个硝基芳香族化合物),平均含量为 63 ± 32 纳克/立方米;在气相中发现了 31 个潜在的溴化碳分子(包括 4 个硝基芳香族化合物),平均含量为 6.2 ± 5.0 纳克/立方米。这 178 个潜在的 BrC 分子仅占有机物总质量的 2.3 ± 1.5%,但可以解释 370 纳米波长处 BrC 吸收总量的 11 ± 11%(假设 370 纳米波长处的平均质量吸收系数 (MAC370) 为 9.5 m2 g-1)。少数 BrC 分子主导了 BrC 的总吸收。此外,昼夜变化表明气相 BrC 在白天较高,而在夜间较低。它主要受二次形成(如光氧化)和颗粒与气体之间的分配控制。相应地,颗粒相的 BrC 在白天较低,在夜间较高。二次形成在颗粒相 BrC 中占主导地位,为 61 ± 21%,而 39 ± 21% 来自生物质燃烧。此外,由于光化学老化,颗粒相 BrC 的光吸收率不断下降。这项研究扩展了目前对欧洲中部某地气相和颗粒相褐碳气溶胶实时行为的了解。
{"title":"Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations","authors":"Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, Thomas Leisner","doi":"10.5194/egusphere-2024-1848","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1848","url":null,"abstract":"<strong>Abstract.</strong> Brown carbon aerosol (BrC) is one major contributor to atmospheric air pollution in Europe, especially in winter. Therefore, we studied the chemical composition, diurnal variation, and sources of BrC from 17<sup>th</sup> February to 16<sup>th</sup> March at a rural location in southwest Germany. In total, 178 potential BrC molecules (including 7 nitro aromatic compounds, NACs) were identified in the particle phase comprising on average 63 ± 32 ng m<sup>−3</sup>, and 31 potential BrC (including 4 NACs) molecules were identified in the gas phase contributing on average 6.2 ± 5.0 ng m<sup>−3</sup> during the whole campaign. The 178 potential BrC molecules only accounted for 2.3 ± 1.5 % of the total organic mass, but can explain 11 ± 11 % of the total BrC absorption at 370 nm, assuming an average mass absorption coefficient at 370 nm (MAC<sub>370</sub>) of 9.5 m<sup>2</sup> g<sup>−1</sup>. A few BrC molecules dominated the total BrC absorption. In addition, diurnal variations show that gas phase BrC was higher at daytime and lower at night. It was mainly controlled by secondary formation (e.g. photooxidation) and particle-to-gas partitioning. Correspondingly, the particle phase BrC was lower at daytime and higher at nighttime. Secondary formation dominates the particle-phase BrC with 61 ± 21 %, while 39 ± 21 % originated from biomass burning. Furthermore, the particle-phase BrC showed decreasing light absorption due to photochemical aging. This study extends the current understanding of real-time behaviors of brown carbon aerosol in the gas and particle phase at a location characteristic for the central Europe.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations 通过长期大气观测揭示亚洲东部氢氟碳化合物(HFC)排放明显加速的情况
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-26 DOI: 10.5194/acp-24-7309-2024
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, Sunyoung Park
Abstract. Hydrofluorocarbons (HFCs) are powerful anthropogenic greenhouse gases (GHGs) with high global-warming potentials (GWPs). They have been widely used as refrigerants, insulation foam-blowing agents, aerosol propellants, and fire suppression agents. Since the mid-1990s, emissions of HFCs have been increasing rapidly as they are used in many applications to replace ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) whose consumption and production have been phased out under the Montreal Protocol (MP). Due to the high GWP of HFCs, the Kigali Amendment to the MP requires the phasedown of production and consumption of HFCs to gradually achieve an 80 %–85 % reduction by 2047, starting in 2019 for non-Article 5 (developed) countries with a 10 % reduction against each defined baseline and later schedules for Article 5 (developing) countries. In this study, we have examined long-term high-precision measurements of atmospheric abundances of five major HFCs (HFC-134a, HFC-143a, HFC-32, HFC-125, and HFC-152a) at Gosan station, Jeju Island, South Korea, from 2008 to 2020. Background abundances of HFCs gradually increased, and the inflow of polluted air masses with elevated abundances from surrounding source regions were detected over the entire period. From these pollution events, we inferred regional and country-specific HFC emission estimates using two independent Lagrangian particle dispersion models and Bayesian inversion frameworks (FLEXPART-FLEXINVERT+ and NAME-InTEM). The spatial distribution of the derived “top-down” (measurement based) emissions for all HFCs shows large fluxes from megacities and industrial areas in the region. Our most important finding is that HFC emissions in eastern China and Japan have sharply increased from 2016 to 2018. The contribution of East Asian HFC emissions to the global total increased from 9 % (2008–2014) to 13 % (2016–2020). In particular, HFC emissions in Japan (Annex I country) rose rapidly from 2016 onward, with accumulated total inferred HFC emissions being ∼ 114 Gg yr−1, which is ∼ 76 Gg yr−1 higher for 2016–2020 than the “bottom-up” (i.e., based on activity data and emission factors) emissions of ∼ 38 Gg yr−1 reported to the United Nations Framework Convention on Climate Change (UNFCCC). This is likely related to the increase in domestic demand in Japan for refrigerants and air-conditioning-system-related products and incomplete accounting. A downward trend of HFC emissions that started in 2019 reflects the effectiveness of the F-gas policy in Japan. Eastern China and South Korea, though not obligated to report to the UNFCCC, voluntarily reported emissions, which also show differences between top-down and bottom-up emission estimates, demonstrating the need for atmospheric measurements, comprehensive data analysis, and accurate reporting for precise emission management. Further, the proportional contribution of each country's CO2-equivalent HFC emissions has changed over tim
