Type 2 diabetes mellitus (T2DM) is a global health challenge, necessitating innovative antidiabetic treatments. Levels of plasminogen activator inhibitor-1 (PAI-1) are elevated in patients with T2DM and may be an important but underappreciated risk factor for diabetes. However, its relationship with T2DM remains unclear. To this end, we developed a potent and highly specific PAI-1 inhibitor named PAItrap3. We aimed to elucidate the metabolic effects of PAItrap3 using a preclinical db/db mouse model. PAItrap3 was administered to mice intravenously, followed by an assessment of biochemical markers, histopathological examination of the liver and pancreas, and evaluation of the expression of hepatic proteins integral to insulin signaling. PAItrap3 demonstrated potent efficacy in alleviating hyperglycemia and enhancing glycemic control. This therapeutic action was supported by its ability to enhance β-cell function, consequently mitigating β-cell apoptosis and preserving their integrity. Furthermore, PAItrap3 alleviated hepatic insulin resistance through the regulation of lipid and glucose metabolism, thereby maintaining the delicate homeostasis of systemic lipid and glucose metabolism. These findings suggest that PAItrap3 is a promising therapeutic candidate for T2DM. The multifaceted benefits of PAItrap3 highlight its potential to vastly improve the effectiveness and specificity of T2DM treatment paradigms.
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity but are limited by adverse effects. Emerging therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Pigs are often used in drug metabolism studies because of their evolutionary proximity to humans, including similarities in their cytochromes P450 (P450s or CYPs). In the current study, the following cDNAs of novel CYP4Fs were isolated and characterized: dog CYP4F22 and CYP4F140; cat CYP4F22 and CYP4F140; pig CYP4F22, CYP4F52, CYP4F53, CYP4F54, CYP4F56, and CYP4F176; and tree shrew CYP4F22. Previously identified pig CYP4F55 cDNA was also isolated. These CYP4F cDNAs contained open reading frames of 522-531 amino acids and shared high sequence identities (60-92 %) with human CYP4Fs. Dog CYP4F3a and CYP4F3b cDNAs were also identified but lacked the 3' end of the coding region. Phylogenetic analysis of amino acid sequences showed that these CYP4Fs were clustered in a species-dependent manner, except for CYP4F3, CYP4F22, and CYP4F140, which were clustered in an isoform-dependent manner. All CYP4F genes, containing 12 coding exons, formed a gene cluster at the corresponding location of the genome in each species. Among the tissue samples analyzed, dog and cat CYP4F140 mRNAs were more abundantly expressed in liver/testis and kidney, respectively. Preferential expression of pig CYP4F mRNAs were found in liver, small intestine, and/or kidney, where the most abundant were CYP4F56, CYP4F52, and CYP4F176 mRNAs, respectively. Enzyme assays using recombinant proteins revealed that all these CYP4Fs oxidized the human CYP4F substrate arachidonic acid at the ω-position, indicating that they are functional enzymes. These findings suggest that dog, cat, pig, and tree shrew CYP4Fs have similar functional characteristics to human CYP4Fs.