Yue Li, Chi H Trinh, Amanda Acevedo-Jake, Diana Gimenez, Stuart L Warriner, Andrew J Wilson
The PDZ (Postsynaptic density protein-95[PSD-95]/Discs-large) domain, prevalent as a recognition module, has attracted significant attention given its ability to specifically recognize ligands with consensus motifs (also termed PDZ binding motifs [PBMs]). PBMs typically bear a C-terminal carboxylate as a recognition handle and have been extensively characterized, whilst internal ligands are less well known. Here we characterize a short linear motif (SLiM) - EESTSFQGP - as an internal PBM based on its strong binding affinity towards the SHANK1 PDZ domain (SHANK1656-762 hereafter referred to as SHANK1). Using the acetylated analogue Ac-EESTSFQGP-CONH2 as a competitor for the interaction of SHANK1 with FAM-Ahx-EESTSFQGP-CONH2 or a typical fluorophore-labelled C-terminal PBM - GKAP - FITC-Ahx-EAQTRL-COOH - the internal SLiM was demonstrated to show comparable low-micromolar IC50 by competition fluorescent anisotropy. To gain further insight into the internal ligand interaction at the molecular level, we obtained the X-ray co-crystal structure of the Ac-EESTSFQGP-CONH2/SHANK1 complex and compared this to the Ac-EAQTRL-COOH/SHANK1 complex. The crystallographic studies reveal that the SHANK1 backbones for the two interactions overlap significantly. The main structural differences were shown to result from the flexible loops which reorganize to accommodate the two PBMs with distinct lengths and terminal groups. In addition, the two C-terminal residues Gly and Pro in Ac-EESTSFQGP-CONH2 were shown not to participate in interaction with the target protein, implying further truncation and structural modification using peptidomimetic approaches on this sequence may be feasible. Taken together, the SLiM Ac-EESTSFQGP-CONH2 holds potential as an internal ligand for targeting SHANK1.
PDZ(突触后密度蛋白-95[PSD-95]/Discs-large)结构域是一种识别模块,由于它能够特异性地识别具有共识基调(也称为 PDZ 结合基调 [PBM])的配体,因此备受关注。PBM 通常以 C 端羧酸盐作为识别柄,并已被广泛表征,而内部配体则鲜为人知。在这里,我们根据短线性基团(SLiM)--EESTSFQGP--与 SHANK1 PDZ 结构域(SHANK1656-762,以下简称 SHANK1)的强结合亲和力,将其表征为内部 PBM。使用乙酰化类似物 Ac-EESTSFQGP-CONH2 作为 SHANK1 与 FAM-Ahx-EESTSFQGP-CONH2 或典型的荧光团标记的 C 端 PBM(GKAP-FITC-Ahx-EAQTRL-COOH)相互作用的竞争物,通过竞争荧光各向异性(FA)证明内部 SLiM 显示出相似的低微摩尔 IC50。为了进一步了解内部配体在分子水平上的相互作用,我们获得了 Ac-EESTSFQGP-CONH2/SHANK1 复合物的 X 射线共晶体结构,并将其与 Ac-EAQTRL-COOH/SHANK1 复合物进行了比较。晶体学研究显示,这两种相互作用的 SHANK1 主干有明显重叠。主要的结构差异来自于柔性环,这些柔性环重组以容纳两个具有不同长度和末端基团的 PBM。此外,Ac-EESTSFQGP-CONH2 中的两个 C 端残基 Gly 和 Pro 未参与与目标蛋白的相互作用,这意味着使用拟肽方法对该序列进行进一步截短和结构修饰是可行的。综上所述,SLiM Ac-EESTSFQGP-CONH2 有潜力成为靶向 SHANK1 的内部配体。
{"title":"Biophysical and structural analyses of the interaction between the SHANK1 PDZ domain and an internal SLiM.","authors":"Yue Li, Chi H Trinh, Amanda Acevedo-Jake, Diana Gimenez, Stuart L Warriner, Andrew J Wilson","doi":"10.1042/BCJ20240126","DOIUrl":"10.1042/BCJ20240126","url":null,"abstract":"<p><p>The PDZ (Postsynaptic density protein-95[PSD-95]/Discs-large) domain, prevalent as a recognition module, has attracted significant attention given its ability to specifically recognize