摘要氢氟碳化物(HFCs)是一种强大的人为温室气体(GHGs),具有很高的全球升温潜能值(GWPs)。它们被广泛用作制冷剂、绝缘泡沫发泡剂、气溶胶推进剂和灭火剂。自 20 世纪 90 年代中期以来,HFCs 的排放量迅速增加,因为在许多应用中,HFCs 被用来替代消耗臭氧层的氯氟化碳(CFCs)和氯氟烃(HCFCs),而根据《蒙特利尔议定书》(MP),氯氟化碳和氯氟烃的消费和生产已被淘汰。由于氢氟碳化物的全球升温潜能值较高,《蒙特利尔议定书》的《基加利修正案》要求逐步减少氢氟碳化物的生产和消费,到 2047 年实现 80%-85% 的减排量,非第 5 条国家(发达国家)从 2019 年开始,在每个确定的基准线上减少 10%,第 5 条国家(发展中国家)的时间表则要晚一些。在本研究中,我们研究了 2008 年至 2020 年期间在韩国济州岛高山站对大气中五种主要 HFCs(HFC-134a、HFC-143a、HFC-32、HFC-125 和 HFC-152a)丰度的长期高精度测量结果。在整个期间,HFCs 的本底丰度逐渐升高,并检测到来自周围污染源区域的污染气团丰度升高。根据这些污染事件,我们利用两个独立的拉格朗日粒子扩散模型和贝叶斯反演框架(FLEXPART-FLEXINVERT+ 和 NAME-InTEM)推断出了区域和国家特定的 HFC 排放估计值。得出的所有 HFCs 的 "自上而下"(基于测量)排放量的空间分布显示,该地区的大城市和工业区有大量 HFCs 排放。我们最重要的发现是,从 2016 年到 2018 年,中国东部和日本的 HFC 排放量急剧增加。东亚 HFC 排放量占全球总量的比例从 9%(2008-2014 年)增至 13%(2016-2020 年)。特别是日本(附件一国家)的 HFC 排放量从 2016 年起迅速上升,累计推断的 HFC 排放总量为 1.14 亿吨/年,比向《联合国气候变化框架公约》(UNFCCC)报告的 "自下而上"(即基于活动数据和排放因子)排放量 3.8 亿吨/年高出 7.6 亿吨/年。这可能与日本国内对制冷剂和空调系统相关产品的需求增加以及核算不完整有关。HFC 排放量从 2019 年开始呈下降趋势,这反映了日本含氟温室气体政策的有效性。中国东部和韩国虽然没有义务向《联合国气候变化框架公约》报告,但自愿报告了排放量,这也显示了自上而下和自下而上的排放量估算之间的差异,表明需要进行大气测量、全面的数据分析和准确的报告,以实现精确的排放管理。此外,随着时间的推移,各国二氧化碳当量 HFC 排放量的比例也发生了变化,HFC-134a 在减少,而 HFC-125 在增加。这表明各国导致全球变暖的主要 HFC 物质发生了转变。
{"title":"Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations","authors":"Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, Sunyoung Park","doi":"10.5194/acp-24-7309-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7309-2024","url":null,"abstract":"Abstract. Hydrofluorocarbons (HFCs) are powerful anthropogenic greenhouse gases (GHGs) with high global-warming potentials (GWPs). They have been widely used as refrigerants, insulation foam-blowing agents, aerosol propellants, and fire suppression agents. Since the mid-1990s, emissions of HFCs have been increasing rapidly as they are used in many applications to replace ozone-depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) whose consumption and production have been phased out under the Montreal Protocol (MP). Due to the high GWP of HFCs, the Kigali Amendment to the MP requires the phasedown of production and consumption of HFCs to gradually achieve an 80 %–85 % reduction by 2047, starting in 2019 for non-Article 5 (developed) countries with a 10 % reduction against each defined baseline and later schedules for Article 5 (developing) countries. In this study, we have examined long-term high-precision measurements of atmospheric abundances of five major HFCs (HFC-134a, HFC-143a, HFC-32, HFC-125, and HFC-152a) at Gosan station, Jeju Island, South Korea, from 2008 to 2020. Background abundances of HFCs gradually increased, and the inflow of polluted air masses with elevated abundances from surrounding source regions were detected over the entire period. From these pollution events, we inferred regional and country-specific HFC emission estimates using two independent Lagrangian particle dispersion models and Bayesian inversion frameworks (FLEXPART-FLEXINVERT+ and NAME-InTEM). The spatial distribution of the derived “top-down” (measurement based) emissions for all HFCs shows large fluxes from megacities and industrial areas in the region. Our most important finding is that HFC emissions in eastern China and Japan have sharply increased from 2016 to 2018. The contribution of East Asian HFC emissions to the global total increased from 9 % (2008–2014) to 13 % (2016–2020). In particular, HFC emissions in Japan (Annex I country) rose rapidly from 2016 onward, with accumulated total inferred HFC emissions being ∼ 114 Gg yr−1, which is ∼ 76 Gg yr−1 higher for 2016–2020 than the “bottom-up” (i.e., based on activity data and emission factors) emissions of ∼ 38 Gg yr−1 reported to the United Nations Framework Convention on Climate Change (UNFCCC). This is likely related to the increase in domestic demand in Japan for refrigerants and air-conditioning-system-related products and incomplete accounting. A downward trend of HFC emissions that started in 2019 reflects the effectiveness of the F-gas policy in Japan. Eastern China and South Korea, though not obligated to report to the UNFCCC, voluntarily reported emissions, which also show differences between top-down and bottom-up emission estimates, demonstrating the need for atmospheric measurements, comprehensive data analysis, and accurate reporting for precise emission management. Further, the proportional contribution of each country's CO2-equivalent HFC emissions has changed over tim","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10 揭示 PM10 氧化潜能源分配的最佳回归模型
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-26 DOI: 10.5194/acp-24-7261-2024
Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, Gaëlle Uzu
Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10 sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares, Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on 1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model selection according to the datasets. Recommendations for the selection of the most accurate model are provided, encompassing considerations such as multicollinearity and homoscedasticity.
