Sophia Bustraan, Jane Bennett, Chad Whilding, Betheney R Pennycook, David Smith, Alexis R Barr, Jon Read, David Carling, Alice Pollard
Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.
{"title":"AMP-activated protein kinase activation suppresses leptin expression independently of adipogenesis in primary murine adipocytes.","authors":"Sophia Bustraan, Jane Bennett, Chad Whilding, Betheney R Pennycook, David Smith, Alexis R Barr, Jon Read, David Carling, Alice Pollard","doi":"10.1042/BCJ20240003","DOIUrl":"10.1042/BCJ20240003","url":null,"abstract":"<p><p>Adipogenesis, defined as the development of mature adipocytes from stem cell precursors, is vital for the expansion, turnover and health of adipose tissue. Loss of adipogenic potential in adipose stem cells, or impairment of adipogenesis is now recognised as an underlying cause of adipose tissue dysfunction and is associated with metabolic disease. In this study, we sought to determine the role of AMP-activated protein kinase (AMPK), an evolutionarily conserved master regulator of energy homeostasis, in adipogenesis. Primary murine adipose-derived stem cells were treated with a small molecule AMPK activator (BI-9774) during key phases of adipogenesis, to determine the effect of AMPK activation on adipocyte commitment, maturation and function. To determine the contribution of the repression of lipogenesis by AMPK in these processes, we compared the effect of pharmacological inhibition of acetyl-CoA carboxylase (ACC). We show that AMPK activation inhibits adipogenesis in a time- and concentration-dependent manner. Transient AMPK activation during adipogenic commitment leads to a significant, ACC-independent, repression of adipogenic transcription factor expression. Furthermore, we identify a striking, previously unexplored inhibition of leptin gene expression in response to both short-term and chronic AMPK activation irrespective of adipogenesis. These findings reveal that in addition to its effect on adipogenesis, AMPK activation switches off leptin gene expression in primary mouse adipocytes independently of adipogenesis. Our results identify leptin expression as a novel target of AMPK through mechanisms yet to be identified.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"345-362"},"PeriodicalIF":4.1,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pallavi Kaila Sharma, Jui-Hung Weng, Jascha T Manschwetus, Jian Wu, Wen Ma, Friedrich W Herberg, Susan S Taylor
Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.
{"title":"Role of the leucine-rich repeat protein kinase 2 C-terminal tail in domain cross-talk.","authors":"Pallavi Kaila Sharma, Jui-Hung Weng, Jascha T Manschwetus, Jian Wu, Wen Ma, Friedrich W Herberg, Susan S Taylor","doi":"10.1042/BCJ20230477","DOIUrl":"10.1042/BCJ20230477","url":null,"abstract":"<p><p>Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"313-327"},"PeriodicalIF":4.4,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139671223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.
肥胖导致的心脏代谢并发症与肥大脂肪组织(AT)中的慢性潜在炎症密切相关。IL-4 是一种抗炎细胞因子,对胰岛素抵抗、葡萄糖不耐受和体重增加具有保护作用。IL-4 的积极作用不仅与激活脂肪组织中的抗炎免疫细胞有关,还与脂肪细胞的新陈代谢调节有关。众所周知,IL-4 能激活脂肪细胞的脂肪分解和葡萄糖摄取,但这些过程的确切调节机制和生理意义仍不清楚。本研究详细阐述了 IL-4 对葡萄糖和三酰甘油(TAG)代谢的影响,并提出了 IL-4 在脂肪细胞中的代谢作用机制。我们发现脂肪分解并不伴随脂肪酸(FA)从脂肪细胞中释放,这表明脂肪酸再酯化。此外,葡萄糖氧化和产热刺激依赖于脂肪细胞甘油三酯脂肪酶(ATGL)的活性,但不依赖于解偶联蛋白(UCP1)的表达。基于这些数据,IL-4 可能会激活脂肪细胞中徒劳的 TAG-FA 循环,从而增强细胞的氧化活性和产热。因此,IL-4 对全身代谢的积极影响可能是由于激活了 AT 中的非经典致热机制,增加了 TAG 的周转和对过量葡萄糖的利用。
