Pub Date : 2023-02-10DOI: 10.3390/beverages9010016
A. Morata, E. Adell, C. López, F. Palomero, Elena Suárez, Silvia Pedrero, M. Bañuelos, C. González
Fumaric acid (FH2) is an additive allowed by the Codex Alimentarius and the International Organization of Vine and Wine (OIV) that can be used for wine acidification but also to inhibit malolactic fermentation (MLF). FH2 has a positive effect in the reduction in SO2 doses by controlling LAB and other bacteria and by preserving molecular SO2 due to pH effect. This article reports the use of FH2 at 600 mg/L in wines produced with 3 varieties of Vitis vinifera L. grapes (Tempranillo, Garnacha and Viura) made in vintages 2018, 2020 and 2021. Wines treated with 600 mg/L of FH2 were more stable in the long term and showed lower pH by the preservation of malic acid due to both the absence of MLF (which reduced the pH in 0.1–0.2 units compared with controls) and the effect of FH2 acidification (what produced and additional reduction of 0.05–0.1 pH units). The wines treated with FH2 also remained with very low volatile acidity contents close to 0.2 mg/L or lower. These results corroborate that FH2 can be used to successfully control malolactic fermentation in all still wine types (red, white, and rose) from either of the studied varieties.
{"title":"Use of Fumaric Acid to Inhibit Malolactic Fermentation in Bottled Rioja Wines: Effect in pH and Volatile Acidity Control","authors":"A. Morata, E. Adell, C. López, F. Palomero, Elena Suárez, Silvia Pedrero, M. Bañuelos, C. González","doi":"10.3390/beverages9010016","DOIUrl":"https://doi.org/10.3390/beverages9010016","url":null,"abstract":"Fumaric acid (FH2) is an additive allowed by the Codex Alimentarius and the International Organization of Vine and Wine (OIV) that can be used for wine acidification but also to inhibit malolactic fermentation (MLF). FH2 has a positive effect in the reduction in SO2 doses by controlling LAB and other bacteria and by preserving molecular SO2 due to pH effect. This article reports the use of FH2 at 600 mg/L in wines produced with 3 varieties of Vitis vinifera L. grapes (Tempranillo, Garnacha and Viura) made in vintages 2018, 2020 and 2021. Wines treated with 600 mg/L of FH2 were more stable in the long term and showed lower pH by the preservation of malic acid due to both the absence of MLF (which reduced the pH in 0.1–0.2 units compared with controls) and the effect of FH2 acidification (what produced and additional reduction of 0.05–0.1 pH units). The wines treated with FH2 also remained with very low volatile acidity contents close to 0.2 mg/L or lower. These results corroborate that FH2 can be used to successfully control malolactic fermentation in all still wine types (red, white, and rose) from either of the studied varieties.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41443111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.3390/beverages9010015
Rémi De La Burgade, V. Nolleau, Teddy Godet, Nicolas Galy, Dimitri Tixador, Christophe Loisel, N. Sommerer, A. Roland
Dimethyl sulfide (DMS) is a flavor compound, characteristic of the truffle aroma in red wines, and is well-known to be a fruity exhauster. DMS comes from the degradation of dimethyl sulfide potential (DMSP) during winemaking. Up to now, little is known about the role of the closure on the DMSP degradation during ageing. For that purpose, the effect of four micro-agglomerated wine cork closures was studied on the DMS/DMSP equilibrium, along with six other volatile sulfur compounds (VSC), was investigated in six Shiraz wines. After three months of accelerated bottle ageing, DMS levels increased significantly in all bottles. The most permeable closures induced a lesser accumulation of DMS, suggesting that DMS could be dependent on the redox status of the wine. At the same time, the DMSP decrease was proportional to the permeability of the closures. For the first time, a possible implication of closure permeability on DMSP degradation was observed.
