A. Michael Crider, Audrey Hospital, Karin E. Sandoval, William L. Neumann, Stephen Kukielski, Lejla Garic, Kristen Ingold, Matthew Dunahoo, Khush N. Srabony, Rafael Frare, Olivia Slater, Nathan Peel, Maria Kontoyianni and Ken A. Witt
Somatostatin receptor-4 (SST4) is a therapeutic target for several conditions, including Alzheimer's disease, seizures, neuropsychiatric disorders, and pain. Our previous work on 1,2,4-triazole derivatives led to enhanced SST4 binding affinity, selectivity, and functional activity. Herein we report the discovery of 3-thio-1,2,4-triazole series as selective and high affinity SST4 agonists. Thirty-three compounds show <100 nM binding affinity, five of which had sub-nanomolar binding affinity and >300-fold selectivity over other SST subtypes. SST4 cAMP inhibition assay activity data aligned with the ligand binding affinity. Comparative docking results of the ligands under investigation with the cryo-EM and most recent model-built SST4 structures suggest similar trends in binding. Amino acids responsible for high and moderate affinity were identified, whereas poorer ligand conformations and limited interactions were observed with the low-affinity compounds. In summary, this study presents a novel series of high affinity SST4 agonists with corresponding in vitro activity, demonstrating viable therapeutic potential.
{"title":"3-Thio-3,4,5-trisubstituted-1,2,4-triazoles: high affinity somatostatin receptor-4 agonist synthesis and structure–activity relationships†","authors":"A. Michael Crider, Audrey Hospital, Karin E. Sandoval, William L. Neumann, Stephen Kukielski, Lejla Garic, Kristen Ingold, Matthew Dunahoo, Khush N. Srabony, Rafael Frare, Olivia Slater, Nathan Peel, Maria Kontoyianni and Ken A. Witt","doi":"10.1039/D4MD00597J","DOIUrl":"10.1039/D4MD00597J","url":null,"abstract":"<p >Somatostatin receptor-4 (SST<small><sub>4</sub></small>) is a therapeutic target for several conditions, including Alzheimer's disease, seizures, neuropsychiatric disorders, and pain. Our previous work on 1,2,4-triazole derivatives led to enhanced SST<small><sub>4</sub></small> binding affinity, selectivity, and functional activity. Herein we report the discovery of 3-thio-1,2,4-triazole series as selective and high affinity SST<small><sub>4</sub></small> agonists. Thirty-three compounds show <100 nM binding affinity, five of which had sub-nanomolar binding affinity and >300-fold selectivity over other SST subtypes. SST<small><sub>4</sub></small> cAMP inhibition assay activity data aligned with the ligand binding affinity. Comparative docking results of the ligands under investigation with the cryo-EM and most recent model-built SST<small><sub>4</sub></small> structures suggest similar trends in binding. Amino acids responsible for high and moderate affinity were identified, whereas poorer ligand conformations and limited interactions were observed with the low-affinity compounds. In summary, this study presents a novel series of high affinity SST<small><sub>4</sub></small> agonists with corresponding <em>in vitro</em> activity, demonstrating viable therapeutic potential.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 945-960"},"PeriodicalIF":3.597,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lavleen K. Mader, Jessica E. Borean and Jeffrey W. Keillor
Irreversible targeted covalent inhibitors, in the past regarded as inappropriately reactive and toxic, have seen a recent resurgence in clinical interest. This paradigm shift is attributed to the exploitation of the two-step mechanism, in which a high affinity and selectivity (i.e., low KI) scaffold binds the target and only then does a pendant low intrinsic reactivity warhead react with the target (moderate kinact). This highlights the importance of evaluating inhibitors by deriving both their KI and kinact values. The development of methods to evaluate these inhibitors by accounting for their time-dependent nature has been crucial to the discovery of promising clinical candidates. Herein, we report all the practical kinetic methods available to date to derive kinact and KI values. These methods include direct observation of covalent modification, continuous assay (Kitz & Wilson) evaluation, and discontinuous incubation and pre-incubation time-dependent IC50 assays. We also provide practical guidelines and examples for performing these assays, comparison of their utility, and perspectives for their extended applications. This review aims to provide clarity about the use of these methods for reporting complete inhibitor kinetic profiles, guiding irreversible drug development towards increased target affinity and selectivity, while modulating in vivo stability and on-target reactivity.