摘要颗粒物(PM)在体内产生活性氧(ROS)导致氧化应激的能力被认为是吸入颗粒物影响健康的主要途径。可吸入颗粒物产生的外源性 ROS 可通过细胞氧化电位(OP)测量来评估,以此作为肺部氧化应激诱导的替代物。在这里,我们研究了不同类型环境中 PM10 来源的 OP 分布的 OP 分摊方法的重要性。从受体模型(如 EPA 正矩阵因式分解(EPA PMF))得出的 PM10 来源与表达 PM10 来源与通过抗坏血酸(OPAA)和二硫苏糖醇测定法(OPDTT)测量的 PM10 OP 之间关系的回归模型相结合。这些关系通过八种回归技术进行了比较:普通最小二乘法、加权最小二乘法、正最小二乘法、Ridge、Lasso、广义线性模型、随机森林和多层感知器。这些模型对法国六个不同类型地点的一年 PM10 样品和化学分析进行了评估,以评估 PM10 源变异性对 PM10 OP 分配可能产生的影响。不同模型的PM10特定源OPDTT和OPAA以及样本外分摊的准确性差异很大,这突出了根据数据集选择模型的重要性。提供了选择最准确模型的建议,包括多共线性和同方差等考虑因素。
{"title":"Unveiling the optimal regression model for source apportionment of the oxidative potential of PM10","authors":"Vy Dinh Ngoc Thuy, Jean-Luc Jaffrezo, Ian Hough, Pamela A. Dominutti, Guillaume Salque Moreton, Grégory Gille, Florie Francony, Arabelle Patron-Anquez, Olivier Favez, Gaëlle Uzu","doi":"10.5194/acp-24-7261-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7261-2024","url":null,"abstract":"Abstract. The capacity of particulate matter (PM) to generate reactive oxygen species (ROS) in vivo leading to oxidative stress is thought to be a main pathway in the health effects of PM inhalation. Exogenous ROS from PM can be assessed by acellular oxidative potential (OP) measurements as a proxy of the induction of oxidative stress in the lungs. Here, we investigate the importance of OP apportionment methods for OP distribution by PM10 sources in different types of environments. PM10 sources derived from receptor models (e.g., EPA positive matrix factorization (EPA PMF)) are coupled with regression models expressing the associations between PM10 sources and PM10 OP measured by ascorbic acid (OPAA) and dithiothreitol assay (OPDTT). These relationships are compared for eight regression techniques: ordinary least squares, weighted least squares, positive least squares, Ridge, Lasso, generalized linear model, random forest, and multilayer perceptron. The models are evaluated on 1 year of PM10 samples and chemical analyses at each of six sites of different typologies in France to assess the possible impact of PM source variability on PM10 OP apportionment. PM10 source-specific OPDTT and OPAA and out-of-sample apportionment accuracy vary substantially by model, highlighting the importance of model selection according to the datasets. Recommendations for the selection of the most accurate model are provided, encompassing considerations such as multicollinearity and homoscedasticity.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty in simulated brightness temperature due to sensitivity to atmospheric gas spectroscopic parameters from the centimeter- to submillimeter-wave range 厘米波至亚毫米波范围内大气气体光谱参数敏感性导致的模拟亮度温度的不确定性
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-26 DOI: 10.5194/acp-24-7283-2024
Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, Filomena Romano
Abstract. Atmospheric radiative transfer models are extensively used in Earth observation to simulate radiative processes occurring in the atmosphere and to provide both upwelling and downwelling synthetic brightness temperatures for ground-based, airborne, and satellite radiometric sensors. For a meaningful comparison between simulated and observed radiances, it is crucial to characterize the uncertainty in such models. The purpose of this work is to quantify the uncertainty in radiative transfer models due to uncertainty in the associated spectroscopic parameters and to compute simulated brightness temperature uncertainties for millimeter- and submillimeter-wave channels of downward-looking satellite radiometric sensors (MicroWave Imager, MWI; Ice Cloud Imager, ICI; MicroWave Sounder, MWS; and Advanced Technology Microwave Sounder, ATMS) as well as upward-looking airborne radiometers (International Submillimetre Airborne Radiometer, ISMAR, and Microwave Airborne Radiometer Scanning System, MARSS). The approach adopted here is firstly to study the sensitivity of brightness temperature calculations to each spectroscopic parameter separately, then to identify the dominant parameters and investigate their uncertainty covariance, and finally to compute the total brightness temperature uncertainty due to the full uncertainty covariance matrix for the identified set of relevant spectroscopic parameters. The approach is applied to a recent version of the Millimeter-wave Propagation Model, taking into account water vapor, oxygen, and ozone spectroscopic parameters, though the approach is general and can be applied to any radiative transfer code. A set of 135 spectroscopic parameters were identified as dominant for the uncertainty in simulated brightness temperatures (26 for water vapor, 109 for oxygen, none for ozone). The uncertainty in simulated brightness temperatures is computed for six climatology conditions (ranging from sub-Arctic winter to tropical) and all instrument channels. Uncertainty is found to be up to few kelvins [K] in the millimeter-wave range, whereas it is considerably lower in the submillimeter-wave range (less than 1 K).
摘要。大气辐射传输模型被广泛用于地球观测,以模拟大气中发生的辐射过程,并为地基、机载和卫星辐射测量传感器提供上涌和下沉合成亮度温度。要对模拟辐射和观测辐射进行有意义的比较,就必须确定这些模型的不确定性。这项工作的目的是量化由于相关光谱参数的不确定性而导致的辐射传递模型的不确定性,并计算下视卫星辐射测量传感器毫米波和亚毫米波通道(微波成像仪,MWI;冰云成像仪(ICI)、微波探测仪(MWS)和先进技术微波探测仪(ATMS))以及上视机载辐射计(国际亚毫米波机载辐射计(ISMAR)和微波机载辐射计扫描系统(MARSS))。这里采用的方法首先是分别研究亮度温度计算对每个光谱参数的敏感性,然后确定主要参数并研究它们的不确定性协方差,最后计算由于已确定的相关光谱参数集的全不确定性协方差矩阵而产生的总亮度温度不确定性。该方法应用于最新版本的毫米波传播模型,考虑到了水蒸气、氧气和臭氧光谱参数,但该方法具有通用性,可应用于任何辐射传递代码。一组 135 个光谱参数被确定为模拟亮度温度不确定性的主要因素(水蒸气 26 个,氧气 109 个,臭氧 0 个)。计算了六种气候条件(从亚北极冬季到热带)和所有仪器通道下模拟亮度温度的不确定性。发现毫米波范围内的不确定性高达几开尔文[K],而亚毫米波范围内的不确定性要低得多(小于 1 K)。
{"title":"Uncertainty in simulated brightness temperature due to sensitivity to atmospheric gas spectroscopic parameters from the centimeter- to submillimeter-wave range","authors":"Donatello Gallucci, Domenico Cimini, Emma Turner, Stuart Fox, Philip W. Rosenkranz, Mikhail Y. Tretyakov, Vinia Mattioli, Salvatore Larosa, Filomena Romano","doi":"10.5194/acp-24-7283-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7283-2024","url":null,"abstract":"Abstract. Atmospheric radiative transfer models are extensively used in Earth observation to simulate radiative processes occurring in the atmosphere and to provide both upwelling and downwelling synthetic brightness temperatures for ground-based, airborne, and satellite radiometric sensors. For a meaningful comparison between simulated and observed radiances, it is crucial to characterize the uncertainty in such models. The purpose of this work is to quantify the uncertainty in radiative transfer models due to uncertainty in the associated spectroscopic parameters and to compute simulated brightness temperature uncertainties for millimeter- and submillimeter-wave channels of downward-looking satellite radiometric sensors (MicroWave Imager, MWI; Ice Cloud Imager, ICI; MicroWave Sounder, MWS; and Advanced Technology Microwave Sounder, ATMS) as well as upward-looking airborne radiometers (International Submillimetre Airborne Radiometer, ISMAR, and Microwave Airborne Radiometer Scanning System, MARSS). The approach adopted here is firstly to study the sensitivity of brightness temperature calculations to each spectroscopic parameter separately, then to identify the dominant parameters and investigate their uncertainty covariance, and finally to compute the total brightness temperature uncertainty due to the full uncertainty covariance matrix for the identified set of relevant spectroscopic parameters. The approach is applied to a recent version of the Millimeter-wave Propagation Model, taking into account water vapor, oxygen, and ozone spectroscopic parameters, though the approach is general and can be applied to any radiative transfer code. A set of 135 spectroscopic parameters were identified as dominant for the uncertainty in simulated brightness temperatures (26 for water vapor, 109 for oxygen, none for ozone). The uncertainty in simulated brightness temperatures is computed for six climatology conditions (ranging from sub-Arctic winter to tropical) and all instrument channels. Uncertainty is found to be up to few kelvins [K] in the millimeter-wave range, whereas it is considerably lower in the submillimeter-wave range (less than 1 K).","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere 对城市大气中可培养气载微生物的外代谢组学探索
