Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain Komagataeibacter rhaeticus MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin–Schramm (H–S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. Komagataeibacter rhaeticus MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.
{"title":"Bacterial nanocellulose: A versatile biopolymer production using a cost-effective wooden disc based rotary reactor","authors":"Ashish Jagtap, Syed G. Dastager","doi":"10.1002/bip.23577","DOIUrl":"10.1002/bip.23577","url":null,"abstract":"<p>Bacterial nanocellulose (BNC) has various unique qualities, including high mechanical strength, crystallinity, and high water-holding capacity, which makes it appropriate for a wide range of industrial applications. But its lower yield coupled with its high production cost creates a barrier to its usage. In this study, we have demonstrated the better yield of BNC from an indigenous strain <i>Komagataeibacter rhaeticus</i> MCC-0157 using a rotary disc bioreactor (RDB) having a wooden disc. The RDB was optimized based on the type of disc material, distance between the disc, and rotation speed to get the highest yield of 13.0 g/L dry material using Hestrin–Schramm (H–S) medium. Further, the bioreactor was compared for the BNC production using reported medium, which is used for static condition; the RDB showed up to fivefold increase in comparison with the static condition reported. <i>Komagataeibacter rhaeticus</i> MCC-0157 was previously reported to be one of the highest BNC producing stains, with 8.37 g/L of dry yield in static condition in 15 days incubation. The designed RDB demonstrated 13.0 g/L dry yield of BNC in just 5 days. Other characteristics of BNC remain same as compared with static BNC production, although the difference in the crystallinity index was observed in RDB (84.44%) in comparison with static (89.74%). For the first time, wooden disc was used for rotary bioreactor approach, which demonstrated higher yield of BNC in lesser time and can be further used for sustainable production of BNC at the industrial level.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle A. Lay, Valery F. Thompson, Ajibola D. Adelakun, Jacob C. Schwartz
EWSR1 (Ewing Sarcoma Related protein 1) is an RNA binding protein that is ubiquitously expressed across cell lines and involved in multiple parts of RNA processing, such as transcription, splicing, and mRNA transport. EWSR1 has also been implicated in cellular mechanisms to control formation of R-loops, a three-stranded nucleic acid structure consisting of a DNA:RNA hybrid and a displaced single-stranded DNA strand. Unscheduled R-loops result in genomic and transcription stress. Loss of function of EWSR1 functions commonly found in Ewing Sarcoma correlates with high abundance of R-loops. In this study, we investigated the mechanism for EWSR1 to recognize an R-loop structure specifically. Using electrophoretic mobility shift assays (EMSA), we detected the high affinity binding of EWSR1 to substrates representing components found in R-loops. EWSR1 specificity could be isolated to the DNA fork region, which transitions between double- and single-stranded DNA. Our data suggests that the Zinc-finger domain (ZnF) with flanking arginine and glycine rich (RGG) domains provide high affinity binding, while the RNA recognition motif (RRM) with its RGG domains offer improved specificity. This model offers a rational for EWSR1 specificity to encompass a wide range in contexts due to the DNA forks always found with R-loops.
