首页 > 最新文献

News. Phi Delta Epsilon最新文献

英文 中文
Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions 利用人工智能降低输血溶血反应的风险
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_15
Maya Trutschl, U. Cvek, M. Trutschl
{"title":"Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions","authors":"Maya Trutschl, U. Cvek, M. Trutschl","doi":"10.1007/978-3-031-39059-3_15","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_15","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"143 1","pages":"223-234"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74146315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Explainable Approach for Early Parkinson Disease Detection Using Deep Learning 使用深度学习的早期帕金森病检测的可解释方法
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_22
Lerina Aversano, M. Bernardi, Marta Cimitile, Martina Iammarino, Antonella Madau, Chiara Verdone
{"title":"An Explainable Approach for Early Parkinson Disease Detection Using Deep Learning","authors":"Lerina Aversano, M. Bernardi, Marta Cimitile, Martina Iammarino, Antonella Madau, Chiara Verdone","doi":"10.1007/978-3-031-39059-3_22","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_22","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"44 1","pages":"326-339"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75213494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable Abnormal Time Series Subsequence Detection Using Random Convolutional Kernels 基于随机卷积核的可解释异常时序子序列检测
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_19
Abdallah Amine Melakhsou, M. Batton-Hubert
{"title":"Explainable Abnormal Time Series Subsequence Detection Using Random Convolutional Kernels","authors":"Abdallah Amine Melakhsou, M. Batton-Hubert","doi":"10.1007/978-3-031-39059-3_19","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_19","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"51 1","pages":"280-294"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76030876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Equitable AI in HR: Designing a Fair, Reliable, and Transparent Human Resource Management Application 迈向公平的人力资源人工智能:设计公平、可靠和透明的人力资源管理应用程序
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_21
Michael Danner, Bakir Hadzic, T. Weber, Xinjuan Zhu, Matthias Rätsch
{"title":"Towards Equitable AI in HR: Designing a Fair, Reliable, and Transparent Human Resource Management Application","authors":"Michael Danner, Bakir Hadzic, T. Weber, Xinjuan Zhu, Matthias Rätsch","doi":"10.1007/978-3-031-39059-3_21","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_21","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"20 1","pages":"308-325"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85659001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision Transformers for Galaxy Morphology Classification: Fine-Tuning Pre-trained Networks vs. Training from Scratch 用于星系形态分类的视觉变压器:微调预训练网络与从零开始训练
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_8
Rahul Kumar, Md Kamruzzaman Sarker, Sheikh Rabiul Islam
{"title":"Vision Transformers for Galaxy Morphology Classification: Fine-Tuning Pre-trained Networks vs. Training from Scratch","authors":"Rahul Kumar, Md Kamruzzaman Sarker, Sheikh Rabiul Islam","doi":"10.1007/978-3-031-39059-3_8","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_8","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"50 1","pages":"115-125"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83677088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph Neural Networks for Circuit Diagram Pattern Generation 用于电路图模式生成的图形神经网络
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_24
Jaikrishna Manojkumar Patil, Johannes Bayer, A. Dengel
{"title":"Graph Neural Networks for Circuit Diagram Pattern Generation","authors":"Jaikrishna Manojkumar Patil, Johannes Bayer, A. Dengel","doi":"10.1007/978-3-031-39059-3_24","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_24","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"39 1","pages":"351-369"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88906577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study of Neural Collapse for Text Classification 基于神经崩溃的文本分类研究
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_9
J. Feng, E. Lai, Weihua Li
{"title":"A Study of Neural Collapse for Text Classification","authors":"J. Feng, E. Lai, Weihua Li","doi":"10.1007/978-3-031-39059-3_9","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_9","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"21 1","pages":"126-142"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73882816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CSR & Sentiment Analysis: A New Customized Dictionary 企业社会责任与情感分析:一个新的定制词典