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-25 DOI: 10.5194/egusphere-2024-1880
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, Pingqing Fu
Abstract. The interactions of metabolically active atmospheric microorganisms with cloud organic matter can alter the atmospheric carbon cycle. Upon deposition, atmospheric microorganisms can influence microbial communities in surface Earth systems. However, the metabolic activities of cultivable atmospheric microorganisms in settled habitats remain less understood. Here, we investigated exometabolites produced by typical bacterial and fungal species isolated from the urban atmosphere to elucidate their biogeochemical roles. Molecular compositions of exometabolites were analyzed using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. Annotation through the Kyoto Encyclopedia of Genes and Genomes database helped identify metabolic processes. Results showed that bacterial and fungal strains produce exometabolites with lower H/C and higher O/C ratios than consumed and resistant compounds. CHON compounds constituted over 50 % of the identified formulas of exometabolites. Bacterial exometabolites contained more abundant CHONS compounds (25.2 %), while fungal exometabolites were rich in CHO compounds (31.7 %). These microbial exometabolites predominantly comprised aliphatic/peptide-like and carboxyl-rich alicyclic molecules (CRAM-like). Significant variations in metabolites were observed among different strains. Bacteria showed a performance for amino acid synthesis, while fungi were more active in transcription and expression processes. Lipid metabolism, amino acid metabolism, and carbohydrate metabolism varied widely among bacterial strains, while fungi exhibited marked differences in carbohydrate metabolism and secondary metabolism. This comprehensive examination of metabolite characteristics at the molecular level for typical culturable airborne microorganisms enhances our understanding of their potential metabolic activities at air-land/water interfaces. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
摘要代谢活跃的大气微生物与云层有机物的相互作用可改变大气碳循环。大气微生物在沉积后会影响地球表面系统中的微生物群落。然而,人们对定居栖息地中可培养的大气微生物的代谢活动仍然知之甚少。在这里,我们研究了从城市大气中分离出来的典型细菌和真菌物种产生的外代谢产物,以阐明它们的生物地球化学作用。我们使用超高分辨率傅立叶变换离子回旋共振质谱分析了外代谢物的分子组成。通过京都基因和基因组百科全书数据库进行注释,有助于确定代谢过程。结果表明,细菌和真菌菌株产生的外代谢物与消耗性和抗性化合物相比,H/C 比值较低,O/C 比值较高。在已鉴定的外代谢物配方中,CHON化合物占了50%以上。细菌外代谢物含有更多的 CHONS 化合物(25.2%),而真菌外代谢物则富含 CHO 化合物(31.7%)。这些微生物外代谢物主要包括脂肪族/肽类和富含羧基的脂环族分子(CRAM-like)。不同菌株的代谢物存在显著差异。细菌在氨基酸合成方面表现突出,而真菌在转录和表达过程中更为活跃。细菌菌株之间的脂质代谢、氨基酸代谢和碳水化合物代谢差异很大,而真菌在碳水化合物代谢和次级代谢方面表现出明显差异。对典型的可培养空气传播微生物的代谢物特征进行分子水平的全面研究,加深了我们对它们在空气-陆地-水界面的潜在代谢活动的了解。这些见解对于评估大气微生物沉积后的生物地球化学影响至关重要。
{"title":"Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere","authors":"Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, Pingqing Fu","doi":"10.5194/egusphere-2024-1880","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1880","url":null,"abstract":"<strong>Abstract.</strong> The interactions of metabolically active atmospheric microorganisms with cloud organic matter can alter the atmospheric carbon cycle. Upon deposition, atmospheric microorganisms can influence microbial communities in surface Earth systems. However, the metabolic activities of cultivable atmospheric microorganisms in settled habitats remain less understood. Here, we investigated exometabolites produced by typical bacterial and fungal species isolated from the urban atmosphere to elucidate their biogeochemical roles. Molecular compositions of exometabolites were analyzed using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry. Annotation through the Kyoto Encyclopedia of Genes and Genomes database helped identify metabolic processes. Results showed that bacterial and fungal strains produce exometabolites with lower H/C and higher O/C ratios than consumed and resistant compounds. CHON compounds constituted over 50 % of the identified formulas of exometabolites. Bacterial exometabolites contained more abundant CHONS compounds (25.2 %), while fungal exometabolites were rich in CHO compounds (31.7 %). These microbial exometabolites predominantly comprised aliphatic/peptide-like and carboxyl-rich alicyclic molecules (CRAM-like). Significant variations in metabolites were observed among different strains. Bacteria showed a performance for amino acid synthesis, while fungi were more active in transcription and expression processes. Lipid metabolism, amino acid metabolism, and carbohydrate metabolism varied widely among bacterial strains, while fungi exhibited marked differences in carbohydrate metabolism and secondary metabolism. This comprehensive examination of metabolite characteristics at the molecular level for typical culturable airborne microorganisms enhances our understanding of their potential metabolic activities at air-land/water interfaces. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases 亚洲气溶胶对夏季季风的影响受区域降水偏差的强烈调节
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-25 DOI: 10.5194/acp-24-7227-2024
Zhen Liu, Massimo A. Bollasina, Laura J. Wilcox
Abstract. Reliable attribution of Asian summer monsoon variations to aerosol forcing is critical to reducing uncertainties in future projections of regional water availability, which is of utmost importance for risk management and adaptation planning in this densely populated region. Yet, simulating the monsoon remains a challenge for climate models that suffer from long-standing biases, undermining their reliability in attributing anthropogenically forced changes. We analyze a suite of climate model experiments to identify a link between model biases and monsoon responses to Asian aerosols and associated physical mechanisms, including the role of large-scale circulation changes. The aerosol impact on monsoon precipitation and circulation is strongly influenced by a model's ability to simulate the spatio-temporal variability in the climatological monsoon winds, clouds, and precipitation across Asia, which modulates the magnitude and efficacy of aerosol–cloud–precipitation interactions, an important component of the total aerosol response. There is a strong interplay between South Asia and East Asia monsoon precipitation biases and their relative predominance in driving the overall monsoon response. We found a striking contrast between the early- and late-summer aerosol-driven changes ascribable to opposite signs and seasonal evolution of the biases in the two regions. A realistic simulation of the evolution of the large-scale atmospheric circulation is crucial to realize the full extent of the aerosol impact over Asia. These findings provide important implications for better understanding and constraining the diversity and inconsistencies of model responses to aerosol changes over Asia in historical simulations and future projections.