EWSR1(尤文肉瘤相关蛋白 1)是一种 RNA 结合蛋白,在细胞系中普遍表达,参与 RNA 处理的多个环节,如转录、剪接和 mRNA 运输。EWSR1 还与控制 R 环形成的细胞机制有关,R 环是一种三链核酸结构,由 DNA:RNA 杂交和移位的单链 DNA 链组成。计划外的 R 环会导致基因组和转录压力。尤文肉瘤中常见的 EWSR1 功能缺失与 R 环的高丰度相关。在这项研究中,我们研究了 EWSR1 特异性识别 R 环结构的机制。通过电泳迁移试验(EMSA),我们检测到 EWSR1 与代表 R 环成分的底物有高亲和力结合。EWSR1 的特异性可被分离到 DNA 叉区,该区域在双链和单链 DNA 之间转换。我们的数据表明,锌指结构域(ZnF)及其侧翼富含精氨酸和甘氨酸的结构域(RGG)提供了高亲和力的结合,而 RNA 识别基序(RRM)及其 RGG 结构域则提供了更好的特异性。这个模型为 EWSR1 的特异性提供了一个合理的解释,由于 DNA 叉总是与 R 环一起出现,因此 EWSR1 的特异性涵盖了广泛的情况。
{"title":"Ewing Sarcoma Related protein 1 recognizes R-loops by binding DNA forks","authors":"Michelle A. Lay, Valery F. Thompson, Ajibola D. Adelakun, Jacob C. Schwartz","doi":"10.1002/bip.23576","DOIUrl":"10.1002/bip.23576","url":null,"abstract":"<p>EWSR1 (Ewing Sarcoma Related protein 1) is an RNA binding protein that is ubiquitously expressed across cell lines and involved in multiple parts of RNA processing, such as transcription, splicing, and mRNA transport. EWSR1 has also been implicated in cellular mechanisms to control formation of R-loops, a three-stranded nucleic acid structure consisting of a DNA:RNA hybrid and a displaced single-stranded DNA strand. Unscheduled R-loops result in genomic and transcription stress. Loss of function of EWSR1 functions commonly found in Ewing Sarcoma correlates with high abundance of R-loops. In this study, we investigated the mechanism for EWSR1 to recognize an R-loop structure specifically. Using electrophoretic mobility shift assays (EMSA), we detected the high affinity binding of EWSR1 to substrates representing components found in R-loops. EWSR1 specificity could be isolated to the DNA fork region, which transitions between double- and single-stranded DNA. Our data suggests that the Zinc-finger domain (ZnF) with flanking arginine and glycine rich (RGG) domains provide high affinity binding, while the RNA recognition motif (RRM) with its RGG domains offer improved specificity. This model offers a rational for EWSR1 specificity to encompass a wide range in contexts due to the DNA forks always found with R-loops.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiyao He, Dawei He, Lin Fan, Song Ren, Lin Wang, Jiang Sun
Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.
{"title":"Application of hydrogel microneedles in the oral cavity","authors":"Yiyao He, Dawei He, Lin Fan, Song Ren, Lin Wang, Jiang Sun","doi":"10.1002/bip.23573","DOIUrl":"10.1002/bip.23573","url":null,"abstract":"<p>Microneedles are a transdermal drug delivery system in which the needle punctures the epithelium to deliver the drug directly to deep tissues, thus avoiding the influence of the first-pass effect of the gastrointestinal tract and minimizing the likelihood of pain induction. Hydrogel microneedles are microneedles prepared from hydrogels that have good biocompatibility, controllable mechanical properties, and controllable drug release and can be modified to achieve environmental control of drug release in vivo. The large epithelial tissue in the oral cavity is an ideal site for drug delivery via microneedles. Hydrogel microneedles can overcome mucosal hindrances to delivering drugs to deep tissues; this prevents humidity and a highly dynamic environment in the oral cavity from influencing the efficacy of the drugs and enables them to obtain better therapeutic effects. This article analyzes the materials and advantages of common hydrogel microneedles and reviews the application of hydrogel microneedles in the oral cavity.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of Argiope bruennichi spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without Aloe vera coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. A. bruennichi silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. A. bruennichi spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of A. bruennichi spider silk and A. vera coated commercial suture groups have comparable structural results with control group. In conclusion, A. bruennichi spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.