不可逆的靶向共价抑制剂过去被认为具有不适当的反应性和毒性,但最近在临床上再次受到关注。这种模式的转变归功于对两步机制的利用,即高亲和性和选择性(即低 K I)支架与靶点结合,然后低内在反应性的悬垂弹头才与靶点反应(中等 K inact)。这就突出了通过推导 K I 和 k inact 值来评估抑制剂的重要性。考虑到这些抑制剂的时间依赖性,开发评估这些抑制剂的方法对于发现有前景的临床候选药物至关重要。在此,我们报告了迄今为止可用于推导 K inact 和 K I 值的所有实用动力学方法。这些方法包括直接观察共价修饰、连续测定(Kitz & Wilson)评估以及非连续孵育和预孵育时间依赖性 IC50 测定。我们还提供了进行这些测定的实用指南和示例,比较了它们的效用,并展望了它们的扩展应用。本综述旨在阐明如何使用这些方法报告完整的抑制剂动力学曲线,指导不可逆药物开发,以提高靶点亲和力和选择性,同时调节体内稳定性和靶点反应性。
{"title":"A practical guide for the assay-dependent characterisation of irreversible inhibitors†","authors":"Lavleen K. Mader, Jessica E. Borean and Jeffrey W. Keillor","doi":"10.1039/D4MD00707G","DOIUrl":"10.1039/D4MD00707G","url":null,"abstract":"<p >Irreversible targeted covalent inhibitors, in the past regarded as inappropriately reactive and toxic, have seen a recent resurgence in clinical interest. This paradigm shift is attributed to the exploitation of the two-step mechanism, in which a high affinity and selectivity (<em>i.e.</em>, low <em>K</em><small><sub>I</sub></small>) scaffold binds the target and only then does a pendant low intrinsic reactivity warhead react with the target (moderate <em>k</em><small><sub>inact</sub></small>). This highlights the importance of evaluating inhibitors by deriving both their <em>K</em><small><sub>I</sub></small> and <em>k</em><small><sub>inact</sub></small> values. The development of methods to evaluate these inhibitors by accounting for their time-dependent nature has been crucial to the discovery of promising clinical candidates. Herein, we report all the practical kinetic methods available to date to derive <em>k</em><small><sub>inact</sub></small> and <em>K</em><small><sub>I</sub></small> values. These methods include direct observation of covalent modification, continuous assay (Kitz & Wilson) evaluation, and discontinuous incubation and pre-incubation time-dependent IC<small><sub>50</sub></small> assays. We also provide practical guidelines and examples for performing these assays, comparison of their utility, and perspectives for their extended applications. This review aims to provide clarity about the use of these methods for reporting complete inhibitor kinetic profiles, guiding irreversible drug development towards increased target affinity and selectivity, while modulating <em>in vivo</em> stability and on-target reactivity.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 63-76"},"PeriodicalIF":3.597,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Madison R. Nuske, Junlang Zhong, Renjie Huang, Vijayalekshmi Sarojini, Jack L. Y. Chen, Christopher J. Squire, Mark A. T. Blaskovich and Ivanhoe K. H. Leung
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
{"title":"Adjuvant strategies to tackle mcr-mediated polymyxin resistance","authors":"Madison R. Nuske, Junlang Zhong, Renjie Huang, Vijayalekshmi Sarojini, Jack L. Y. Chen, Christopher J. Squire, Mark A. T. Blaskovich and Ivanhoe K. H. Leung","doi":"10.1039/D4MD00654B","DOIUrl":"10.1039/D4MD00654B","url":null,"abstract":"<p >The emergence of the <em>mobile colistin resistance</em> (<em>mcr</em>) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. <em>mcr</em> encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 465-480"},"PeriodicalIF":3.597,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142627398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thiophene is a privileged pharmacophore in medicinal chemistry owing to its diversified biological attributes. The thiophene moiety has been ranked 4th in the US FDA drug approval of small drug molecules, with around 7 drug approvals over the last decade. The present review covers USFDA-approved drugs possessing a thiophene ring system. Our analysis reveals that 26 drugs possessing thiophene nuclei have been approved under different pharmacological classes. The review further covers reported thiophene and its substituted analogues with diverse biological activities, including anti-diabetic, anticancer, anti-inflammatory, anticonvulsant, and antioxidant activity. Besides, a section is dedicated to appreciating the implications of structural bioinformatics in drug discovery. Additionally, the manuscript delves into structure–activity relationship studies to explore the chemical groups responsible for eliciting potential therapeutic activities. The review may provide invaluable insights for researchers working with thiophene nuclei in developing novel analogues with greater efficacy and fewer side effects.