{"title":"Wine Cork Closures Impacts on Dimethyl Sulfide (DMS) and Precursors (DMSP) Equilibrium of Different Shiraz Wines during Accelerated Bottle Ageing","authors":"Rémi De La Burgade, V. Nolleau, Teddy Godet, Nicolas Galy, Dimitri Tixador, Christophe Loisel, N. Sommerer, A. Roland","doi":"10.3390/beverages9010015","DOIUrl":"https://doi.org/10.3390/beverages9010015","url":null,"abstract":"Dimethyl sulfide (DMS) is a flavor compound, characteristic of the truffle aroma in red wines, and is well-known to be a fruity exhauster. DMS comes from the degradation of dimethyl sulfide potential (DMSP) during winemaking. Up to now, little is known about the role of the closure on the DMSP degradation during ageing. For that purpose, the effect of four micro-agglomerated wine cork closures was studied on the DMS/DMSP equilibrium, along with six other volatile sulfur compounds (VSC), was investigated in six Shiraz wines. After three months of accelerated bottle ageing, DMS levels increased significantly in all bottles. The most permeable closures induced a lesser accumulation of DMS, suggesting that DMS could be dependent on the redox status of the wine. At the same time, the DMSP decrease was proportional to the permeability of the closures. For the first time, a possible implication of closure permeability on DMSP degradation was observed.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45822236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-02DOI: 10.3390/beverages9010014
Johnson K. Ndukwe, Claret Chiugo Aduba, K. T. Ughamba, Kenechi O. Chukwu, C. Eze, O. Nwaiwu, Helen Onyeaka
Kunu is a fermented non-alcoholic beverage consumed all over Nigeria. The drink is served as an alternative to alcohol due to its perceived extreme nourishing and therapeutic properties. Varieties of this beverage are determined mostly by the type of grain, the supplements, sensory additives used, and the process employed during its production. Dietary quality is paramount in nutritional well-being and a key factor in human overall health development. The nutritional quality of grains utilised for Kunu production makes the drink more appealing to a large growing population when compared to some other drinks. Some use Kunu drink as an infant weaning drink, thus serving as a priming beverage for infants due to its rich probiotic and nutritional properties. However, this beverage’s short shelf-life has limited its production scale. This review therefore elaborates succinctly on the diverse therapeutic nutritional properties of the Kunu beverage and the effect of additives and fermentation on the microbial dynamics during Kunu production, as well as the prospect of Kunu in diet diversification and priming for weaning infants.
{"title":"Diet Diversification and Priming with Kunu: An Indigenous Probiotic Cereal-Based Non-Alcoholic Beverage in Nigeria","authors":"Johnson K. Ndukwe, Claret Chiugo Aduba, K. T. Ughamba, Kenechi O. Chukwu, C. Eze, O. Nwaiwu, Helen Onyeaka","doi":"10.3390/beverages9010014","DOIUrl":"https://doi.org/10.3390/beverages9010014","url":null,"abstract":"Kunu is a fermented non-alcoholic beverage consumed all over Nigeria. The drink is served as an alternative to alcohol due to its perceived extreme nourishing and therapeutic properties. Varieties of this beverage are determined mostly by the type of grain, the supplements, sensory additives used, and the process employed during its production. Dietary quality is paramount in nutritional well-being and a key factor in human overall health development. The nutritional quality of grains utilised for Kunu production makes the drink more appealing to a large growing population when compared to some other drinks. Some use Kunu drink as an infant weaning drink, thus serving as a priming beverage for infants due to its rich probiotic and nutritional properties. However, this beverage’s short shelf-life has limited its production scale. This review therefore elaborates succinctly on the diverse therapeutic nutritional properties of the Kunu beverage and the effect of additives and fermentation on the microbial dynamics during Kunu production, as well as the prospect of Kunu in diet diversification and priming for weaning infants.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42496662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/beverages9010012
R. Kaur, Nitya Sharma, Vasudha Bansal, R. Reenu, D. K. Yadav, Akansha Gupta, D. Mahato
The intake of tomato in its natural form is comparatively restricted due to its limited shelf-life. Thereby, we investigated the willingness of consumers and optimized the proportions of beverages on the basis of the overall liking of the sensory panel. Further, molecular docking was also performed to evaluate the protein-ligand interactions of vitamin C, lycopene, and β-carotene against CR protein. These compounds showed great interactions with the protein targets leading to the enhancement of antioxidant activity. The most acceptable combination (S4 = 50:50 tomato and pineapple juices) was subjected to thermal processing at 70, 80, and 90 °C, respectively. Biochemical parameters such as acidity, vitamin C, non-enzymatic browning, antioxidant capacity, and total phenolics were found to be optimum in the beverage samples treated at 80 °C. It was revealed that the microbial shelf-life of beverages enhanced with an increase in processing temperatures. The untreated beverage samples could only retain a shelf-life of 4 days, however, samples treated at 80 °C for 60 s were rendered fit for 40 ± 2 days. Therefore, with the help of molecular docking, this manuscript assessed the protein-ligand interaction with the thermally induced quality changes in tomato-based beverages.