摘要。将亚洲夏季季风的变化可靠地归因于气溶胶的作用,对于减少未来区域水供应预测的不确定性至关重要,而这对这一人口稠密地区的风险管理和适应规划至关重要。然而,模拟季风对于气候模型来说仍然是一个挑战,因为气候模型长期以来存在偏差,这削弱了它们归因于人为强迫变化的可靠性。我们分析了一系列气候模式实验,以确定模式偏差与季风对亚洲气溶胶的响应及相关物理机制之间的联系,包括大尺度环流变化的作用。气溶胶对季风降水和环流的影响深受模型模拟亚洲各地气候学季风风、云和降水时空变化能力的影响,这种能力会调节气溶胶-云-降水相互作用的程度和效果,而这是气溶胶总响应的一个重要组成部分。南亚和东亚季风降水偏差及其在驱动整体季风响应中的相对主导地位之间存在着强烈的相互作用。我们发现,气溶胶驱动的初夏和夏末变化之间形成了鲜明对比,这是因为这两个地区的偏差具有相反的符号和季节演变。大尺度大气环流演变的真实模拟对于全面了解气溶胶对亚洲的影响至关重要。这些发现对更好地理解和制约历史模拟和未来预测中模式对亚洲上空气溶胶变化的反应的多样性和不一致性具有重要意义。
{"title":"Impact of Asian aerosols on the summer monsoon strongly modulated by regional precipitation biases","authors":"Zhen Liu, Massimo A. Bollasina, Laura J. Wilcox","doi":"10.5194/acp-24-7227-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7227-2024","url":null,"abstract":"Abstract. Reliable attribution of Asian summer monsoon variations to aerosol forcing is critical to reducing uncertainties in future projections of regional water availability, which is of utmost importance for risk management and adaptation planning in this densely populated region. Yet, simulating the monsoon remains a challenge for climate models that suffer from long-standing biases, undermining their reliability in attributing anthropogenically forced changes. We analyze a suite of climate model experiments to identify a link between model biases and monsoon responses to Asian aerosols and associated physical mechanisms, including the role of large-scale circulation changes. The aerosol impact on monsoon precipitation and circulation is strongly influenced by a model's ability to simulate the spatio-temporal variability in the climatological monsoon winds, clouds, and precipitation across Asia, which modulates the magnitude and efficacy of aerosol–cloud–precipitation interactions, an important component of the total aerosol response. There is a strong interplay between South Asia and East Asia monsoon precipitation biases and their relative predominance in driving the overall monsoon response. We found a striking contrast between the early- and late-summer aerosol-driven changes ascribable to opposite signs and seasonal evolution of the biases in the two regions. A realistic simulation of the evolution of the large-scale atmospheric circulation is crucial to realize the full extent of the aerosol impact over Asia. These findings provide important implications for better understanding and constraining the diversity and inconsistencies of model responses to aerosol changes over Asia in historical simulations and future projections.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unheralded contributions of biogenic volatile organic compounds from urban greening to ozone pollution: a high-resolution modeling study 城市绿化产生的生物挥发性有机化合物对臭氧污染的贡献未被察觉:一项高分辨率模型研究
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-25 DOI: 10.5194/egusphere-2024-1163
Haofan Wang, Yuejin Li, Yiming Liu, Xiao Lu, Yang Zhang, Qi Fan, Tianhang Zhang, Chong Shen
Abstract. Urban Green Spaces (UGS) are widely advocated for mitigating urban atmospheric environment. However, this study reveals that it can exacerbate urban ozone (O3) levels under certain conditions, as demonstrated by a September 2017 study in Guangzhou, China. Utilizing the Weather Research and Forecasting Model with the Model of Emissions of Gases and Aerosols from Nature (WRF-MEGAN) and the Community Multiscale Air Quality (CMAQ) model with a high horizontal resolution (1 km), we assessed the impact of UGS-related biogenic volatile organic compound (BVOC) emissions on urban O3. Our findings indicate that UGS-BVOC emissions in Guangzhou amounted to 666.49 Gg, primarily from isoprene (ISOP) and terpenes (TERP). These emissions contribute ~30 % of urban ISOP concentrations and their incorporations to the model significantly reduce the underestimation against observations. The study shows improvements in simulation biases for NO2, from 7.01 µg/m3 to 6.03 µg/m3, and for O3, from 7.77 µg/m3 to -1.60 µg/m3. UGS-BVOC and UGS-LUCC (land use cover changes) integration in air quality models notably enhances surface monthly mean O3 predictions by 3.6–8.0 µg/m3 (+3.8–8.5 %) and contributes up to 18.7 µg/m3 (+10.0 %) to MDA8 O3 during O3 pollution episodes. Additionally, UGS-BVOC emissions alone increase the monthly mean O3 levels by 2.2–3.0 µg/m3 (+2.3–3.2 %) in urban areas and contribute up to 6.3 µg/m3 (+3.3 %) to MDA8 O3 levels during O3 pollution episodes. These impacts can extend to surrounding suburban and rural areas through regional transport, highlighting the need for selecting low-emission vegetation and refining vegetation classification in urban planning.
