Leia C. Shum, Bulmaro A. Valdés, H. V. D. Van der Loos
Background: As commercial motion tracking technology becomes more readily available, it is necessary to evaluate the accuracy of these systems before using them for biomechanical and motor rehabilitation applications. Objective: This study aimed to evaluate the relative position accuracy of the Oculus Touch controllers in a 2.4 x 2.4 m play-space. Methods: Static data samples (n=180) were acquired from the Oculus Touch controllers at step sizes ranging from 5 to 500 mm along 16 different points on the play-space floor with graph paper in the x (width), y (height), and z (depth) directions. The data were compared with reference values using measurements from digital calipers, accurate to 0.01 mm; physical blocks, for which heights were confirmed with digital calipers; and for larger step sizes (300 and 500 mm), a ruler with hatch marks to millimeter units. Results: It was found that the maximum position accuracy error of the system was 3.5 ± 2.5 mm at the largest step size of 500 mm along the z-axis. When normalized to step size, the largest error found was 12.7 ± 9.9% at the smallest step size in the y-axis at 6.23 mm. When the step size was <10 mm in any direction, the relative position accuracy increased considerably to above 2% (approximately 2 mm at maximum). An average noise value of 0.036 mm was determined. A comparison of these values to cited visual, goniometric, and proprioceptive resolutions concludes that this system is viable for tracking upper-limb movements for biomechanical and rehabilitation applications. The accuracy of the system was also compared with accuracy values from previous studies using other commercially available devices and a multicamera, marker-based professional motion tracking system. Conclusions: The study found that the linear position accuracy of the Oculus Touch controllers was within an agreeable range for measuring human kinematics in rehabilitative upper-limb exercise protocols. Further testing is required to ascertain acceptable repeatability in multiple sessions and rotational accuracy. (JMIR Biomed Eng 2019;4(1):e12291) doi: 10.2196/12291
{"title":"Determining the Accuracy of Oculus Touch Controllers for Motor Rehabilitation Applications Using Quantifiable Upper Limb Kinematics: Validation Study","authors":"Leia C. Shum, Bulmaro A. Valdés, H. V. D. Van der Loos","doi":"10.2196/12291","DOIUrl":"https://doi.org/10.2196/12291","url":null,"abstract":"Background: As commercial motion tracking technology becomes more readily available, it is necessary to evaluate the accuracy of these systems before using them for biomechanical and motor rehabilitation applications. Objective: This study aimed to evaluate the relative position accuracy of the Oculus Touch controllers in a 2.4 x 2.4 m play-space. Methods: Static data samples (n=180) were acquired from the Oculus Touch controllers at step sizes ranging from 5 to 500 mm along 16 different points on the play-space floor with graph paper in the x (width), y (height), and z (depth) directions. The data were compared with reference values using measurements from digital calipers, accurate to 0.01 mm; physical blocks, for which heights were confirmed with digital calipers; and for larger step sizes (300 and 500 mm), a ruler with hatch marks to millimeter units. Results: It was found that the maximum position accuracy error of the system was 3.5 ± 2.5 mm at the largest step size of 500 mm along the z-axis. When normalized to step size, the largest error found was 12.7 ± 9.9% at the smallest step size in the y-axis at 6.23 mm. When the step size was <10 mm in any direction, the relative position accuracy increased considerably to above 2% (approximately 2 mm at maximum). An average noise value of 0.036 mm was determined. A comparison of these values to cited visual, goniometric, and proprioceptive resolutions concludes that this system is viable for tracking upper-limb movements for biomechanical and rehabilitation applications. The accuracy of the system was also compared with accuracy values from previous studies using other commercially available devices and a multicamera, marker-based professional motion tracking system. Conclusions: The study found that the linear position accuracy of the Oculus Touch controllers was within an agreeable range for measuring human kinematics in rehabilitative upper-limb exercise protocols. Further testing is required to ascertain acceptable repeatability in multiple sessions and rotational accuracy. (JMIR Biomed Eng 2019;4(1):e12291) doi: 10.2196/12291","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68428666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Plante, Anna C. O'Kelly, Bruno Urrea, Zane T. Macfarlane, L. Appel, Edgar R Miller III, R. Blumenthal, S. Martin
