Stress is widely recognized as the primary environmental factor associated with chronic pain conditions, including fibromyalgia. A recent study demonstrated the potential antinociceptive effects of 4-amino-3-(phenylselanyl) benzenesulfonamide (4-APSB) in acute nociceptive animal models due to its antioxidant and anti-inflammatory properties. However, the efficacy of 4-APSB in managing chronic painful conditions, such as fibromyalgia, has not been explored so far. This study investigated the pharmacological effects of 4-APSB in an experimental model of fibromyalgia induced by intermittent cold stress (ICS). Male and female mice were divided into Control, ICS, 4-APSB, and ICS + 4-APSB. After the ICS, the animals were treated with 4-APSB (1 mg kg-1) or vehicle by the intragastric route until the tenth day. The behavioral tasks were performed on days 5, 8, and 10. The findings showed a negative correlation between paw withdrawal threshold and Nrf2 or NFκB mRNA expression levels caused by ICS exposure. The 4-APSB suppressed the nociceptive signs and a depressive like-phenotype in male and female mice exposed to ICS. 4-APBS normalized the elevated levels of TBARS and the up-regulation of Nrf2 and NFκB expression in the cerebral cortex of ICS-exposed mice. This compound also modulated the oxidative stress in the spinal cord of female mice. The 4-APSB attenuated the inhibition of Na+, K+ - ATPase activity in the central nervous system (CNS) of female mice exposed to ICS. 4-APSB attenuated behavioral and redox imbalance triggered by the ICS model in male and female mice, suggesting its beneficial effects for treating fibromyalgia in both sexes.
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.