{"title":"Assessing the Protein-Ligand Interaction and Thermally Induced Quality Changes in Tomato-Based Pineapple Beverage","authors":"R. Kaur, Nitya Sharma, Vasudha Bansal, R. Reenu, D. K. Yadav, Akansha Gupta, D. Mahato","doi":"10.3390/beverages9010012","DOIUrl":"https://doi.org/10.3390/beverages9010012","url":null,"abstract":"The intake of tomato in its natural form is comparatively restricted due to its limited shelf-life. Thereby, we investigated the willingness of consumers and optimized the proportions of beverages on the basis of the overall liking of the sensory panel. Further, molecular docking was also performed to evaluate the protein-ligand interactions of vitamin C, lycopene, and β-carotene against CR protein. These compounds showed great interactions with the protein targets leading to the enhancement of antioxidant activity. The most acceptable combination (S4 = 50:50 tomato and pineapple juices) was subjected to thermal processing at 70, 80, and 90 °C, respectively. Biochemical parameters such as acidity, vitamin C, non-enzymatic browning, antioxidant capacity, and total phenolics were found to be optimum in the beverage samples treated at 80 °C. It was revealed that the microbial shelf-life of beverages enhanced with an increase in processing temperatures. The untreated beverage samples could only retain a shelf-life of 4 days, however, samples treated at 80 °C for 60 s were rendered fit for 40 ± 2 days. Therefore, with the help of molecular docking, this manuscript assessed the protein-ligand interaction with the thermally induced quality changes in tomato-based beverages.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44535707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/beverages9010013
Hsiao-Wen Huang, Wei-Tun Chang
With the difference in the photosynthesis process between C3- and C4-plants, the 13C/12C stable isotope ratio of ethanol, i.e., δ13C-ethanol, can potentially be a basis for the discrimination of Scotch whiskies derived from different raw materials. This study analyzed 51 authentic single malt Scotch whiskies and 34 authentic blended Scotch whiskies by gas chromatography–combustion–isotope ratio mass spectrometry (GC-C-IRMS) and examined the resulting data by a series of fitting distribution processes. The evaluation result demonstrated that δ13C-ethanol distribution of single malt Scotch whiskies fitted both normal and 3-parameter lognormal distribution. For blended Scotch whiskies, however, the data distribution of δ13C-ethanol conformed with a 3-parameter lognormal distribution rather than a normal one. Moreover, 99.7% of the confidence intervals (CI) of δ13C-ethanol for single malt Scotch whiskies would define between −23.21‰ to −30.07‰ for 3-parameter lognormal distribution, while from −11.19‰ to −28.93‰ for blended Scotch whiskies on the basis of the statistical properties. The simulative adulterated Scotch whiskies using more than 30% C4-derived edible distilled spirits can be effectively discriminated by means of CI of δ13C-ethanol. Since the addition of rectified spirits produced from the C4 plant has been found in some cases of seized Scotch whiskies in Taiwan, establishing a CI of δ13C-ethanol would be valuable for the purpose of Scotch whisky authentication.