摘要城市绿地(UGS)被广泛提倡用于缓解城市大气环境。然而,本研究发现,在某些条件下,城市绿地会加剧城市臭氧(O3)水平,2017 年 9 月在中国广州进行的一项研究就证明了这一点。利用气象研究和预报模型与自然界气体和气溶胶排放模型(WRF-MEGAN)以及高水平分辨率(1 千米)的社区多尺度空气质量(CMAQ)模型,我们评估了与 UGS 相关的生物挥发性有机化合物(BVOC)排放对城市臭氧(O3)的影响。研究结果表明,广州的 UGS-BVOC 排放量为 666.49 千兆克,主要来自异戊二烯(ISOP)和萜烯(TERP)。这些排放物占城市 ISOP 浓度的约 30%,将其纳入模型可显著减少对观测数据的低估。研究显示,二氧化氮的模拟偏差从 7.01 µg/m3 降至 6.03 µg/m3,臭氧的模拟偏差从 7.77 µg/m3 降至 -1.60 µg/m3。将 UGS-BVOC 和 UGS-LUCC(土地利用覆盖变化)集成到空气质量模型中,可显著提高地表月平均 O3 预测值 3.6-8.0 µg/m3 (+3.8-8.5 %),并在 O3 污染事件期间对 MDA8 O3 的贡献高达 18.7 µg/m3 (+10.0 %)。此外,仅 UGS-BVOC 排放就会使城市地区的月平均 O3 水平增加 2.2-3.0 µg/m3 (+2.3-3.2 %),并在 O3 污染事件期间使 MDA8 的 O3 水平增加高达 6.3 µg/m3 (+3.3 %)。这些影响可通过区域运输扩展到周围的郊区和农村地区,这突出表明了在城市规划中选择低排放植被和完善植被分类的必要性。
{"title":"Unheralded contributions of biogenic volatile organic compounds from urban greening to ozone pollution: a high-resolution modeling study","authors":"Haofan Wang, Yuejin Li, Yiming Liu, Xiao Lu, Yang Zhang, Qi Fan, Tianhang Zhang, Chong Shen","doi":"10.5194/egusphere-2024-1163","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1163","url":null,"abstract":"<strong>Abstract.</strong> Urban Green Spaces (UGS) are widely advocated for mitigating urban atmospheric environment. However, this study reveals that it can exacerbate urban ozone (O<sub>3</sub>) levels under certain conditions, as demonstrated by a September 2017 study in Guangzhou, China. Utilizing the Weather Research and Forecasting Model with the Model of Emissions of Gases and Aerosols from Nature (WRF-MEGAN) and the Community Multiscale Air Quality (CMAQ) model with a high horizontal resolution (1 km), we assessed the impact of UGS-related biogenic volatile organic compound (BVOC) emissions on urban O<sub>3</sub>. Our findings indicate that UGS-BVOC emissions in Guangzhou amounted to 666.49 Gg, primarily from isoprene (ISOP) and terpenes (TERP). These emissions contribute ~30 % of urban ISOP concentrations and their incorporations to the model significantly reduce the underestimation against observations. The study shows improvements in simulation biases for NO<sub>2</sub>, from 7.01 µg/m<sup>3</sup> to 6.03 µg/m<sup>3</sup>, and for O<sub>3</sub>, from 7.77 µg/m<sup>3</sup> to -1.60 µg/m<sup>3</sup>. UGS-BVOC and UGS-LUCC (land use cover changes) integration in air quality models notably enhances surface monthly mean O<sub>3</sub> predictions by 3.6–8.0 µg/m<sup>3 </sup>(+3.8–8.5 %) and contributes up to 18.7 µg/m<sup>3 </sup>(+10.0 %) to MDA8 O<sub>3</sub> during O<sub>3</sub> pollution episodes. Additionally, UGS-BVOC emissions alone increase the monthly mean O<sub>3</sub> levels by 2.2–3.0 µg/m<sup>3 </sup>(+2.3–3.2 %) in urban areas and contribute up to 6.3 µg/m<sup>3 </sup>(+3.3 %) to MDA8 O<sub>3</sub> levels during O<sub>3</sub> pollution episodes. These impacts can extend to surrounding suburban and rural areas through regional transport, highlighting the need for selecting low-emission vegetation and refining vegetation classification in urban planning.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification and characterization of primary biological aerosol particles and bacteria aerosolized from Baltic seawater 波罗的海海水中初级生物气溶胶颗粒和气溶胶细菌的定量与定性
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-25 DOI: 10.5194/egusphere-2024-1851
Julika Zinke, Gabriel Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, Matthew Edward Salter
Abstract. Primary biological aerosol particles (PBAP) can influence climate and affect human health. To investigate the aerosolization of PBAP with sea spray aerosol (SSA), we conducted ship-based campaigns in the central Baltic Sea near Östergarnsholm in May and August 2021. Using a plunging jet sea spray simulation chamber filled with local seawater, we performed controlled chamber experiments to collect filters and measure aerosols. We determined the abundance of bacteria in the chamber air and seawater by staining and fluorescence microscopy, normalizing these values to sodium concentration to calculate enrichment factors. Our results showed that bacteria were enriched in the aerosol by 13 to 488 times compared to the underlying seawater, with no significant enrichment observed in the sea surface microlayer. Bacterial abundances obtained through microscopy were compared with estimates of fluorescent PBAP (fPBAP) using a single-particle fluorescence spectrometer. We estimated bacterial emission fluxes using two independent approaches: (1) applying the enrichment factors derived from this study with mass flux estimates from previous SSA parameterizations, and (2) using a scaling approach from a companion study. Both methods produced bacterial emission flux estimates that were in good agreement and on the same order of magnitude as previous studies, while fPBAP emission flux estimates were significantly lower. Furthermore, 16S rRNA sequencing identified the diversity of bacteria enriched in the nascent SSA compared to the underlying seawater.