噻吩因其多样化的生物属性而成为药物化学中的一个重要药源。在美国 FDA 批准的小分子药物中,噻吩分子排在第四位,在过去十年中大约有 7 种药物获得批准。本综述涵盖了美国 FDA 批准的具有噻吩环系统的药物。我们的分析表明,在不同的药理类别下,有 26 种具有噻吩核的药物获得了批准。本综述进一步涵盖了已报道的具有多种生物活性的噻吩及其取代类似物,包括抗糖尿病、抗癌、抗炎、抗惊厥和抗氧化活性。此外,手稿还专门用一个章节阐述了结构生物信息学在药物发现中的意义。此外,该手稿还深入探讨了结构-活性关系研究,以探索负责激发潜在治疗活性的化学基团。这篇综述可为研究人员利用噻吩核开发疗效更好、副作用更小的新型类似物提供宝贵的见解。
{"title":"Medicinal chemistry-based perspectives on thiophene and its derivatives: exploring structural insights to discover plausible druggable leads","authors":"Shikha Thakur, Devendra Kumar, Shivani Jaiswal, Kapil Kumar Goel, Pramod Rawat, Vivek Srivastava, Sonia Dhiman, Hemant R. Jadhav and Ashish Ranjan Dwivedi","doi":"10.1039/D4MD00450G","DOIUrl":"10.1039/D4MD00450G","url":null,"abstract":"<p >Thiophene is a privileged pharmacophore in medicinal chemistry owing to its diversified biological attributes. The thiophene moiety has been ranked 4th in the US FDA drug approval of small drug molecules, with around 7 drug approvals over the last decade. The present review covers USFDA-approved drugs possessing a thiophene ring system. Our analysis reveals that 26 drugs possessing thiophene nuclei have been approved under different pharmacological classes. The review further covers reported thiophene and its substituted analogues with diverse biological activities, including anti-diabetic, anticancer, anti-inflammatory, anticonvulsant, and antioxidant activity. Besides, a section is dedicated to appreciating the implications of structural bioinformatics in drug discovery. Additionally, the manuscript delves into structure–activity relationship studies to explore the chemical groups responsible for eliciting potential therapeutic activities. The review may provide invaluable insights for researchers working with thiophene nuclei in developing novel analogues with greater efficacy and fewer side effects.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 481-510"},"PeriodicalIF":3.597,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142732190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yakup Berkay Yilmaz, Tuğba Güngör, Serhat Dönmez, Hazal Nazlıcan Atalay, Pınar Siyah, Serdar Durdağı, Mehmet Ay and Tugba Boyunegmez Tumer
The development of H2S-donating derivatives of non-steroidal anti-inflammatory drugs (NSAIDs) is considered important to reduce or overcome their gastrointestinal side effects. Sulforaphane, one of the most extensively studied isothiocyanates (ITCs), effectively releases H2S at a slow rate. Thus, we rationally designed, synthesized, and characterized new ITC derivatives (I1–3 and I1a–e) inspired by the natural compound sulforaphane. The anti-inflammatory properties of these compounds were evaluated by their inhibitory activities against cyclooxygenase targets COX-1 and COX-2. Additionally, the cytotoxicity of the compounds was tested using the MTT assay on LPS-induced RAW 264.7 cells, revealing no cytotoxic effects at low doses. Notably, compounds I1 and fluorine-containing ester derivative I1c emerged as the most potent and selective COX-2 inhibitors, with selectivity indexes of 2611.5 and 2582.4, respectively. The H2S-releasing capacities of ITC derivatives were investigated and compared with that of sulforaphane, showing that while compounds I1–3 exhibit slow and similar H2S release to sulforaphane, the release from compounds I1a–e was not as pronounced as that of the standard. Physics-based molecular modeling studies including molecular docking and molecular dynamics (MD) simulations, binding free energy calculations and absorption, distribution, metabolism, and excretion (ADME) analyses were also conducted. MD simulations analysis underscored the crucial amino acids such as Tyr385, Trp387, Phe518, Val523, and Ser530 in the interactions between I1c hit compound and COX-2. The combined in silico and in vitro findings suggest that compounds I1 and I1c are promising NSAID candidates against selective COX-2 inhibition.