{"title":"IL-4 activates the futile triacylglyceride cycle for glucose utilization in white adipocytes.","authors":"Svetlana Michurina, Margarita Agareva, Ekaterina Zubkova, Mikhail Menshikov, Iurii Stafeev, Yelena Parfyonova","doi":"10.1042/BCJ20230486","DOIUrl":"10.1042/BCJ20230486","url":null,"abstract":"<p><p>The development of cardiometabolic complications during obesity is strongly associated with chronic latent inflammation in hypertrophied adipose tissue (AT). IL-4 is an anti-inflammatory cytokine, playing a protective role against insulin resistance, glucose intolerance and weight gain. The positive effects of IL-4 are associated not only with the activation of anti-inflammatory immune cells in AT, but also with the modulation of adipocyte metabolism. IL-4 is known to activate lipolysis and glucose uptake in adipocytes, but the precise regulatory mechanisms and physiological significance of these processes remain unclear. In this study, we detail IL-4 effects on glucose and triacylglycerides (TAGs) metabolism and propose mechanisms of IL-4 metabolic action in adipocytes. We have shown that IL-4 activates glucose oxidation, lipid droplet (LD) fragmentation, lipolysis and thermogenesis in mature 3T3-L1 adipocytes. We found that lipolysis was not accompanied by fatty acids (FAs) release from adipocytes, suggesting FA re-esterification. Moreover, glucose oxidation and thermogenesis stimulation depended on adipocyte triglyceride lipase (ATGL) activity, but not the uncoupling protein (UCP1) expression. Based on these data, IL-4 may activate the futile TAG-FA cycle in adipocytes, which enhances the oxidative activity of cells and heat production. Thus, the positive effect of IL-4 on systemic metabolism can be the result of the activation of non-canonical thermogenic mechanism in AT, increasing TAG turnover and utilization of excessive glucose.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"329-344"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mehmood Ali, Tripti Kumari, Arvind Gupta, Sariyah Akhtar, Rahul Dev Verma, Jimut Kanti Ghosh
Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.
{"title":"Identification of a 10-mer peptide from the death domain of MyD88 which attenuates inflammation and insulin resistance and improves glucose metabolism.","authors":"Mehmood Ali, Tripti Kumari, Arvind Gupta, Sariyah Akhtar, Rahul Dev Verma, Jimut Kanti Ghosh","doi":"10.1042/BCJ20230369","DOIUrl":"10.1042/BCJ20230369","url":null,"abstract":"<p><p>Insulin resistance (IR) is the key pathophysiological cause of type 2 diabetes, and inflammation has been implicated in it. The death domain (DD) of the adaptor protein, MyD88 plays a crucial role in the transduction of TLR4-associated inflammatory signal. Herein, we have identified a 10-residue peptide (M10), from the DD of MyD88 which seems to be involved in Myddosome formation. We hypothesized that M10 could inhibit MyD88-dependent TLR4-signaling and might have effects on inflammation-associated IR. Intriguingly, 10-mer M10 showed oligomeric nature and reversible self-assembly property indicating the peptide's ability to recognize its own amino acid sequence. M10 inhibited LPS-induced nuclear translocation of NF-κB in L6 myotubes and also reduced LPS-induced IL-6 and TNF-α production in peritoneal macrophages of BALB/c mice. Remarkably, M10 inhibited IL-6 and TNF-α secretion in diabetic, db/db mice. Notably, M10 abrogated IR in insulin-resistant L6 myotubes, which was associated with an increase in glucose uptake and a decrease in