摘要原生生物气溶胶粒子(PBAP)可影响气候和人类健康。为了研究初级生物气溶胶粒子(PBAP)与海雾气溶胶(SSA)的气溶胶化,我们于 2021 年 5 月和 8 月在波罗的海中部厄斯特加恩肖尔姆附近开展了船基活动。我们使用一个装满当地海水的柱塞式喷射海雾模拟舱,进行了受控舱实验,以收集过滤器并测量气溶胶。我们通过染色和荧光显微镜测定了舱内空气和海水中的细菌丰度,并将这些值与钠浓度进行归一化,以计算富集因子。结果表明,与底层海水相比,气溶胶中的细菌富集了 13 到 488 倍,而在海面微层中没有观察到明显的富集。通过显微镜获得的细菌丰度与使用单粒子荧光光谱仪估算的荧光 PBAP(fPBAP)进行了比较。我们使用两种独立的方法估算了细菌排放通量:(1) 将本研究得出的富集因子与先前 SSA 参数化估算的质量通量相结合;(2) 使用一项配套研究中的缩放方法。这两种方法得出的细菌排放通量估算值与之前的研究结果一致,且数量级相同,而 fPBAP 排放通量估算值则明显偏低。此外,16S rRNA 测序确定了与底层海水相比,新生 SSA 中富含的细菌多样性。
{"title":"Quantification and characterization of primary biological aerosol particles and bacteria aerosolized from Baltic seawater","authors":"Julika Zinke, Gabriel Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, Matthew Edward Salter","doi":"10.5194/egusphere-2024-1851","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1851","url":null,"abstract":"<strong>Abstract.</strong> Primary biological aerosol particles (PBAP) can influence climate and affect human health. To investigate the aerosolization of PBAP with sea spray aerosol (SSA), we conducted ship-based campaigns in the central Baltic Sea near Östergarnsholm in May and August 2021. Using a plunging jet sea spray simulation chamber filled with local seawater, we performed controlled chamber experiments to collect filters and measure aerosols. We determined the abundance of bacteria in the chamber air and seawater by staining and fluorescence microscopy, normalizing these values to sodium concentration to calculate enrichment factors. Our results showed that bacteria were enriched in the aerosol by 13 to 488 times compared to the underlying seawater, with no significant enrichment observed in the sea surface microlayer. Bacterial abundances obtained through microscopy were compared with estimates of fluorescent PBAP (fPBAP) using a single-particle fluorescence spectrometer. We estimated bacterial emission fluxes using two independent approaches: (1) applying the enrichment factors derived from this study with mass flux estimates from previous SSA parameterizations, and (2) using a scaling approach from a companion study. Both methods produced bacterial emission flux estimates that were in good agreement and on the same order of magnitude as previous studies, while fPBAP emission flux estimates were significantly lower. Furthermore, 16S rRNA sequencing identified the diversity of bacteria enriched in the nascent SSA compared to the underlying seawater.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2 目前的相关性不足以预测 E3SM v2 中人为气溶胶造成的云反照率变化
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-25 DOI: 10.5194/acp-24-7253-2024
Naser Mahfouz, Johannes Mülmenstädt, Susannah Burrows
Abstract. Cloud albedo susceptibility to droplet number perturbation remains a source of uncertainty in understanding aerosol–cloud interactions and thus both past and present climate states. Through the Energy Exascale Earth System Model (E3SM) v2 experiments, we probe the effects of competing processes on cloud albedo susceptibility of low-lying marine stratocumulus in the northeast Pacific. In present-day conditions, we find that increasing precipitation suppression by aerosols increases cloud albedo susceptibility, whereas increasing cloud sedimentation decreases it. By constructing a hypothetical model configuration exhibiting negative susceptibility under all conditions, we conclude that cloud albedo change due to aerosol perturbation cannot be predicted by present-day co-variabilities in E3SM v2. As such, our null result herein challenges the assumption that present-day climate observations are sufficient to constrain past states, at least in the context of cloud albedo changes to aerosol perturbation.
摘要。云反照率对液滴数量扰动的敏感性仍然是理解气溶胶-云相互作用以及过去和现在气候状态的不确定性来源。通过能源超大规模地球系统模式(E3SM)v2 实验,我们探究了竞争过程对东北太平洋低海平面层积云反照率的影响。我们发现,在当今条件下,气溶胶对降水的抑制增加会提高云反照率,而云沉积的增加则会降低云反照率。通过构建一个在所有条件下都表现出负易感性的假设模型配置,我们得出结论:气溶胶扰动导致的云反照率变化无法通过 E3SM v2 中的现今共变量进行预测。因此,至少在气溶胶扰动引起的云反照率变化方面,我们在此得出的无效结果对当今气候观测足以制约过去状态的假设提出了挑战。
{"title":"Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2","authors":"Naser Mahfouz, Johannes Mülmenstädt, Susannah Burrows","doi":"10.5194/acp-24-7253-2024","DOIUrl":"https://doi.org/10.5194/acp-24-7253-2024","url":null,"abstract":"Abstract. Cloud albedo susceptibility to droplet number perturbation remains a source of uncertainty in understanding aerosol–cloud interactions and thus both past and present climate states. Through the Energy Exascale Earth System Model (E3SM) v2 experiments, we probe the effects of competing processes on cloud albedo susceptibility of low-lying marine stratocumulus in the northeast Pacific. In present-day conditions, we find that increasing precipitation suppression by aerosols increases cloud albedo susceptibility, whereas increasing cloud sedimentation decreases it. By constructing a hypothetical model configuration exhibiting negative susceptibility under all conditions, we conclude that cloud albedo change due to aerosol perturbation cannot be predicted by present-day co-variabilities in E3SM v2. As such, our null result herein challenges the assumption that present-day climate observations are sufficient to constrain past states, at least in the context of cloud albedo changes to aerosol perturbation.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Aqueous Phase Replacement Reaction on the Phase State of Internally Mixed Organic/ammonium Aerosols 水相置换反应对内部混合有机物/铵气溶胶相态的影响
IF 6.3 1区 地球科学 Q1 Earth and Planetary Sciences Pub Date : 2024-06-24 DOI: 10.5194/egusphere-2024-1556
Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, Yunhong Zhang
Abstract. Aerosol phase state is crucial for air quality, climate, and human health. Atmospheric secondary aerosols are often internally mixed with organic and inorganic components, particularly dicarboxylic acids, ammonium, sulfate, nitrate, and chloride. These complex compositions enable aqueous reaction between organic and inorganic species, significantly complicating aerosol phase behaviour during aging and making phase predictions challenging. We investigated carboxylate/ammonium salt mixtures using in-situ infrared spectroscopy. The di- and tri- carboxylates included sodium pyruvate (SP), sodium tartrate (ST), and sodium citrate (SC), while the ammonium salts included NH4NO3, NH4Cl, and (NH4)2SO4. Our results demonstrated that aqueous replacement reactions between carboxylates and ammonium salts was promoted by the formation and depletion of NH3 as relative humidity (RH) changed. Solid NaNO3, SP, and Na2SO4 formed in SP/ammonium aerosol at 35.7 %~12.7 %, 64 % and 65.5 %~60.1 % RH, respectively. In contrast, reactions between ST or SC and (NH4)2SO4 was incomplete due to the gel structure of SC or ST at low RH. Upon hydration, the deliquescence RH of Na2SO4 in SP/(NH4)2SO4 (88.8 %–95.2 %) and NaNO3 in SP/NH4NO3 (76.5–81.9 %) are higher than those of pure inorganic aerosols. Unexpectedly, aqueous Na2SO4 crystallized upon humidification in ST/(NH4)2SO4 particles at 43.6 % RH and then deliquesced with increasing RH. This is attributed to decreased viscosity and increased ion mobility, which overcome the kinetic inhibition of ion movement, leading to nucleation and growth of Na2SO4 crystal. Our findings highlight the intricate interplay between chemical components within organic/inorganic aerosol, the impact of replacement reactions on aerosol aging and phase state, and subsequently on atmospheric processes.
