Colonization of textiles and subsequent metabolic degradation of sweat and sebum components by axillary skin bacteria cause the characteristic sweat malodor and discoloring of dirty clothes. Once inside the textile, the bacteria can form biofilms that are hard to remove by conventional washing. When the biofilm persists after washing, the textiles retain the sweat odor. In addition to posing a huge industrial problem, textile biofilms constitute an interesting case study of bacterial behavior in periodically wetted and dried substrates with varying surface hydrophobicity. Here we aim to study the bacterial behavior in each of the four stages of the bacterial lifecycle in textiles: adhesion, growth, drying and washing. To accomplish this, we designed a novel in vitro model to mimic physiological sweating while wearing cotton and polyester textiles. The hydrophobic polyester adhered bacteria more strongly and absorbed more sebum, the bacteria’s primary nutrient source. Bacteria were therefore initially more active in polyester textiles than in cotton. However, polyester did not bind water as well as cotton. The increased water content of cotton allowed the bacteria to retain a higher activity after the textile had dried. However, neither of the textiles retained enough water upon drying to prevent the bacteria from irreversibly adhering to the textile fibers by capillary action. This demonstrates that bacterial colonization depends on the hydrophobic and hygroscopic properties of the colonized material while highlighting the possibility of controlling bacterial behavior by either changing the surface properties or the surrounding environment.
{"title":"The bacterial lifecycle in cotton and polyester textiles","authors":"Andreas Moellebjerg, R. Meyer","doi":"10.5194/biofilms9-118","DOIUrl":"https://doi.org/10.5194/biofilms9-118","url":null,"abstract":"<p>Colonization of textiles and subsequent metabolic degradation of sweat and sebum components by axillary skin bacteria cause the characteristic sweat malodor and discoloring of dirty clothes. Once inside the textile, the bacteria can form biofilms that are hard to remove by conventional washing. When the biofilm persists after washing, the textiles retain the sweat odor. In addition to posing a huge industrial problem, textile biofilms constitute an interesting case study of bacterial behavior in periodically wetted and dried substrates with varying surface hydrophobicity. Here we aim to study the bacterial behavior in each of the four stages of the bacterial lifecycle in textiles: adhesion, growth, drying and washing. To accomplish this, we designed a novel in vitro model to mimic physiological sweating while wearing cotton and polyester textiles. The hydrophobic polyester adhered bacteria more strongly and absorbed more sebum, the bacteria’s primary nutrient source. Bacteria were therefore initially more active in polyester textiles than in cotton. However, polyester did not bind water as well as cotton. The increased water content of cotton allowed the bacteria to retain a higher activity after the textile had dried. However, neither of the textiles retained enough water upon drying to prevent the bacteria from irreversibly adhering to the textile fibers by capillary action. This demonstrates that bacterial colonization depends on the hydrophobic and hygroscopic properties of the colonized material while highlighting the possibility of controlling bacterial behavior by either changing the surface properties or the surrounding environment.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43160704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas Etcheberry, M. Lavigne, Rosalia Trias, E. Paul, L. Gioia
Filtration through natural biofilms in Rapid Sand Filters (RSFs) is among the most used processes to remove ammonium and manganese from groundwaters. However, initial biofilm seeding is relatively slow, and little is known about the spatial-temporal distribution of the activities. The objectives of this work were to: (a) understand heterogeneity of microbial populations and activities in depth and time, (b) discover how it impacts the process, and (c) develop a mathematical model to propose and experiment enhanced “start-up” strategies.
{"title":"Dynamics of biofilm spatial-temporal heterogeneity in RSFs for ammonium and manganese removal from groundwaters","authors":"Thomas Etcheberry, M. Lavigne, Rosalia Trias, E. Paul, L. Gioia","doi":"10.5194/biofilms9-103","DOIUrl":"https://doi.org/10.5194/biofilms9-103","url":null,"abstract":"Filtration through natural biofilms in Rapid Sand Filters (RSFs) is among the most used processes to remove ammonium and manganese from groundwaters. However, initial biofilm seeding is relatively slow, and little is known about the spatial-temporal distribution of the activities. The objectives of this work were to: (a) understand heterogeneity of microbial populations and activities in depth and time, (b) discover how it impacts the process, and (c) develop a mathematical model to propose and experiment enhanced “start-up” strategies.","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43162140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Volke, Ingeborg Heuschkel, Katja Bühler, P. Nikel
Nowadays, industrial fermentations rely almost entirely on the use of planktonic cells. However, biofilms (the most common form of bacterial growth in nature), offer several advantages to be exploited in modern fermentation processes. Bacteria in biofilms are more tolerant to several stresses than free cells, including toxic chemicals and shear stress. Furthermore, the adhesion of cells to surfaces can be exploited to operate a continuous fermentation process without excessive loss of biomass, thereby facilitating downstream processing. A programmable switch between planktonic and biofilm lifestyle is desirable to harness the advantages of both lifestyles. On this premise, we constructed a genetic gene circuit for biofilm formation in the platform strains Pseudomonas putida and Pseudomonas taiwanensis. Both P. putida and P. taiwanensis are robust, non-pathogenic soil bacteria and promising chassis for biotechnology as they can thrive under harsh operating conditions, displaying high tolerance towards several chemicals and can metabolize a broad range of substrates. These characteristics make them ideal for the production of a wide spectrum of chemicals. The synthetic circuit initiates biofilm formation upon detection of substrate or intermediate metabolites of the desired biotransformation, thus no additional inducer is needed. The circuit also allows for the propagation of cells in planktonic state prior employment in the bioreactor, which facilitates handling and speed up expansion of the culture. The design proposed herein employs a feedback-resistant diguanylate cyclase (DGC) from Caulobacter crescentus, which increases the concentration of DGC and therefore triggers biofilm formation. The resulting engineered strains were utilized for the biotransformation and degradation of chemicals (cyclohexanol) in continuous cultivation systems. This approach led to a ~300-fold increase in biofilm formation in microtiter plates, and was successfully used in diverse fermentation systems displaying increased catalytic efficiency.