{"title":"δ13C-Ethanol as a Potential Exclusionary Criterium for the Authentication of Scotch Whiskies in Taiwan: Normal vs. 3-Parameter Lognormal Distributions of δ13C-Ethanol Found in Single Malt and Blended Scotch Whiskies","authors":"Hsiao-Wen Huang, Wei-Tun Chang","doi":"10.3390/beverages9010013","DOIUrl":"https://doi.org/10.3390/beverages9010013","url":null,"abstract":"With the difference in the photosynthesis process between C3- and C4-plants, the 13C/12C stable isotope ratio of ethanol, i.e., δ13C-ethanol, can potentially be a basis for the discrimination of Scotch whiskies derived from different raw materials. This study analyzed 51 authentic single malt Scotch whiskies and 34 authentic blended Scotch whiskies by gas chromatography–combustion–isotope ratio mass spectrometry (GC-C-IRMS) and examined the resulting data by a series of fitting distribution processes. The evaluation result demonstrated that δ13C-ethanol distribution of single malt Scotch whiskies fitted both normal and 3-parameter lognormal distribution. For blended Scotch whiskies, however, the data distribution of δ13C-ethanol conformed with a 3-parameter lognormal distribution rather than a normal one. Moreover, 99.7% of the confidence intervals (CI) of δ13C-ethanol for single malt Scotch whiskies would define between −23.21‰ to −30.07‰ for 3-parameter lognormal distribution, while from −11.19‰ to −28.93‰ for blended Scotch whiskies on the basis of the statistical properties. The simulative adulterated Scotch whiskies using more than 30% C4-derived edible distilled spirits can be effectively discriminated by means of CI of δ13C-ethanol. Since the addition of rectified spirits produced from the C4 plant has been found in some cases of seized Scotch whiskies in Taiwan, establishing a CI of δ13C-ethanol would be valuable for the purpose of Scotch whisky authentication.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49511456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-31DOI: 10.3390/beverages9010011
Jessica Cartwright, M. Netzel, Y. Sultanbawa, O. Wright
It is well-established that remote Indigenous communities have higher rates of sugar-sweetened beverage (SSB) consumption than non-Indigenous counterparts, which results in higher rates of chronic diseases such as type 2 diabetes mellitus (T2DM), obesity, and kidney disease. The aetiology leading to this behaviour remains understudied and overlooked. Therefore, the aim of this literature review is to understand the underpinning factors that contribute to SSB consumption in remote Indigenous communities. Studies were identified through five databases (n = 2529) and grey literature searching (n = 54). Following the PRISMA guidelines, each paper was assessed for eligibility, which left 34 studies for inclusion in the review. Within these papers, 37 different factors were found to influence SSB consumption in remote Indigenous communities. These were organised according to the Determinants of Nutrition and Eating (DONE) framework. SSB consumption was found to influence intake through each main level of the framework; individual (n = 9), interpersonal (n = 18), environmental (n = 9), and policy (n = 3). Preference was identified to be the most common factor to influence intake (n = 19), followed by health literacy (n = 15) and community availability (n = 12). Despite this, interventions to reduce SSB intake have never targeted this factor. This paper highlights the importance of a multi-level whole-of-system approach and suggests that an individual’s taste/preference should shape the direction of future research and intervention in this area.
{"title":"Seeking Sweetness: A Systematic Scoping Review of Factors Influencing Sugar-Sweetened Beverage Consumption in Remote Indigenous Communities Worldwide","authors":"Jessica Cartwright, M. Netzel, Y. Sultanbawa, O. Wright","doi":"10.3390/beverages9010011","DOIUrl":"https://doi.org/10.3390/beverages9010011","url":null,"abstract":"It is well-established that remote Indigenous communities have higher rates of sugar-sweetened beverage (SSB) consumption than non-Indigenous counterparts, which results in higher rates of chronic diseases such as type 2 diabetes mellitus (T2DM), obesity, and kidney disease. The aetiology leading to this behaviour remains understudied and overlooked. Therefore, the aim of this literature review is to understand the underpinning factors that contribute to SSB consumption in remote Indigenous communities. Studies were identified through five databases (n = 2529) and grey literature searching (n = 54). Following the PRISMA guidelines, each paper was assessed for eligibility, which left 34 studies for inclusion in the review. Within these papers, 37 different factors were found to influence SSB consumption in remote Indigenous communities. These were organised according to the Determinants of Nutrition and Eating (DONE) framework. SSB consumption was found to influence intake through each main level of the framework; individual (n = 9), interpersonal (n = 18), environmental (n = 9), and policy (n = 3). Preference was identified to be the most common factor to influence intake (n = 19), followed by health literacy (n = 15) and community availability (n = 12). Despite this, interventions to reduce SSB intake have never targeted this factor. This paper highlights the importance of a multi-level whole-of-system approach and suggests that an individual’s taste/preference should shape the direction of future research and intervention in this area.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47093545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-28DOI: 10.3390/beverages9010010
Andrew J. Ledley, R. Elias, D. Cockburn
A successful wort fermentation depends on both the sugar and the free amino nitrogen (FAN) content of a wort. The primary goal of the mashing step is to generate fermentable sugars, as FAN is regarded as being primarily determined by malt quality; however, the role of mashing in modifying FAN has not been extensively studied, especially with respect to non-barley brewing materials. In this study, the FAN content of gluten-free (GF) worts varied greatly from barley (73–490 mg/L vs. 201 mg/L, respectively) and yielded different amino acid profiles, including lower proline and higher γ-aminobutyric acid concentrations. While most of the amino acids were present in the malt or generated in a brief window early in the mashing, significant increases in amino acid concentrations could be generated by mashing at temperatures below 55 °C. Overall, GF malts are promising brewing ingredients that can produce quality worts if appropriate mashing conditions are implemented.