ligands with consensus motifs (also termed PDZ binding motifs [PBMs]). PBMs typically bear a C-terminal carboxylate as a recognition handle and have been extensively characterized, whilst internal ligands are less well known. Here we characterize a short linear motif (SLiM) - EESTSFQGP - as an internal PBM based on its strong binding affinity towards the SHANK1 PDZ domain (SHANK1656-762 hereafter referred to as SHANK1). Using the acetylated analogue Ac-EESTSFQGP-CONH2 as a competitor for the interaction of SHANK1 with FAM-Ahx-EESTSFQGP-CONH2 or a typical fluorophore-labelled C-terminal PBM - GKAP - FITC-Ahx-EAQTRL-COOH - the internal SLiM was demonstrated to show comparable low-micromolar IC50 by competition fluorescent anisotropy. To gain further insight into the internal ligand interaction at the molecular level, we obtained the X-ray co-crystal structure of the Ac-EESTSFQGP-CONH2/SHANK1 complex and compared this to the Ac-EAQTRL-COOH/SHANK1 complex. The crystallographic studies reveal that the SHANK1 backbones for the two interactions overlap significantly. The main structural differences were shown to result from the flexible loops which reorganize to accommodate the two PBMs with distinct lengths and terminal groups. In addition, the two C-terminal residues Gly and Pro in Ac-EESTSFQGP-CONH2 were shown not to participate in interaction with the target protein, implying further truncation and structural modification using peptidomimetic approaches on this sequence may be feasible. Taken together, the SLiM Ac-EESTSFQGP-CONH2 holds potential as an internal ligand for targeting SHANK1.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346428/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dang Nguyen, Elizabeth Osterlund, Justin Kale, David W Andrews
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
{"title":"The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death.","authors":"Dang Nguyen, Elizabeth Osterlund, Justin Kale, David W Andrews","doi":"10.1042/BCJ20210352","DOIUrl":"10.1042/BCJ20210352","url":null,"abstract":"<p><p>Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyle D Shead, Veneta Salyahetdinova, George S Baillie
Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.
丝胶 A 是细胞细胞骨架中的一种重要蛋白质,因为它具有肌动蛋白结合特性和独特的同源二聚体杆状结构,能将肌动蛋白组织成三维正交网络,对细胞的运动、扩散和粘附至关重要。丝胶蛋白 A 受到广泛的翻译后修饰 (PTM),这有助于协调细胞结构,调节其庞大的蛋白-蛋白相互作用网络,而这正是丝胶蛋白发挥细胞信号枢纽作用的关键所在。已确定的 PTM 包括磷酸化、不可逆裂解、泛素介导的降解、羟基化和 O-GlcNAcylation,还有酪氨酸化、羰基化和乙酰化的初步证据。这里将介绍每种修饰及其与丝胺 A 功能的关系。这些修饰通常在一系列疾病中异常应用,包括但不限于癌症、心血管疾病和神经系统疾病,我们将讨论具有新型治疗模式的靶向特异性 PTMs 概念。总之,我们的综述是专题性的 "一站式服务",有助于了解丝胺 A 在细胞稳态中的功能,并深入探讨各种修饰如何增加丝胺 A 的额外控制水平。
{"title":"Charting the importance of filamin A posttranslational modifications.","authors":"Kyle D Shead, Veneta Salyahetdinova, George S Baillie","doi":"10.1042/BCJ20240121","DOIUrl":"10.1042/BCJ20240121","url":null,"abstract":"<p><p>Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salvador González-Gordo, Javier López-Jaramillo, Marta Rodríguez-Ruiz, Jorge Taboada, José M Palma, Francisco J Corpas
Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.