Ser307-phosphorylation of IRS1, TNF-α-induced JNK activation and nuclear translocation of NF-κB in these cells. Alternate day dosing with M10 (10 and 20 mg/kg) for 30 days in db/db mice significantly lowered blood glucose and improved glucose intolerance after loading, 3.0 g/kg glucose orally. Furthermore, M10 increased insulin and adiponectin secretion in db/db mice. M10-induced glucose uptake in L6 myotubes involved the activation of PI3K/AKT/GLUT4 pathways. A scrambled M10-analog was mostly inactive. Overall, the results show the identification of a 10-mer peptide from the DD of MyD88 with anti-inflammatory and anti-diabetic properties, suggesting that targeting of TLR4-inflammatory pathway, could lead to the discovery of molecules against IR and diabetes.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"191-218"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139471830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
许多细菌天然存在于称为生物膜的多细胞空间组织群落中。此外,大多数细菌感染都会形成生物膜,对人类健康构成重大挑战。在生物膜内,细菌细胞主要嵌在自产的细胞外基质中,这是所有生物膜的一个显著特征。生物膜基质是一种复杂的粘性混合物,主要由多糖、丝状蛋白纤维和细胞外 DNA 等高分子物质组成。基质的结构性排列赋予细菌浮游细胞所不具备的有益的突发性特性,使其能够抵御物理和化学压力,包括抗生素治疗。然而,由于缺乏分子水平的多尺度信息,人们无法更好地了解这种基质及其特性。在此,我们回顾了丝状生物膜基质成分的分子特征及其在生物膜内三维空间组织的最新进展。
{"title":"The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms.","authors":"Jan Böhning, Abul K Tarafder, Tanmay A M Bharat","doi":"10.1042/BCJ20210301","DOIUrl":"10.1042/BCJ20210301","url":null,"abstract":"<p><p>Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"481 4","pages":"245-263"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Bass, Sathish Sivaprakasam, Gunadharini Dharmalingam-Nandagopal, Muthusamy Thangaraju, Vadivel Ganapathy
Ketogenesis is considered to occur primarily in liver to generate ketones as an alternative energy source for non-hepatic tissues when glucose availability/utilization is impaired. 3-Hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2) mediates the rate-limiting step in this mitochondrial pathway. Publicly available databases show marked down-regulation of HMGCS2 in colonic tissues in Crohn's disease and ulcerative colitis. This led us to investigate the expression and function of this pathway in colon and its relevance to colonic inflammation in mice. Hmgcs2 is expressed in cecum and colon. As global deletion of Hmgcs2 showed significant postnatal mortality, we used a conditional knockout mouse with enzyme deletion restricted to intestinal tract. These mice had no postnatal mortality. Fasting blood ketones were lower in these mice, indicating contribution of colonic ketogenesis to circulating ketones. There was also evidence of gut barrier breakdown and increased susceptibility to experimental colitis with associated elevated levels of IL-6, IL-1β, and TNF-α in circulation. Interestingly, many of these phenomena were mostly evident in male mice. Hmgcs2 expression in colon is controlled by colonic microbiota as evidenced from decreased expression in germ-free mice and antibiotic-treated conventional mice and from increased expression in a human colonic epithelial cell line upon treatment with aqueous extracts of cecal contents. Transcriptomic analysis of colonic epithelia from control mice and Hmgcs2-null mice indicated an essential role for colonic ketogenesis in the maintenance of optimal mitochondrial function, cholesterol homeostasis, and cell-cell tight-junction organization. These findings demonstrate a sex-dependent obligatory role for ketogenesis in protection against colonic inflammation in mice.