蜘蛛丝是一种天然的生物相容性材料,具有高强度和柔韧性,经常被用于生物医学研究。本研究调查了 Argiope bruennichi 蜘蛛丝作为手术缝合材料的可用性。通过大鼠背侧皮瓣模型,评估了术后(第 7 天和第 14 天)涂有或未涂芦荟的蜘蛛丝缝合线和商用缝合线对伤口愈合的影响。对其进行了生化、血液学、组织学、免疫组化、小角 X 射线散射(SAXS)分析和机械测试。根据 MTT 和 LDH 试验,青蒿素丝在体外对 L929 细胞株没有任何细胞毒性作用。根据血液学和生化分析,蛛丝材料不会对大鼠造成任何过敏反应、感染或全身影响。A. bruennichi 蜘蛛丝组显示出与商业缝合线相似的愈合反应。SAXS 分析表明,应用第 14 天的 A. bruennichi 蜘蛛丝组和 A. vera 包覆商业缝合线组与对照组的结构结果相当。总之,A. bruennichi 蜘蛛丝的生物相容性符合所检测的参数,其愈合反应与皮肤常用的商业缝合线相似。
{"title":"In vitro and in vivo investigation of Argiope bruennichi spider silk-based novel biomaterial for medical use","authors":"Seçil Karahisar Turan, Aysun Kılıç Süloğlu, Semra İde, Tuncay Türkeş, Nurhayat Barlas","doi":"10.1002/bip.23572","DOIUrl":"10.1002/bip.23572","url":null,"abstract":"<p>As a natural and biocompatible material with high strength and flexibility, spider silk is frequently used in biomedical studies. In this study, the availability of <i>Argiope bruennichi</i> spider silk as a surgical suture material was investigated. The effects of spider silk-based and commercial sutures, with and without <i>Aloe vera</i> coating, on wound healing were evaluated by a rat dorsal skin flap model, postoperatively (7th and 14th days). Biochemical, hematological, histological, immunohistochemical, small angle x-ray scattering (SAXS) analyses and mechanical tests were performed. <i>A</i>. <i>bruennichi</i> silk did not show any cytotoxic effect on the L929 cell line according to MTT and LDH assays, in vitro. The silk materials did not cause any allergic reaction, infection, or systemic effect in rats according to hematological and biochemical analyses. <i>A</i>. <i>bruennichi</i> spider silk group showed a similar healing response to commercial sutures. SAXS analysis showed that the 14th-day applications of <i>A</i>. <i>bruennichi</i> spider silk and <i>A</i>. <i>vera</i> coated commercial suture groups have comparable structural results with control group. In conclusion, <i>A</i>. <i>bruennichi</i> spider silk is biocompatible in line with the parameters examined and shows a healing response similar to the commercial sutures commonly used in the skin.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140139799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nucleophilic moieties in polysaccharides (PS) with distinct higher reactivity compared with the hydroxy group are interesting for sustainable applications in chemistry, medicine, and pharmacy. An efficient heterogeneous method for the formation of such nucleophilic PS is described. Employing alcohols as slurry medium, protonated carboxymethyl (CM) PS and hydrazine hydrate are allowed to react at elevated temperatures. The CM derivatives of starch and pullulan can be transformed almost quantitatively to the corresponding hydrazides. The reaction is less efficient for CM dextrans and CM xylans. As slurry media, 2-propanol and ethanol were probed, and the results are compared with a homogeneous procedure performed in water. Overall, the heterogeneous procedure is superior compared with the homogeneous route. 2-Propanol is the best slurry medium investigated yielding PS hydrazides with the highest nitrogen content.