摘要气溶胶相态对空气质量、气候和人类健康至关重要。大气中的二次气溶胶通常内部混合了有机和无机成分,特别是二羧酸、铵、硫酸盐、硝酸盐和氯化物。这些复杂的成分使得有机物和无机物之间能够发生水反应,从而使气溶胶在老化过程中的相态表现变得非常复杂,并使相态预测变得具有挑战性。我们利用原位红外光谱对羧酸盐/铵盐混合物进行了研究。二元和三元羧酸盐包括丙酮酸钠(SP)、酒石酸钠(ST)和柠檬酸钠(SC),而铵盐包括 NH4NO3、NH4Cl 和 (NH4)2SO4。我们的研究结果表明,随着相对湿度(RH)的变化,NH3 的形成和消耗促进了羧酸盐和铵盐之间的水置换反应。在相对湿度分别为 35.7 %~12.7 %、64 % 和 65.5 %~60.1 % 时,SP/铵气溶胶中会形成固体 NaNO3、SP 和 Na2SO4。相反,在低相对湿度条件下,由于 SC 或 ST 的凝胶结构,ST 或 SC 与 (NH4)2SO4 之间的反应不完全。水合时,SP/(NH4)2SO4 中 Na2SO4 的潮解相对湿度(88.8%-95.2%)和 SP/NH4NO3 中 NaNO3 的潮解相对湿度(76.5%-81.9%)均高于纯无机气溶胶。意想不到的是,ST/(NH4)2SO4 颗粒中的 Na2SO4 水溶液在相对湿度为 43.6% 时加湿后会结晶,然后随着相对湿度的增加而潮解。这归因于粘度降低和离子流动性增加,从而克服了离子运动的动力学抑制,导致 Na2SO4 晶体的成核和生长。我们的研究结果突显了有机/无机气溶胶中化学成分之间错综复杂的相互作用、置换反应对气溶胶老化和相态的影响以及随后对大气过程的影响。
{"title":"The Impact of Aqueous Phase Replacement Reaction on the Phase State of Internally Mixed Organic/ammonium Aerosols","authors":"Hui Yang, Fengfeng Dong, Li Xia, Qishen Huang, Shufeng Pang, Yunhong Zhang","doi":"10.5194/egusphere-2024-1556","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1556","url":null,"abstract":"<strong>Abstract.</strong> Aerosol phase state is crucial for air quality, climate, and human health. Atmospheric secondary aerosols are often internally mixed with organic and inorganic components, particularly dicarboxylic acids, ammonium, sulfate, nitrate, and chloride. These complex compositions enable aqueous reaction between organic and inorganic species, significantly complicating aerosol phase behaviour during aging and making phase predictions challenging. We investigated carboxylate/ammonium salt mixtures using in-situ infrared spectroscopy. The di- and tri- carboxylates included sodium pyruvate (SP), sodium tartrate (ST), and sodium citrate (SC), while the ammonium salts included NH<sub>4</sub>NO<sub>3</sub>, NH<sub>4</sub>Cl, and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. Our results demonstrated that aqueous replacement reactions between carboxylates and ammonium salts was promoted by the formation and depletion of NH<sub>3</sub> as relative humidity (RH) changed. Solid NaNO<sub>3</sub>, SP, and Na<sub>2</sub>SO<sub>4</sub> formed in SP/ammonium aerosol at 35.7 %~12.7 %, 64 % and 65.5 %~60.1 % RH, respectively. In contrast, reactions between ST or SC and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> was incomplete due to the gel structure of SC or ST at low RH. Upon hydration, the deliquescence RH of Na<sub>2</sub>SO<sub>4</sub> in SP/(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (88.8 %–95.2 %) and NaNO<sub>3</sub> in SP/NH<sub>4</sub>NO<sub>3</sub> (76.5–81.9 %) are higher than those of pure inorganic aerosols. Unexpectedly, aqueous Na<sub>2</sub>SO<sub>4</sub> crystallized upon humidification in ST/(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> particles at 43.6 % RH and then deliquesced with increasing RH. This is attributed to decreased viscosity and increased ion mobility, which overcome the kinetic inhibition of ion movement, leading to nucleation and growth of Na<sub>2</sub>SO<sub>4</sub> crystal. Our findings highlight the intricate interplay between chemical components within organic/inorganic aerosol, the impact of replacement reactions on aerosol aging and phase state, and subsequently on atmospheric processes.","PeriodicalId":8611,"journal":{"name":"Atmospheric Chemistry and Physics","volume":null,"pages":null},"PeriodicalIF":6.3,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141444759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Atmospheric Chemistry and Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1