{"title":"Evaluating the Role of Mashing in the Amino Acid Profiles of Worts Produced from Gluten-Free Malts","authors":"Andrew J. Ledley, R. Elias, D. Cockburn","doi":"10.3390/beverages9010010","DOIUrl":"https://doi.org/10.3390/beverages9010010","url":null,"abstract":"A successful wort fermentation depends on both the sugar and the free amino nitrogen (FAN) content of a wort. The primary goal of the mashing step is to generate fermentable sugars, as FAN is regarded as being primarily determined by malt quality; however, the role of mashing in modifying FAN has not been extensively studied, especially with respect to non-barley brewing materials. In this study, the FAN content of gluten-free (GF) worts varied greatly from barley (73–490 mg/L vs. 201 mg/L, respectively) and yielded different amino acid profiles, including lower proline and higher γ-aminobutyric acid concentrations. While most of the amino acids were present in the malt or generated in a brief window early in the mashing, significant increases in amino acid concentrations could be generated by mashing at temperatures below 55 °C. Overall, GF malts are promising brewing ingredients that can produce quality worts if appropriate mashing conditions are implemented.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46611719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-24DOI: 10.3390/beverages9010009
A. Baiano, A. Fiore, B. la Gatta, M. Tufariello, C. Gerardi, M. Savino, F. Grieco
White beers owe their name to their straw yellow colour deriving from the use of unmalted wheat, which also supplies a relatively high protein content causing haze formation. This study aimed to develop white-inspired craft beers made with combinations of three mixtures of barley malt/unmalted wheat (alternatively durum-var. Dauno III, soft-var. Risciola, or emmer-var. Padre Pio), two hop varieties (Cascade or Columbus), and two Saccharomyces cerevisiae strains (Belgian yeast and a high-ester producing yeast); and assess the single and interactive effects of these ingredients on physical, chemical, and sensory characteristics of the beers. According to the graphical representation of the results for the Principal Component Analysis, most of the samples appear overlapped since they had similar characteristics, but it was possible to highlight two clusters of beers different from the others: those produced with (a) Risciola wheat and Columbus hop and (b) Dauno III wheat, Cascade hop, and the Belgian yeast. The beers of these clusters obtained the highest scores for their overall quality that, in turn, was positively correlated with concentrations of citric acid, 4-hydroxybenzoic acid, syringic acid, and epicatechin; alcohol %, colour, amount and persistence of foam, intensity of fruity flavour, and body.
{"title":"Single and Interactive Effects of Unmalted Cereals, Hops, and Yeasts on Quality of White-Inspired Craft Beers","authors":"A. Baiano, A. Fiore, B. la Gatta, M. Tufariello, C. Gerardi, M. Savino, F. Grieco","doi":"10.3390/beverages9010009","DOIUrl":"https://doi.org/10.3390/beverages9010009","url":null,"abstract":"White beers owe their name to their straw yellow colour deriving from the use of unmalted wheat, which also supplies a relatively high protein content causing haze formation. This study aimed to develop white-inspired craft beers made with combinations of three mixtures of barley malt/unmalted wheat (alternatively durum-var. Dauno III, soft-var. Risciola, or emmer-var. Padre Pio), two hop varieties (Cascade or Columbus), and two Saccharomyces cerevisiae strains (Belgian yeast and a high-ester producing yeast); and assess the single and interactive effects of these ingredients on physical, chemical, and sensory characteristics of the beers. According to the graphical representation of the results for the Principal Component Analysis, most of the samples appear overlapped since they had similar characteristics, but it was possible to highlight two clusters of beers different from the others: those produced with (a) Risciola wheat and Columbus hop and (b) Dauno III wheat, Cascade hop, and the Belgian yeast. The beers of these clusters obtained the highest scores for their overall quality that, in turn, was positively correlated with concentrations of citric acid, 4-hydroxybenzoic acid, syringic acid, and epicatechin; alcohol %, colour, amount and persistence of foam, intensity of fruity flavour, and body.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42083132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.3390/beverages9010007
G. Carvalho, Ana Catarina Leite, Rita Leal, Ricardo Pereira
The brewing industry is regarded as a fiercely competitive and insatiable sector of activity, driven by the significant technological improvements observed in recent years and the most recent consumer trends pointing to a sharp demand for sensory enhanced beers. Some emergent and sustainable technologies regarding food processing such as pulsed electric fields (PEF), ultrasound (US), thermosonication (TS), high-pressure processing (HPP), and ohmic heating (OH) have shown the potential to contribute to the development of currently employed brewing methodologies by both enhancing the quality of beer and contributing to processing efficiency with a promise of being more environmentally friendly. Some of these technologies have not yet found their way into the industrial brewing process but already show potential to be embedded in continuous thermal and non-thermal unit operations such as pasteurization, boiling and sterilization, resulting in beer with improved organoleptic properties. This review article aims to explore the potential of different advanced processing technologies for industrial application in several key stages of brewing, with particular emphasis on continuous beer production.