与羟基相比,多糖(PS)中的亲核分子具有更高的反应活性,可持续应用于化学、医学和药学领域。本文介绍了一种形成此类亲核多糖的高效异构方法。使用醇类作为淤浆介质,质子化的羧甲基(CM)PS 和水合肼在高温下发生反应。淀粉和拉普兰的 CM 衍生物几乎可以定量地转化为相应的酰肼。对于 CM 右旋糖酐和 CM 木聚糖来说,该反应的效率较低。研究人员将 2-丙醇和乙醇作为浆料介质,并将结果与在水中进行的均相反应进行了比较。总体而言,异构过程优于均相过程。2 丙醇是所研究的最佳淤浆介质,可产生含氮量最高的 PS 联酰肼。
{"title":"Efficient heterogeneous synthesis of nucleophilic carboxymethyl hydrazides of polysaccharides","authors":"Hendryk Würfel, Annett Pfeifer, Thomas Heinze","doi":"10.1002/bip.23574","DOIUrl":"10.1002/bip.23574","url":null,"abstract":"<p>Nucleophilic moieties in polysaccharides (PS) with distinct higher reactivity compared with the hydroxy group are interesting for sustainable applications in chemistry, medicine, and pharmacy. An efficient heterogeneous method for the formation of such nucleophilic PS is described. Employing alcohols as slurry medium, protonated carboxymethyl (CM) PS and hydrazine hydrate are allowed to react at elevated temperatures. The CM derivatives of starch and pullulan can be transformed almost quantitatively to the corresponding hydrazides. The reaction is less efficient for CM dextrans and CM xylans. As slurry media, 2-propanol and ethanol were probed, and the results are compared with a homogeneous procedure performed in water. Overall, the heterogeneous procedure is superior compared with the homogeneous route. 2-Propanol is the best slurry medium investigated yielding PS hydrazides with the highest nitrogen content.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conformational search and density functional theory calculations were performed to explore the preferences of helical structures for chiro-specific oligo-γ-peptides of 2-(aminomethyl)cyclopentanecarboxylic acid (γAmc5) with a cyclopentyl constraint on the Cα–Cβ bond in solution. The dimer and tetramer of γAmc5 (1) with homochiral (1S, 2S) configurations exhibited a strong preference for the 9-membered helix foldamer in solution, except for the tetramer in water. However, the oligomers of γAmc5 (1) longer than tetramer preferentially adopted a right-handed (P)-2.614-helix (H1-14) as the peptide sequence becomes longer and as solvent polarity increases. The high stabilities for H1-14 foldamers of γAmc5 (1) in solution were ascribed to the favored solvation free energies. The calculated mean backbone torsion angles for H1-14 helix foldamers of γAmc5 (1) were similar to those calculated for oligomers of other γ-residues with cyclopentane or cyclohexane rings. However, the substitution of cyclopentane constraints on the Cα−Cβ bond of the γAmc5 (1) residue resulted in different conformational preferences and/or handedness of helix foldamers. In particular, the pyrrolidine-substituted analogs of the H1-14 foldamers of γAmc5 (1) with adjacent amine diads substituted at a proximal distance are expected to be potential catalysts for the crossed aldol condensation in nonpolar and polar solvents.
{"title":"Exploring helix structures of γ-peptides based on 2-(aminomethyl)cyclopentanecarboxylic acid","authors":"Hae Sook Park, Joo Yun Lee, Young Kee Kang","doi":"10.1002/bip.23575","DOIUrl":"10.1002/bip.23575","url":null,"abstract":"<p>Conformational search and density functional theory calculations were performed to explore the preferences of helical structures for chiro-specific oligo-γ-peptides of 2-(aminomethyl)cyclopentanecarboxylic acid (γAmc<sub>5</sub>) with a cyclopentyl constraint on the C<sup>α</sup>–C<sup>β</sup> bond in solution. The dimer and tetramer of γAmc<sub>5</sub> (<b>1</b>) with homochiral (1<i>S</i>, 2<i>S</i>) configurations exhibited a strong preference for the 9-membered helix foldamer in solution, except for the tetramer in water. However, the oligomers of γAmc<sub>5</sub> (<b>1</b>) longer than tetramer preferentially adopted a right-handed (<i>P</i>)-2.6<sub>14</sub>-helix (H<sub>1</sub>-14) as the peptide sequence becomes longer and as solvent polarity increases. The high stabilities for H<sub>1</sub>-14 foldamers of γAmc<sub>5</sub> (<b>1</b>) in solution were ascribed to the favored solvation free energies. The calculated mean backbone torsion angles for H<sub>1</sub>-14 helix foldamers of γAmc<sub>5</sub> (<b>1</b>) were similar to those calculated for oligomers of other γ-residues with cyclopentane or cyclohexane rings. However, the substitution of cyclopentane constraints on the C<sup>α</sup>−C<sup>β</sup> bond of the γAmc<sub>5</sub> (<b>1</b>) residue resulted in different conformational preferences and/or handedness of helix foldamers. In particular, the pyrrolidine-substituted analogs of the H<sub>1</sub>-14 foldamers of γAmc<sub>5</sub> (<b>1</b>) with adjacent amine diads substituted at a proximal distance are expected to be potential catalysts for the crossed aldol condensation in nonpolar and polar solvents.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Margarita Reit, Jan-Christoph Zarges, Hans-Peter Heim