{"title":"Colonic ketogenesis, a microbiota-regulated process, contributes to blood ketones and protects against colitis in mice.","authors":"Kevin Bass, Sathish Sivaprakasam, Gunadharini Dharmalingam-Nandagopal, Muthusamy Thangaraju, Vadivel Ganapathy","doi":"10.1042/BCJ20230403","DOIUrl":"10.1042/BCJ20230403","url":null,"abstract":"<p><p>Ketogenesis is considered to occur primarily in liver to generate ketones as an alternative energy source for non-hepatic tissues when glucose availability/utilization is impaired. 3-Hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2) mediates the rate-limiting step in this mitochondrial pathway. Publicly available databases show marked down-regulation of HMGCS2 in colonic tissues in Crohn's disease and ulcerative colitis. This led us to investigate the expression and function of this pathway in colon and its relevance to colonic inflammation in mice. Hmgcs2 is expressed in cecum and colon. As global deletion of Hmgcs2 showed significant postnatal mortality, we used a conditional knockout mouse with enzyme deletion restricted to intestinal tract. These mice had no postnatal mortality. Fasting blood ketones were lower in these mice, indicating contribution of colonic ketogenesis to circulating ketones. There was also evidence of gut barrier breakdown and increased susceptibility to experimental colitis with associated elevated levels of IL-6, IL-1β, and TNF-α in circulation. Interestingly, many of these phenomena were mostly evident in male mice. Hmgcs2 expression in colon is controlled by colonic microbiota as evidenced from decreased expression in germ-free mice and antibiotic-treated conventional mice and from increased expression in a human colonic epithelial cell line upon treatment with aqueous extracts of cecal contents. Transcriptomic analysis of colonic epithelia from control mice and Hmgcs2-null mice indicated an essential role for colonic ketogenesis in the maintenance of optimal mitochondrial function, cholesterol homeostasis, and cell-cell tight-junction organization. These findings demonstrate a sex-dependent obligatory role for ketogenesis in protection against colonic inflammation in mice.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"481 4","pages":"295-312"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katy R McCarron, Hannah Elcocks, Heather Mortiboys, Sylvie Urbé, Michael J Clague
The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.
{"title":"The Parkinson's disease related mutant VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress.","authors":"Katy R McCarron, Hannah Elcocks, Heather Mortiboys, Sylvie Urbé, Michael J Clague","doi":"10.1042/BCJ20230492","DOIUrl":"10.1042/BCJ20230492","url":null,"abstract":"<p><p>The identification of multiple genes linked to Parkinson's disease (PD) invites the question as to how they may co-operate. We have generated isogenic cell lines that inducibly express either wild-type or a mutant form of the retromer component VPS35 (D620N), which has been linked to PD. This has enabled us to test proposed effects of this mutation in a setting where the relative expression reflects the physiological occurrence. We confirm that this mutation compromises VPS35 association with the WASH complex, but find no defect in WASH recruitment to endosomes, nor in the distribution of lysosomal receptors, cation-independent mannose-6-phosphate receptor and Sortilin. We show VPS35 (D620N) enhances the activity of the Parkinson's associated kinase LRRK2 towards RAB12 under basal conditions. Furthermore, VPS35 (D620N) amplifies the LRRK2 response to endolysosomal stress resulting in enhanced phosphorylation of RABs 10 and 12. By comparing different types of endolysosomal stresses such as the ionophore nigericin and the membranolytic agent l-leucyl-l-leucine methyl ester, we are able to dissociate phospho-RAB accumulation from membrane rupture.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"265-278"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ellen N Weinzapfel, Karlie N Fedder-Semmes, Zu-Wen Sun, Michael-Christopher Keogh
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
{"title":"Beyond the tail: the consequence of context in histone post-translational modification and chromatin research.","authors":"Ellen N Weinzapfel, Karlie N Fedder-Semmes, Zu-Wen Sun, Michael-Christopher Keogh","doi":"10.1042/BCJ20230342","DOIUrl":"10.1042/BCJ20230342","url":null,"abstract":"<p><p>The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"481 4","pages":"219-244"},"PeriodicalIF":4.1,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The sub-compartmentalization of cellular processes is especially important in highly polarized cells such as neurons, as their function rely on their complex morphology. The association of RNAs to the mitochondrial surface is a conserved feature from yeast to humans and it regulates several aspects of mitochondrial physiology and, hence, cellular functions. In neurons, mitochondria are emerging as platforms for RNA transport and local protein translation. In this review, we discuss how RNA localization to mitochondria helps to sustain mitochondrial function, and how this can support mitochondrial homeostasis, especially in the distal parts of the neuron, to support neuronal activity.
