Background: Historically, the evaluation of physical activity has involved a variety of methods such as the use of questionnaires, accelerometers, behavior records, and global positioning systems, each according to the purpose of the evaluation. The use of web-based physical activity evaluation systems has been proposed as an easy method for collecting physical activity data. Voice recognition technology not only eliminates the need for questionnaires during physical activity evaluation but also enables users to record their behavior without physically touching electronic devices. The use of a web-based voice recognition system might be an effective way to record physical activity and behavior.
Objective: The purpose of this study was to develop a physical activity evaluation app to record behavior using voice recognition technology and to examine the app's validity by comparing data obtained using both the app and an accelerometer simultaneously.
Methods: A total of 20 participants (14 men, 6 women; mean age 19.1 years, SD 0.9) wore a 3-axis accelerometer and inputted behavioral data into their smartphones for a period of 7 days. We developed a behavior-recording system with a voice recognition function using a voice recognition application programming interface. The exercise intensity was determined from the text data obtained by the voice recognition program. The measure of intensity was metabolic equivalents (METs).
Results: From the voice input data of the participants, 601 text-converted data could be confirmed, of which 471 (78.4%) could be automatically converted into behavioral words. In the time-matched analysis, the mean daily METs values measured by the app and the accelerometer were 1.64 (SD 0.20) and 1.63 (SD 0.20), respectively, between which there was no significant difference (P=.57). There was a significant correlation between the average METs obtained from the voice recognition app and the accelerometer in the time-matched analysis (r=0.830, P<.001). In the Bland-Altman plot for METs measured by the voice recognition app as compared with METs measured by accelerometer, the mean difference between the two methods was very small (0.02 METs), with 95% limits of agreement from -0.26 to 0.22 METs between the two methods.
Conclusions: The average METs value measured by the voice recognition app was consistent with that measured by the 3-axis accelerometer and, thus, the data gathered by the two measurement methods showed a high correlation. The voice recognition method also demonstrated the ability of the system to measure the physical activity of a large number of people at the same time with less burden on the participants. Although there were still issues regarding the improvement of automatic text data classification technology and user input compliance, this research proposes a new method for evaluating physical activi
Background: Maternal serum alpha-fetoprotein (MSAFP) concentration typically increases during pregnancy and is routinely measured during the second trimester as a part of screening for fetal neural tube defects and Down syndrome. However, most pregnancy screening tests are not available in the settings they are needed the most. A mobile device-enabled technology based on MSAFP for screening birth defects could enable the rapid screening and triage of high-risk pregnancies, especially where maternal serum screening and fetal ultrasound scan facilities are not easily accessible. Shifting the approach from clinic- and laboratory-dependent care to a mobile platform based on our point-of-care approach will enable translation to resource-limited settings and the global health care market.
Objective: The objective of this study is to develop and perform proof-of-concept testing of a lateral flow immunoassay on a mobile platform for rapid, point-of-care quantification of serum alpha-fetoprotein (AFP) levels, from a drop of human serum, within a few minutes.
Methods: The development of the immunoassay involved the selection of commercially available antibodies and optimization of their concentrations by an iterative method to achieve the required detection limits. We compared the performance of our method with that of commercially obtained human serum samples, with known AFP concentrations quantified by the Abbott ARCHITECT chemiluminescent magnetic microparticle immunoassay (CMIA).
Results: We tested commercially obtained serum samples (N=20) with concentrations ranging from 2.2 to 446 ng/mL to compare the results of our point-of-care assay with results from the Abbott ARCHITECT CMIA. A correlation of 0.98 (P<.001) was observed on preliminary testing and comparison with the CMIA. The detection range of our point-of-care assay covers the range of maternal serum AFP levels observed during pregnancy.
Conclusions: The preliminary test results from the AFP test on the mobile platform performed in this study represent a proof of concept that will pave the way for our future work focused on developing a mobile device-enabled quad-screen point-of-care testing with the potential to enable the screening of high-risk pregnancies in various settings. The AFP test on the mobile platform can be applied to enable screening for high-risk pregnancies, within a few minutes, at the point of care even in remote areas where maternal serum tests and fetal ultrasound scans are not easily accessible; assessment of whether clinical follow-up and diagnostic testing may be needed after a positive initial screening evaluation; and development of surveillance tools for birth defects.
Background: Due to the COVID-19 pandemic, the demand for remote electrocardiogram (ECG) monitoring has increased drastically in an attempt to prevent the spread of the virus and keep vulnerable individuals with less severe cases out of hospitals. Enabling clinicians to set up remote patient ECG monitoring easily and determining how to classify the ECG signals accurately so relevant alerts are sent in a timely fashion is an urgent problem to be addressed for remote patient monitoring (RPM) to be adopted widely. Hence, a new technique is required to enable routine and widespread use of RPM, as is needed due to COVID-19.
Objective: The primary aim of this research is to create a robust and easy-to-use solution for personalized ECG monitoring in real-world settings that is precise, easily configurable, and understandable by clinicians.
Methods: In this paper, we propose a Personalized Monitoring Model (PMM) for ECG data based on motif discovery. Motif discovery finds meaningful or frequently recurring patterns in patient ECG readings. The main strategy is to use motif discovery to extract a small sample of personalized motifs for each individual patient and then use these motifs to predict abnormalities in real-time readings of that patient using an artificial logical network configured by a physician.
Results: Our approach was tested on 30 minutes of ECG readings from 32 patients. The average diagnostic accuracy of the PMM was always above 90% and reached 100% for some parameters, compared to 80% accuracy for the Generalized Monitoring Models (GMM). Regardless of parameter settings, PMM training models were generated within 3-4 minutes, compared to 1 hour (or longer, with increasing amounts of training data) for the GMM.
Conclusions: Our proposed PMM almost eliminates many of the training and small sample issues associated with GMMs. It also addresses accuracy and computational cost issues of the GMM, caused by the uniqueness of heartbeats and training issues. In addition, it addresses the fact that doctors and nurses typically do not have data science training and the skills needed to configure, understand, and even trust existing black box machine learning models.