{"title":"Synthesis, in silico and bio-evaluation studies of new isothiocyanate derivatives with respect to COX inhibition and H2S release profiles†","authors":"Yakup Berkay Yilmaz, Tuğba Güngör, Serhat Dönmez, Hazal Nazlıcan Atalay, Pınar Siyah, Serdar Durdağı, Mehmet Ay and Tugba Boyunegmez Tumer","doi":"10.1039/D4MD00495G","DOIUrl":"10.1039/D4MD00495G","url":null,"abstract":"<p >The development of H<small><sub>2</sub></small>S-donating derivatives of non-steroidal anti-inflammatory drugs (NSAIDs) is considered important to reduce or overcome their gastrointestinal side effects. Sulforaphane, one of the most extensively studied isothiocyanates (ITCs), effectively releases H<small><sub>2</sub></small>S at a slow rate. Thus, we rationally designed, synthesized, and characterized new ITC derivatives (<strong>I1–3</strong> and <strong>I1a–e</strong>) inspired by the natural compound sulforaphane. The anti-inflammatory properties of these compounds were evaluated by their inhibitory activities against cyclooxygenase targets COX-1 and COX-2. Additionally, the cytotoxicity of the compounds was tested using the MTT assay on LPS-induced RAW 264.7 cells, revealing no cytotoxic effects at low doses. Notably, compounds <strong>I1</strong> and fluorine-containing ester derivative <strong>I1c</strong> emerged as the most potent and selective COX-2 inhibitors, with selectivity indexes of 2611.5 and 2582.4, respectively. The H<small><sub>2</sub></small>S-releasing capacities of ITC derivatives were investigated and compared with that of sulforaphane, showing that while compounds <strong>I1–3</strong> exhibit slow and similar H<small><sub>2</sub></small>S release to sulforaphane, the release from compounds <strong>I1a–e</strong> was not as pronounced as that of the standard. Physics-based molecular modeling studies including molecular docking and molecular dynamics (MD) simulations, binding free energy calculations and absorption, distribution, metabolism, and excretion (ADME) analyses were also conducted. MD simulations analysis underscored the crucial amino acids such as Tyr385, Trp387, Phe518, Val523, and Ser530 in the interactions between <strong>I1c</strong> hit compound and COX-2. The combined <em>in silico</em> and <em>in vitro</em> findings suggest that compounds <strong>I1</strong> and <strong>I1c</strong> are promising NSAID candidates against selective COX-2 inhibition.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 732-746"},"PeriodicalIF":3.597,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nagat Ghareb, Khaled M. Darwish, Mohamed S. Nafie, Ranwa Elrayess, Noha M. Abourobe, Shaimaa A. Fattah, Reem M. Hazem, Eman T. Mehanna and Ranza Elrayess
Exploring new inhibitors with good bioavailability and high selectivity for managing type 2 diabetes mellitus (T2DM) and its associated complications is a major challenge for research, academia, and the pharmaceutical industry. Protein tyrosine phosphatase-1B (PTP1B) arose as an important negative regulator in insulin signaling pathways associated with metabolic disorders, including T2DM and obesity. Novel neutral compounds with a benzene-sulfonamide scaffold were designed and synthesized based on structural- and ligand-based drug design strategies for fragment growth. Promising hits against PTP1B were identified through in vitro enzymology inhibition assay. Mechanistic aspects of the compound's different inhibition activities were rigorously investigated through molecular docking coupled with explicit dynamics simulations. Four identified hits, 3c, 8, 10a, and 11, with sub-micromolar PTP-1B IC50 and significant predicted pharmacokinetic and pharmacodynamic parameters, were further biologically evaluated for their anti-diabetic, anti-obesity, anti-inflammatory, and anti-oxidant effects in a high-fat diet (HFD) + streptozotocin (STZ)-induced T2DM rat model. All these hit compounds exhibited a significant anti-diabetic and anti-obesity effect and a significant efficacy in reducing oxidative stress and increasing anti-oxidant enzymes while reducing inflammatory markers. Improving compound potency was further highlighted by improving the pharmacokinetic profile of the most active compound, 10a, through nano formulation. Compound 10a nano formulation showed the most promising anti-diabetic and anti-obesity effects and a remarkable histopathological improvement in all organs studied.