Background: mHealth apps that measure heart rate using pulse photoplethysmography (PPG) are classified as class II (moderate-risk) Food and Drug Administration devices; therefore, these devices need clinical validation prior to public release. The Auralife Instant Blood Pressure app (AuraLife IBP app) is an mHealth app that measures blood pressure inaccurately based on a previous validation study. Its ability to measure heart rate has not been previously reported. Objective: The objective of our study was to assess the accuracy and precision of the AuraLife IBP app in measuring heart rate. Methods: We enrolled 85 adults from ambulatory clinics. Two measurements were obtained using the AuraLife IBP app, and 2 other measurements were achieved with a oscillometric device. The order of devices was randomized. Accuracy was assessed by calculating the relative and absolute mean differences between heart rate measurements obtained using each AuraLife IBP app and an average of both standard heart rate measurements. Precision was assessed by calculating the relative and absolute mean differences between individual measurements in the pair for each device. Results: The relative and absolute mean (SD) differences between the devices were 1.1 (3.5) and 2.8 (2.4) beats per minute (BPM), respectively. Meanwhile, the within-device relative and absolute mean differences, respectively, were <0.1 (2.2) and 1.7 (1.4) BPM for the standard device and −0.1 (3.2) and 2.2 (2.3) BPM for the AuraLife IBP app. Conclusions: The AuraLife IBP app had a high degree of accuracy and precision in the measurement of heart rate. This supports the use of PPG technology in smartphones for monitoring resting heart rate. (JMIR Biomed Eng 2018;3(1):e11057) doi: 10.2196/11057
背景:使用脉冲光电体积描记术(PPG)测量心率的mHealth应用程序被归类为II类(中等风险)食品和药物管理局设备;因此,这些设备在公开发布之前需要进行临床验证。Auralife即时血压应用程序(Auralife IBP应用程序)是一款mHealth应用程序,它根据之前的验证研究不准确地测量血压。它测量心率的能力以前没有报道过。目的:我们研究的目的是评估AuraLife IBP应用程序在测量心率方面的准确性和精密度。方法:我们从门诊诊所招募了85名成年人。使用AuraLife IBP应用程序进行了两次测量,另外两次测量使用示波设备进行。器械的顺序是随机的。通过计算使用每个AuraLife IBP应用程序获得的心率测量值与两个标准心率测量值的平均值之间的相对和绝对平均差来评估准确性。通过计算每种设备的成对个体测量之间的相对和绝对平均差来评估精度。结果:两种设备之间的相对平均值和绝对平均值差异分别为1.1(3.5)和2.8(2.4)次/分(BPM)。同时,标准设备的设备内相对平均差和绝对平均差分别<0.1(2.2)和1.7(1.4)BPM,AuraLife IBP应用程序的设备内平均差分别为-0.1(3.2)和2.2(2.3)BPM。结论:AuraLife IBP应用程序在心率测量方面具有较高的准确性和精密度。这支持在智能手机中使用PPG技术来监测静息心率。(JMIR Biomed Eng 2018;3(1):e11057)doi:10.196/11057
{"title":"Auralife Instant Blood Pressure App in Measuring Resting Heart Rate: Validation Study","authors":"T. Plante, Anna C. O'Kelly, Bruno Urrea, Zane T. Macfarlane, L. Appel, Edgar R Miller III, R. Blumenthal, S. Martin","doi":"10.2196/11057","DOIUrl":"https://doi.org/10.2196/11057","url":null,"abstract":"Background: mHealth apps that measure heart rate using pulse photoplethysmography (PPG) are classified as class II (moderate-risk) Food and Drug Administration devices; therefore, these devices need clinical validation prior to public release. The Auralife Instant Blood Pressure app (AuraLife IBP app) is an mHealth app that measures blood pressure inaccurately based on a previous validation study. Its ability to measure heart rate has not been previously reported. Objective: The objective of our study was to assess the accuracy and precision of the AuraLife IBP app in measuring heart rate. Methods: We enrolled 85 adults from ambulatory clinics. Two measurements were obtained using the AuraLife IBP app, and 2 other measurements were achieved with a oscillometric device. The order of devices was randomized. Accuracy was assessed by calculating the relative and absolute mean differences between heart rate measurements obtained using each AuraLife IBP app and an average of both standard heart rate measurements. Precision was assessed by calculating the relative and absolute mean differences between individual measurements in the pair for each device. Results: The relative and absolute mean (SD) differences between the devices were 1.1 (3.5) and 2.8 (2.4) beats per minute (BPM), respectively. Meanwhile, the within-device relative and absolute mean differences, respectively, were <0.1 (2.2) and 1.7 (1.4) BPM for the standard device and −0.1 (3.2) and 2.2 (2.3) BPM for the AuraLife IBP app. Conclusions: The AuraLife