{"title":"Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide.","authors":"Salvador González-Gordo, Javier López-Jaramillo, Marta Rodríguez-Ruiz, Jorge Taboada, José M Palma, Francisco J Corpas","doi":"10.1042/BCJ20240247","DOIUrl":"10.1042/BCJ20240247","url":null,"abstract":"<p><p>Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
{"title":"Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery.","authors":"Susannah L Parkhill, Eachan O Johnson","doi":"10.1042/BCJ20220062","DOIUrl":"10.1042/BCJ20220062","url":null,"abstract":"<p><p>The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth C Martin, Adam G M Bowie, Taylor Wellfare Reid, C Neil Hunter, Andrew Hitchcock, David J K Swainsbury
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
{"title":"Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex.","authors":"Elizabeth C Martin, Adam G M Bowie, Taylor Wellfare Reid, C Neil Hunter, Andrew Hitchcock, David J K Swainsbury","doi":"10.1042/BCJ20240125","DOIUrl":"10.1042/BCJ20240125","url":null,"abstract":"<p><p>The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346425/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Honghong Chen, Yi X Li, Robert S Wong, Jessica L Esseltine, Donglin Bai
Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.
{"title":"Genetically engineered human embryonic kidney cells as a novel vehicle for dual patch clamp study of human gap junction channels.","authors":"Honghong Chen, Yi X Li, Robert S Wong, Jessica L Esseltine, Donglin Bai","doi":"10.1042/BCJ20240016","DOIUrl":"10.1042/BCJ20240016","url":null,"abstract":"<p><p>Mutations in more than half of human connexin genes encoding gap junction (GJ) subunits have been linked to inherited human diseases. Functional studies of human GJ channels are essential for revealing mechanistic insights into the etiology of disease-linked connexin mutants. However, the commonly used Xenopus oocytes, N2A, HeLa, and other model cells for recombinant expression of human connexins have different and significant limitations. Here we developed a human cell line (HEK293) with each of the endogenous connexins (Cx43 and Cx45) knocked out using the CRISPR-Cas9 system. Double knockout HEK293 cells showed no background GJ coupling, were easily transfected with several human connexin genes (such as those encoding Cx46, Cx50, Cx37, Cx45, Cx26, and Cx36) which successfully formed functional GJs and were readily accessible for dual patch clamp analysis. Single knockout Cx43 or Cx45 HEK cell lines could also be used to characterize human GJ channels formed by Cx45 or Cx43, respectively, with an expression level suitable for studying macroscopic and single channel GJ channel properties. A cardiac arrhythmia linked Cx45 mutant R184G failed to form functional GJs in DKO HEK293 cells with impaired localizations. These genetically engineered HEK293 cells are well suited for patch clamp study of human GJ channels.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Asmaa Abbas, Ranjit K Prajapati, Emil Aalto-Setälä, Alexander A Baykov, Anssi M Malinen
Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.
黄曲霉毒素是由曲霉菌产生的强效食源性致癌物质,在全球范围内对健康构成重大威胁,并对食物链中的食品安全和生产率构成挑战。目前迫切需要新的策略来干扰黄曲霉毒素的生产、培育抗逆性作物和检测受污染的食物。了解黄曲霉毒素产生的调控机制对于采取有针对性的干预措施以减少毒素在食品和饲料中的积累至关重要。负责黄曲霉毒素生物合成的基因簇编码生物合成酶和途径特异性调控因子,特别是 AflR 和 AflS。AflR 是一种 DNA 结合蛋白,可激活基因簇内的基因转录,而 AflS 则通过尚未完全清楚的机制提高黄曲霉毒素的产量。在这项研究中,我们制定了纯化重组 AflR 和 AflS 蛋白的方案,并利用多种检测方法来鉴定它们与 DNA 的相互作用。我们的生物物理分析表明,AflR 和 AflS 形成了一个复合物。AflS 本身没有 DNA 结合能力,但却意外地降低了 AflR 的 DNA 结合亲和力。此外,我们还发现,AflR 是通过一种机制实现其结合特异性的,在这种机制中,两个拷贝的 AflR 或其与 AflS 的复合物以高度合作的方式结合到 DNA 上的目标位点。AflR、AflS 和 DNA 目标位点相互作用参数的估计值构成了一个基本框架,可以据此比较其他黄曲霉毒素生物合成调节剂的功能和机制。
{"title":"Aflatoxin biosynthesis regulators AflR and AflS: DNA binding affinity, stoichiometry, and kinetics.","authors":"Asmaa Abbas, Ranjit K Prajapati, Emil Aalto-Setälä, Alexander A Baykov, Anssi M Malinen","doi":"10.1042/BCJ20240084","DOIUrl":"10.1042/BCJ20240084","url":null,"abstract":"<p><p>Aflatoxins (AFs), potent foodborne carcinogens produced by Aspergillus fungi, pose significant health risks worldwide and present challenges to food safety and productivity in the food chain. Novel strategies for disrupting AF production, cultivating resilient crops, and detecting contaminated food are urgently needed. Understanding the regulatory mechanisms of AF production is pivotal for targeted interventions to mitigate toxin