{"title":"Synthetic gene circuits for programmable Pseudomonas catalytic biofilms","authors":"D. Volke, Ingeborg Heuschkel, Katja Bühler, P. Nikel","doi":"10.5194/biofilms9-128","DOIUrl":"https://doi.org/10.5194/biofilms9-128","url":null,"abstract":"<p>Nowadays, industrial fermentations rely almost entirely on the use of planktonic cells. However, biofilms (the most common form of bacterial growth in nature), offer several advantages to be exploited in modern fermentation processes. Bacteria in biofilms are more tolerant to several stresses than free cells, including toxic chemicals and shear stress. Furthermore, the adhesion of cells to surfaces can be exploited to operate a continuous fermentation process without excessive loss of biomass, thereby facilitating downstream processing. A programmable switch between planktonic and biofilm lifestyle is desirable to harness the advantages of both lifestyles. On this premise, we constructed a genetic gene circuit for biofilm formation in the platform strains <em>Pseudomonas putida</em> and <em>Pseudomonas taiwanensis</em>. Both <em>P. putida</em> and <em>P. taiwanensis</em> are robust, non-pathogenic soil bacteria and promising chassis for biotechnology as they can thrive under harsh operating conditions, displaying high tolerance towards several chemicals and can metabolize a broad range of substrates. These characteristics make them ideal for the production of a wide spectrum of chemicals. The synthetic circuit initiates biofilm formation upon detection of substrate or intermediate metabolites of the desired biotransformation, thus no additional inducer is needed. The circuit also allows for the propagation of cells in planktonic state prior employment in the bioreactor, which facilitates handling and speed up expansion of the culture. The design proposed herein employs a feedback-resistant diguanylate cyclase (DGC) from <em>Caulobacter crescentus</em>, which increases the concentration of DGC and therefore triggers biofilm formation. The resulting engineered strains were utilized for the biotransformation and degradation of chemicals (cyclohexanol) in continuous cultivation systems. This approach led to a ~300-fold increase in biofilm formation in microtiter plates, and was successfully used in diverse fermentation systems displaying increased catalytic efficiency.</p>","PeriodicalId":87392,"journal":{"name":"Biofilms","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48784955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Ramachandra, Abdulla Abdal-hay, Pingping Han, R. Lee, S. Ivanovski
Introduction: Biofilms are 3-dimensional (3D) aggregates of microorganisms that are associated with a wide range of diseases. Although there have been several studies investigating biofilm formation on two-dimensional substrates, the use of 3D substrates may result in more representative and clinically relevant models. Accordingly, the aim of this study was to compare the growth of biofilms in the 3D substrates against biofilms grown in 2D substrates. Material and Methods: Two grams of medical grade polycaprolactone (PCL) were loaded into a plastic Luer-lock 3 ml syringe and a 23G needle was used as a spinneret. The syringe was placed in a melt electro-writing (MEW) device to obtain fine fibers under controlled parameters. The 3-dimensional MEW PCL scaffolds were manufactured and characterised with an overall thickness of ~ 0.8 mm, with ~ 15 μm diameter fibers and ordered pore sizes of either 100 or 250 µm. PCL films employed as 2D substrates were manufactured by dissolving 10 gms of PCL in 100 ml chloroform and stirred for 3 h to obtain a transparent solution. Then, the solution was cast in glass petri dishes and dried to remove all organic solvents. In addition, commercial hydroxyapatite discs were also used as 2D controls. Unstimulated saliva from six healthy donors (gingival health) were used to grow biofilms. The formed biofilms were assessed at day 4, day 7 and day 10 using crystal violet assay, confocal microscopy, scanning electron microscopy and next-generation 16s sequencing. Results: The results demonstrates that 3D PCL scaffolds dramatically enhanced biofilm biomass and thickness growth compared to that of the 2D controls. Confocal microscopy of biofilms at day 4 stained with SYTO 9 and propidium iodide showed thickness of biofilms in 2D substrates were 39 µm and 81µm for hydroxyapatite discs and PCL films, respectively. Biofilms in 3D substrates were 250 µm and 338 µm for MEW PCL 100µm pore size and MEW PCL 250 µm pore size, respectively. Similar results were noticed at day 7 and day 10. Scanning electron microscopy showed biofilm bridges formed over the fibers of the MEW scaffolds. Pilot trials of next generation sequencing detected similar taxa in biofilms formed in 3D scaffolds compared to that of 2D substrates. Discussion: We have successfully investigated a 3D biofilm growth model using 3D medical grade PCL scaffolds. Thicker biofilms can be conveniently grown using this inexpensive static model. This will facilitate 3D microbial community studies that are more clinically relevant and improve our understanding of biofilm-associated disease processes.