{"title":"Development, biological evaluation, and molecular modelling of some benzene-sulfonamide derivatives as protein tyrosine phosphatase-1B inhibitors for managing diabetes mellitus and associated metabolic disorders†","authors":"Nagat Ghareb, Khaled M. Darwish, Mohamed S. Nafie, Ranwa Elrayess, Noha M. Abourobe, Shaimaa A. Fattah, Reem M. Hazem, Eman T. Mehanna and Ranza Elrayess","doi":"10.1039/D4MD00594E","DOIUrl":"10.1039/D4MD00594E","url":null,"abstract":"<p >Exploring new inhibitors with good bioavailability and high selectivity for managing type 2 diabetes mellitus (T2DM) and its associated complications is a major challenge for research, academia, and the pharmaceutical industry. Protein tyrosine phosphatase-1B (PTP1B) arose as an important negative regulator in insulin signaling pathways associated with metabolic disorders, including T2DM and obesity. Novel neutral compounds with a benzene-sulfonamide scaffold were designed and synthesized based on structural- and ligand-based drug design strategies for fragment growth. Promising hits against PTP1B were identified through <em>in vitro</em> enzymology inhibition assay. Mechanistic aspects of the compound's different inhibition activities were rigorously investigated through molecular docking coupled with explicit dynamics simulations. Four identified hits, <strong>3c</strong>, <strong>8</strong>, <strong>10a</strong>, and <strong>11</strong>, with sub-micromolar PTP-1B IC<small><sub>50</sub></small> and significant predicted pharmacokinetic and pharmacodynamic parameters, were further biologically evaluated for their anti-diabetic, anti-obesity, anti-inflammatory, and anti-oxidant effects in a high-fat diet (HFD) + streptozotocin (STZ)-induced T2DM rat model. All these hit compounds exhibited a significant anti-diabetic and anti-obesity effect and a significant efficacy in reducing oxidative stress and increasing anti-oxidant enzymes while reducing inflammatory markers. Improving compound potency was further highlighted by improving the pharmacokinetic profile of the most active compound, <strong>10a</strong>, through nano formulation. Compound <strong>10a</strong> nano formulation showed the most promising anti-diabetic and anti-obesity effects and a remarkable histopathological improvement in all organs studied.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 247-273"},"PeriodicalIF":3.597,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ojaswitha Ommi, Priyanka Sudhir Dhopat, Shashikanta Sau, Madhu Rekha Estharla, Srinivas Nanduri, Nitin Pal Kalia and Venkata Madhavi Yaddanapudi
In our continued efforts to tackle antibiotic resistance, a new series of pyrazole–ciprofloxacin hybrids were designed, synthesized, and evaluated for their antibacterial activity against Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Mycobacterium tuberculosis (Mtb). Most of the compounds exhibited good to excellent activities against S. aureus, and six compounds (7a, 7b, 7d, 7g, 7k, and 7p) exhibited higher or comparable activity (MIC = 0.125–0.5 μg mL−1) to ciprofloxacin (0.125 μg mL−1). Further, these selected compounds were non-toxic (CC50 ≥ 1000 μg mL−1) when evaluated for cell viability test against the Hep-G2 cell line. Three compounds (7a, 7d, and 7g) demonstrated excellent activity against ciprofloxacin-resistant S. aureus with MIC values ranging from 0.125–0.5 μg mL−1 and good antibiofilm activity. Among them, 7g displayed remarkable antibiofilm activity with an MBIC50 value of 0.02 μg mL−1, which is 50 times lower than ciprofloxacin (MBIC50 = 1.06 μg mL−1). A time-kill kinetics study indicated that 7g showed both concentration and time-dependent bactericidal properties. In addition, 7g effectively inhibited DNA-gyrase supercoiling activity at 1 μg mL−1 (8× MIC). Two compounds 7b and 7d exhibited the highest activity against Mtb with a MIC of 0.5 μg mL−1, while 7c showed the highest activity against P. aeruginosa with a MIC value of 2 μg mL−1. Molecular docking studies revealed that 7g formed stable interactions at the DNA active site.