accumulation in food and feed. The gene cluster responsible for AF biosynthesis encodes biosynthetic enzymes and pathway-specific regulators, notably AflR and AflS. While AflR, a DNA-binding protein, activates gene transcription within the cluster, AflS enhances AF production through mechanisms that are not fully understood. In this study, we developed protocols to purify recombinant AflR and AflS proteins and utilized multiple assays to characterize their interactions with DNA. Our biophysical analysis indicated that AflR and AflS form a complex. AflS exhibited no DNA-binding capability on its own but unexpectedly reduced the DNA-binding affinity of AflR. Additionally, we found that AflR achieves its binding specificity through a mechanism in which either two copies of AflR or its complex with AflS bind to target sites on DNA in a highly cooperative manner. The estimated values of the interaction parameters of AflR, AflS and DNA target sites constitute a fundamental framework against which the function and mechanisms of other AF biosynthesis regulators can be compared.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefanie J Hodapp, Nathan Gravel, Natarajan Kannan, Alexandra C Newton
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
{"title":"Cancer-associated mutations in protein kinase C theta are loss-of-function.","authors":"Stefanie J Hodapp, Nathan Gravel, Natarajan Kannan, Alexandra C Newton","doi":"10.1042/BCJ20240148","DOIUrl":"10.1042/BCJ20240148","url":null,"abstract":"<p><p>The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346454/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140943762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR-Cas systems confer adaptive immunity in prokaryotes, facilitating the recognition and destruction of invasive nucleic acids. Type III CRISPR systems comprise large, multisubunit ribonucleoprotein complexes with a catalytic Cas10 subunit. When activated by the detection of foreign RNA, Cas10 generates nucleotide signalling molecules that elicit an immune response by activating ancillary effector proteins. Among these systems, the Bacteroides fragilis type III CRISPR system was recently shown to produce a novel signal molecule, SAM-AMP, by conjugating ATP and SAM. SAM-AMP regulates a membrane effector of the CorA family to provide immunity. Here, we focus on NYN, a ribonuclease encoded within this system, probing its potential involvement in crRNA maturation. Structural modelling and in vitro ribonuclease assays reveal that NYN displays robust sequence-nonspecific, Mn2+-dependent ssRNA-cleavage activity. Our findings suggest a role for NYN in trimming crRNA intermediates into mature crRNAs, which is necessary for type III CRISPR antiviral defence. This study sheds light on the functional relevance of CRISPR-associated NYN proteins and highlights the complexity of CRISPR-mediated defence strategies in bacteria.
{"title":"RNA processing by the CRISPR-associated NYN ribonuclease.","authors":"Haotian Chi, Malcolm F White","doi":"10.1042/BCJ20240151","DOIUrl":"10.1042/BCJ20240151","url":null,"abstract":"<p><p>CRISPR-Cas systems confer adaptive immunity in prokaryotes, facilitating the recognition and destruction of invasive nucleic acids. Type III CRISPR systems comprise large, multisubunit ribonucleoprotein complexes with a catalytic Cas10 subunit. When activated by the detection of foreign RNA, Cas10 generates nucleotide signalling molecules that elicit an immune response by activating ancillary effector proteins. Among these systems, the Bacteroides fragilis type III CRISPR system was recently shown to produce a novel signal molecule, SAM-AMP, by conjugating ATP and SAM. SAM-AMP regulates a membrane effector of the CorA family to provide immunity. Here, we focus on NYN, a ribonuclease encoded within this system, probing its potential involvement in crRNA maturation. Structural modelling and in vitro ribonuclease assays reveal that NYN displays robust sequence-nonspecific, Mn2+-dependent ssRNA-cleavage activity. Our findings suggest a role for NYN in trimming crRNA intermediates into mature crRNAs, which is necessary for type III CRISPR antiviral defence. This study sheds light on the functional relevance of CRISPR-associated NYN proteins and highlights the complexity of CRISPR-mediated defence strategies in bacteria.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}