{"title":"The role of mitochondrial RNA association for mitochondrial homeostasis in neurons","authors":"Segura, Inmaculada, Harbauer, Angelika","doi":"10.1042/bcj20230110","DOIUrl":"https://doi.org/10.1042/bcj20230110","url":null,"abstract":"The sub-compartmentalization of cellular processes is especially important in highly polarized cells such as neurons, as their function rely on their complex morphology. The association of RNAs to the mitochondrial surface is a conserved feature from yeast to humans and it regulates several aspects of mitochondrial physiology and, hence, cellular functions. In neurons, mitochondria are emerging as platforms for RNA transport and local protein translation. In this review, we discuss how RNA localization to mitochondria helps to sustain mitochondrial function, and how this can support mitochondrial homeostasis, especially in the distal parts of the neuron, to support neuronal activity.","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":"36 1","pages":""},"PeriodicalIF":4.1,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solange Moréra, Armelle Vigouroux, Magali Aumont-Nicaise, Mohammed Ahmar, Thibault Meyer, Abbas El Sahili, Grégory Deicsics, Almudena González-Mula, Sizhe Li, Jeanne Doré, Serena Sirigu, Pierre Legrand, Camille Penot, François André, Denis Faure, Laurent Soulère, Yves Queneau, Ludovic Vial
Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84. They are imported into agrobacterial cytoplasm via the Acc transport system, including the solute-binding protein AccA coupled to an ABC transporter. We have previously shown that unexpectedly, AccA from strain C58 (AccAC58) recognizes the pyranose-2-phosphate motif present in all four agrocinopines and agrocin 84, meaning that strain C58 is able to import agrocinopines C/D, originating from the competitor strain Bo542. Here, using agrocinopine derivatives and combining crystallography, affinity and stability measurements, modeling, molecular dynamics, in vitro and vivo assays, we show that AccABo542 and AccAC58 behave differently despite 75% sequence identity and a nearly identical ligand binding site. Indeed, strain Bo542 imports only compounds containing the d-glucopyranose-2-phosphate moiety, and with a lower affinity compared with strain C58. This difference in import efficiency makes C58 more competitive than Bo542 in culture media. We can now explain why Agrobacterium/Allorhizobium vitis strain S4 is insensitive to agrocin 84, although its genome contains a conserved Acc transport system. Overall, our work highlights AccA proteins as a case study, for which stability and dynamics drive specificity.
{"title":"A highly conserved ligand-binding site for AccA transporters of antibiotic and quorum-sensing regulator in Agrobacterium leads to a different specificity.","authors":"Solange Moréra, Armelle Vigouroux, Magali Aumont-Nicaise, Mohammed Ahmar, Thibault Meyer, Abbas El Sahili, Grégory Deicsics, Almudena González-Mula, Sizhe Li, Jeanne Doré, Serena Sirigu, Pierre Legrand, Camille Penot, François André, Denis Faure, Laurent Soulère, Yves Queneau, Ludovic Vial","doi":"10.1042/BCJ20230273","DOIUrl":"10.1042/BCJ20230273","url":null,"abstract":"<p><p>Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84. They are imported into agrobacterial cytoplasm via the Acc transport system, including the solute-binding protein AccA coupled to an ABC transporter. We have previously shown that unexpectedly, AccA from strain C58 (AccAC58) recognizes the pyranose-2-phosphate motif present in all four agrocinopines and agrocin 84, meaning that strain C58 is able to import agrocinopines C/D, originating from the competitor strain Bo542. Here, using agrocinopine derivatives and combining crystallography, affinity and stability measurements, modeling, molecular dynamics, in vitro and vivo assays, we show that AccABo542 and AccAC58 behave differently despite 75% sequence identity and a nearly identical ligand binding site. Indeed, strain Bo542 imports only compounds containing the d-glucopyranose-2-phosphate moiety, and with a lower affinity compared with strain C58. This difference in import efficiency makes C58 more competitive than Bo542 in culture media. We can now explain why Agrobacterium/Allorhizobium vitis strain S4 is insensitive to agrocin 84, although its genome contains a conserved Acc transport system. Overall, our work highlights AccA proteins as a case study, for which stability and dynamics drive specificity.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":"93-117"},"PeriodicalIF":4.1,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}