Within this research semi-crystalline polylactide and composites with 50 wt.% native potato starch were compounded and injection molded. The material was mechanically characterized by tensile, three-point bending, and Charpy impact tests. These tests were carried out in the freshly molded state and after 332 and 792 h of storage at accelerated temperature or humidity. The respective activation energy was calculated by applying the Flynn-Wall-Ozawa method. The focus of the study was to investigate the correlation between the activation energy and the related mechanical and thermal properties. The results showed that the addition of native potato starch as a filler prevents the decrease in activation energy over the course of the experiments. Thus, the PLA/starch composite is more resistant to the two aging conditions than the pure PLA. When considering the mechanical properties, the pure PLA showed a large deviation of results compared to the initial value in a range of +63.88% to −33.96% with regard to the respective aging conditions, whereas the PLA/starch composite properties nearly always remained at the initial values. Through the investigation of the mechanical and thermal properties, it was shown that the steady activation energies are consistent with the mechanical properties, as these have shown only a small deviation of the mechanical properties during the duration of experiments for the PLA/starch composite.
{"title":"Correlation between the activation energy of PLA respectively PLA/starch composites and mechanical properties with regard to differ accelerated aging conditions","authors":"Margarita Reit, Jan-Christoph Zarges, Hans-Peter Heim","doi":"10.1002/bip.23571","DOIUrl":"10.1002/bip.23571","url":null,"abstract":"<p>Within this research semi-crystalline polylactide and composites with 50 wt.% native potato starch were compounded and injection molded. The material was mechanically characterized by tensile, three-point bending, and Charpy impact tests. These tests were carried out in the freshly molded state and after 332 and 792 h of storage at accelerated temperature or humidity. The respective activation energy was calculated by applying the Flynn-Wall-Ozawa method. The focus of the study was to investigate the correlation between the activation energy and the related mechanical and thermal properties. The results showed that the addition of native potato starch as a filler prevents the decrease in activation energy over the course of the experiments. Thus, the PLA/starch composite is more resistant to the two aging conditions than the pure PLA. When considering the mechanical properties, the pure PLA showed a large deviation of results compared to the initial value in a range of +63.88% to −33.96% with regard to the respective aging conditions, whereas the PLA/starch composite properties nearly always remained at the initial values. Through the investigation of the mechanical and thermal properties, it was shown that the steady activation energies are consistent with the mechanical properties, as these have shown only a small deviation of the mechanical properties during the duration of experiments for the PLA/starch composite.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 3","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23571","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10–100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.
{"title":"The energy landscape of the ribosome","authors":"Sandra Byju, Asem Hassan, Paul C. Whitford","doi":"10.1002/bip.23570","DOIUrl":"10.1002/bip.23570","url":null,"abstract":"<p>The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10–100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bip.23570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the three different methods for the fabrication of quercetin (1%–3% w/w of protein) incorporated soy protein isolate (SPI) films and their effect on material properties. The quercetin incorporated SPI films prepared by these methods were characterized by Fourier transform infrared (FTIR) spectroscopy, UV–Vis spectrophotometer, tensile properties, and water uptake and leaching properties. The cross-linking pattern was revealed by the FTIR spectrum that showed formation of an ester group because of interaction between the quercetin hydroxyl group and the carboxyl side chain of SPI amino acids. The tensile strength of SPI films were enhanced with the addition of quercetin as it increased to a maximum of 6.17 MPa while neat SPI film had tensile strength 4.13 MPa. The prepared films exhibit significant antibacterial activity against Listeria monocytogenes and Escherichia coli. The In-silico docking analysis demonstrates that covalent and non-covalent forces play crucial roles in binding interaction. It shows the formation of four hydrogen bonds, two salt bridges along with one pi-alkyl interaction. The simulation studies reflect the crucial amino acid residues involved in SPI-quercetin binding. The effect of quercetin binding with SPI on its stability and compactness is revealed by Root mean square deviation (RMSD) and radius of gyration studies.