IBP app had a high degree of accuracy and precision in the measurement of heart rate. This supports the use of PPG technology in smartphones for monitoring resting heart rate. (JMIR Biomed Eng 2018;3(1):e11057) doi: 10.2196/11057","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42189482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The proposed experimental design was devised to determine whether a relationship exists between the occlusal load applied and the size of the markings produced from tooth contact when dental articulating paper and T-Scan are interposed alternatively. Objective: The objective of our study was to compare the relationship between contact markings on an articulating paper and T-Scan for an applied occlusal load. Methods: In this in vitro study, dentulous maxillary and mandibular dies were mounted on a metal jig and articulating paper and T-Scan sensor were placed alternatively between the casts. Loads simulating occlusal loads began at 25 N and incrementally continued up to 450 N. The resultant markings (180 marks resulting from articulating paper and 138 from T-Scan) were photographed, and the marks were analyzed using MOTIC image analysis and sketching software. Descriptive statistical analyses were performed using one-way analysis of variance, Student t test, and Pearson correlation coefficient method. Results: Statistical interpretation of the data indicated that with articulating paper, the mark area increased nonlinearly with increasing load and there was a false-positive result. The characteristics of the paper mark appearance did not describe the amount of occlusal load present on a given tooth. The contact marking obtained using T-Scan for an applied occlusal load indicated that the mark area increased with increase in the load and provided more predictable results of actual load content within the occlusal contact. Conclusions: The size of an articulating paper mark may not be a reliable predictor of the actual load content within the occlusal contact, whereas a T-Scan provides more predictable results of the actual load content within the occlusal contact. (JMIR Biomed Eng 2018;3(1):e11347) doi: 10.2196/11347
{"title":"Relationship Between the Applied Occlusal Load and the Size of Markings Produced Due to Occlusal Contact Using Dental Articulating Paper and T-Scan: Comparative Study","authors":"Shravya Reddy, P. Kumar, Vyoma Venkatesh Grandhi","doi":"10.2196/11347","DOIUrl":"https://doi.org/10.2196/11347","url":null,"abstract":"Background: The proposed experimental design was devised to determine whether a relationship exists between the occlusal load applied and the size of the markings produced from tooth contact when dental articulating paper and T-Scan are interposed alternatively. Objective: The objective of our study was to compare the relationship between contact markings on an articulating paper and T-Scan for an applied occlusal load. Methods: In this in vitro study, dentulous maxillary and mandibular dies were mounted on a metal jig and articulating paper and T-Scan sensor were placed alternatively between the casts. Loads simulating occlusal loads began at 25 N and incrementally continued up to 450 N. The resultant markings (180 marks resulting from articulating paper and 138 from T-Scan) were photographed, and the marks were analyzed using MOTIC image analysis and sketching software. Descriptive statistical analyses were performed using one-way analysis of variance, Student t test, and Pearson correlation coefficient method. Results: Statistical interpretation of the data indicated that with articulating paper, the mark area increased nonlinearly with increasing load and there was a false-positive result. The characteristics of the paper mark appearance did not describe the amount of occlusal load present on a given tooth. The contact marking obtained using T-Scan for an applied occlusal load indicated that the mark area increased with increase in the load and provided more predictable results of actual load content within the occlusal contact. Conclusions: The size of an articulating paper mark may not be a reliable predictor of the actual load content within the occlusal contact, whereas a T-Scan provides more predictable results of the actual load content within the occlusal contact. (JMIR Biomed Eng 2018;3(1):e11347) doi: 10.2196/11347","PeriodicalId":87288,"journal":{"name":"JMIR biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44541231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}