{"title":"The Role of Emergent Processing Technologies in Beer Production","authors":"G. Carvalho, Ana Catarina Leite, Rita Leal, Ricardo Pereira","doi":"10.3390/beverages9010007","DOIUrl":"https://doi.org/10.3390/beverages9010007","url":null,"abstract":"The brewing industry is regarded as a fiercely competitive and insatiable sector of activity, driven by the significant technological improvements observed in recent years and the most recent consumer trends pointing to a sharp demand for sensory enhanced beers. Some emergent and sustainable technologies regarding food processing such as pulsed electric fields (PEF), ultrasound (US), thermosonication (TS), high-pressure processing (HPP), and ohmic heating (OH) have shown the potential to contribute to the development of currently employed brewing methodologies by both enhancing the quality of beer and contributing to processing efficiency with a promise of being more environmentally friendly. Some of these technologies have not yet found their way into the industrial brewing process but already show potential to be embedded in continuous thermal and non-thermal unit operations such as pasteurization, boiling and sterilization, resulting in beer with improved organoleptic properties. This review article aims to explore the potential of different advanced processing technologies for industrial application in several key stages of brewing, with particular emphasis on continuous beer production.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43646877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.3390/beverages9010008
M. Rouxinol, M. Martins, V. Salgueiro, Maria João Costa, J. M. Barroso, A. Rato
Wine quality is determined by the development of grape maturation, which is highly dependent on climate variations. Extreme weather events are becoming more common, which will affect the productivity and quality of grapes and wine. Grape development depends on many factors, including weather, and extreme events will influence berry size, skin thickness and the development of some key compounds, such as phenolics. In this work, the ripening evolution and phenolic content of Vitis vinifera extracts from a vineyard in Alentejo (Portugal) were evaluated in two distinct climatic years. During this period, the influence of climatic conditions on grape ripening, and thereby on red wine quality, was assessed. The results demonstrate differences in polyphenol compounds between years and the importance of monitoring their content during maturation. The reduction of berry size, apparently due to lower pluviosity and higher temperatures, resulted in a higher content of polyphenolic compounds related to grape quality.
{"title":"Climate Effect on Morphological Traits and Polyphenolic Composition of Red Wine Grapes of Vitis vinifera","authors":"M. Rouxinol, M. Martins, V. Salgueiro, Maria João Costa, J. M. Barroso, A. Rato","doi":"10.3390/beverages9010008","DOIUrl":"https://doi.org/10.3390/beverages9010008","url":null,"abstract":"Wine quality is determined by the development of grape maturation, which is highly dependent on climate variations. Extreme weather events are becoming more common, which will affect the productivity and quality of grapes and wine. Grape development depends on many factors, including weather, and extreme events will influence berry size, skin thickness and the development of some key compounds, such as phenolics. In this work, the ripening evolution and phenolic content of Vitis vinifera extracts from a vineyard in Alentejo (Portugal) were evaluated in two distinct climatic years. During this period, the influence of climatic conditions on grape ripening, and thereby on red wine quality, was assessed. The results demonstrate differences in polyphenol compounds between years and the importance of monitoring their content during maturation. The reduction of berry size, apparently due to lower pluviosity and higher temperatures, resulted in a higher content of polyphenolic compounds related to grape quality.","PeriodicalId":8773,"journal":{"name":"Beverages","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69559323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}