{"title":"Structural, material and antibacterial properties of quercetin incorporated soy protein isolate films and its binding behavior through molecular docking","authors":"Priya Rani, Piyush Kumar Yadav, Ajay Kumar Singh, Suman Nayak, K. Dinesh Kumar, Rakesh Kumar","doi":"10.1002/bip.23569","DOIUrl":"10.1002/bip.23569","url":null,"abstract":"<p>This study aimed to investigate the three different methods for the fabrication of quercetin (1%–3% w/w of protein) incorporated soy protein isolate (SPI) films and their effect on material properties. The quercetin incorporated SPI films prepared by these methods were characterized by Fourier transform infrared (FTIR) spectroscopy, UV–Vis spectrophotometer, tensile properties, and water uptake and leaching properties. The cross-linking pattern was revealed by the FTIR spectrum that showed formation of an ester group because of interaction between the quercetin hydroxyl group and the carboxyl side chain of SPI amino acids. The tensile strength of SPI films were enhanced with the addition of quercetin as it increased to a maximum of 6.17 MPa while neat SPI film had tensile strength 4.13 MPa. The prepared films exhibit significant antibacterial activity against <i>Listeria monocytogenes</i> and <i>Escherichia coli.</i> The <i>In-silico</i> docking analysis demonstrates that covalent and non-covalent forces play crucial roles in binding interaction. It shows the formation of four hydrogen bonds, two salt bridges along with one pi-alkyl interaction. The simulation studies reflect the crucial amino acid residues involved in SPI-quercetin binding. The effect of quercetin binding with SPI on its stability and compactness is revealed by Root mean square deviation (RMSD) and radius of gyration studies.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 2","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136396032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.
{"title":"Innovations in applications and prospects of non-isocyanate polyurethane bioplastics","authors":"Mangal Mangal, Supriya H., Suryasarathi Bose, Tamal Banerjee","doi":"10.1002/bip.23568","DOIUrl":"10.1002/bip.23568","url":null,"abstract":"<p>Currently, conventional plastics are necessary for a variety of aspects of modern daily life, including applications in the fields of healthcare, technology, and construction. However, they could also contain potentially hazardous compounds like isocyanates, whose degradation has a negative impact on both the environment and human health. Therefore, researchers are exploring alternatives to plastic which is sustainable and environmentally friendly without compromising its mechanical and physical features. This review study highlights the production of highly eco-friendly bioplastic as an efficient alternative to non-biodegradable conventional plastic. Bioplastics are produced from various renewable biomass sources such as plant debris, fatty acids, and oils. Poly-addition of di-isocyanates and polyols is a technique employed over decades to produce polyurethanes (PUs) bioplastics from renewable biomass feedstock. The toxicity of isocyanates is a major concern with the above-mentioned approach. Novel green synthetic approaches for polyurethanes without using isocyanates have been attracting greater interest in recent years to overcome the toxicity of isocyanate-containing raw materials. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines appears to be the most promising method to obtain non-isocyanate polyurethanes (NIPUs). This method results in the creation of polymeric materials with distinctive and adaptable features with the elimination of harmful compounds. Consequently, non-isocyanate polyurethanes represent a new class of green polymeric materials. In this review study, we have discussed the possibility of creating novel NIPUs from renewable feedstocks in the context of the growing demand for efficient and ecologically friendly plastic products.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"114 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41232018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}