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_31
E. Zavarrone, Alessia Forciniti
{"title":"CSR & Sentiment Analysis: A New Customized Dictionary","authors":"E. Zavarrone, Alessia Forciniti","doi":"10.1007/978-3-031-39059-3_31","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_31","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"136 1","pages":"466-479"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80835462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Probabilistic Approach for Detecting Concept Drift in Streaming Data 流数据中概念漂移检测的一种新的概率方法
Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-39059-3_12
Sirvan Parasteh, S. Sadaoui
{"title":"A Novel Probabilistic Approach for Detecting Concept Drift in Streaming Data","authors":"Sirvan Parasteh, S. Sadaoui","doi":"10.1007/978-3-031-39059-3_12","DOIUrl":"https://doi.org/10.1007/978-3-031-39059-3_12","url":null,"abstract":"","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"10 1","pages":"173-188"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81955017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lightweight Machine Learning Pipeline for LiDAR-simulation 用于激光雷达仿真的轻量级机器学习管道
Pub Date : 2022-08-05 DOI: 10.5220/0011309100003277
Richard Marcus, Niklas Knoop, B. Egger, M. Stamminger
Virtual testing is a crucial task to ensure safety in autonomous driving, and sensor simulation is an important task in this domain. Most current LiDAR simulations are very simplistic and are mainly used to perform initial tests, while the majority of insights are gathered on the road. In this paper, we propose a lightweight approach for more realistic LiDAR simulation that learns a real sensor's behavior from test drive data and transforms this to the virtual domain. The central idea is to cast the simulation into an image-to-image translation problem. We train our pix2pix based architecture on two real world data sets, namely the popular KITTI data set and the Audi Autonomous Driving Dataset which provide both, RGB and LiDAR images. We apply this network on synthetic renderings and show that it generalizes sufficiently from real images to simulated images. This strategy enables to skip the sensor-specific, expensive and complex LiDAR physics simulation in our synthetic world and avoids oversimplification and a large domain-gap through the clean synthetic environment.
虚拟测试是保证自动驾驶安全的一项重要任务,而传感器仿真是其中的一项重要任务。目前的大多数激光雷达模拟都非常简单,主要用于执行初始测试,而大部分信息都是在道路上收集的。在本文中,我们提出了一种轻量级的方法来实现更逼真的激光雷达仿真,该方法从测试驾驶数据中学习真实传感器的行为,并将其转换为虚拟域。中心思想是将模拟转换为图像到图像的翻译问题。我们在两个真实世界的数据集上训练基于pix2pix的架构,即流行的KITTI数据集和奥迪自动驾驶数据集,它们同时提供RGB和LiDAR图像。我们将该网络应用于合成效果图,结果表明该网络具有从真实图像到模拟图像的充分泛化能力。该策略能够跳过我们合成世界中特定传感器,昂贵且复杂的LiDAR物理模拟,并通过干净的合成环境避免过度简化和大的域间隙。
{"title":"A Lightweight Machine Learning Pipeline for LiDAR-simulation","authors":"Richard Marcus, Niklas Knoop, B. Egger, M. Stamminger","doi":"10.5220/0011309100003277","DOIUrl":"https://doi.org/10.5220/0011309100003277","url":null,"abstract":"Virtual testing is a crucial task to ensure safety in autonomous driving, and sensor simulation is an important task in this domain. Most current LiDAR simulations are very simplistic and are mainly used to perform initial tests, while the majority of insights are gathered on the road. In this paper, we propose a lightweight approach for more realistic LiDAR simulation that learns a real sensor's behavior from test drive data and transforms this to the virtual domain. The central idea is to cast the simulation into an image-to-image translation problem. We train our pix2pix based architecture on two real world data sets, namely the popular KITTI data set and the Audi Autonomous Driving Dataset which provide both, RGB and LiDAR images. We apply this network on synthetic renderings and show that it generalizes sufficiently from real images to simulated images. This strategy enables to skip the sensor-specific, expensive and complex LiDAR physics simulation in our synthetic world and avoids oversimplification and a large domain-gap through the clean synthetic environment.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"16 1","pages":"176-183"},"PeriodicalIF":0.0,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90183862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
News. Phi Delta Epsilon
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1