{"title":"Design, synthesis, and biological evaluation of pyrazole–ciprofloxacin hybrids as antibacterial and antibiofilm agents against Staphylococcus aureus†","authors":"Ojaswitha Ommi, Priyanka Sudhir Dhopat, Shashikanta Sau, Madhu Rekha Estharla, Srinivas Nanduri, Nitin Pal Kalia and Venkata Madhavi Yaddanapudi","doi":"10.1039/D4MD00623B","DOIUrl":"10.1039/D4MD00623B","url":null,"abstract":"<p >In our continued efforts to tackle antibiotic resistance, a new series of pyrazole–ciprofloxacin hybrids were designed, synthesized, and evaluated for their antibacterial activity against <em>Staphylococcus aureus</em> (<em>S. aureus</em>), <em>Pseudomonas aeruginosa</em> (<em>P. aeruginosa</em>), and <em>Mycobacterium tuberculosis</em> (<em>Mtb</em>). Most of the compounds exhibited good to excellent activities against <em>S. aureus</em>, and six compounds (<strong>7a</strong>, <strong>7b</strong>, <strong>7d</strong>, <strong>7g</strong>, <strong>7k</strong>, and <strong>7p</strong>) exhibited higher or comparable activity (MIC = 0.125–0.5 μg mL<small><sup>−1</sup></small>) to ciprofloxacin (0.125 μg mL<small><sup>−1</sup></small>). Further, these selected compounds were non-toxic (CC<small><sub>50</sub></small> ≥ 1000 μg mL<small><sup>−1</sup></small>) when evaluated for cell viability test against the Hep-G2 cell line. Three compounds (<strong>7a</strong>, <strong>7d</strong>, and <strong>7g</strong>) demonstrated excellent activity against ciprofloxacin-resistant <em>S. aureus</em> with MIC values ranging from 0.125–0.5 μg mL<small><sup>−1</sup></small> and good antibiofilm activity. Among them, <strong>7g</strong> displayed remarkable antibiofilm activity with an MBIC<small><sub>50</sub></small> value of 0.02 μg mL<small><sup>−1</sup></small>, which is 50 times lower than ciprofloxacin (MBIC<small><sub>50</sub></small> = 1.06 μg mL<small><sup>−1</sup></small>). A time-kill kinetics study indicated that <strong>7g</strong> showed both concentration and time-dependent bactericidal properties. In addition, <strong>7g</strong> effectively inhibited DNA-gyrase supercoiling activity at 1 μg mL<small><sup>−1</sup></small> (8× MIC). Two compounds <strong>7b</strong> and <strong>7d</strong> exhibited the highest activity against <em>Mtb</em> with a MIC of 0.5 μg mL<small><sup>−1</sup></small>, while <strong>7c</strong> showed the highest activity against <em>P. aeruginosa</em> with a MIC value of 2 μg mL<small><sup>−1</sup></small>. Molecular docking studies revealed that <strong>7g</strong> formed stable interactions at the DNA active site.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 420-428"},"PeriodicalIF":3.597,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the themed collection in honour of Professor Christian Leumann","authors":"Marcel Hollenstein and Eugen Stulz","doi":"10.1039/D4MD90039A","DOIUrl":"10.1039/D4MD90039A","url":null,"abstract":"<p >A graphical abstract is available for this content</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3636-3638"},"PeriodicalIF":3.597,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142507036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vijay Babu Pathi, Pranotosh Das, Abhyuday Guin, Manish Debnath and Biswadip Banerji
The development of chemical scaffolds that target highly conserved MALAT1 RNA received attention due to its significance in splicing, nuclear organization, and gene expression in disease progression pathways. Here, we synthesized a series of N-fused quinazolino-quinazoline-diones via a PIDA-induced C–N coupling methodology to target MALAT1. Interestingly, compound 2z binds to the UUG pocket of a MALAT1 RNA triple-helix through intercalation, evidenced from molecular docking studies, fluorescence-based assay and CD experiments. 2z exhibited cytotoxicity towards MALAT1 overexpressing cancer cells (SKOV-3, IC50 of 8.0 ± 0.4 μM). These findings demonstrated 2z as a MALAT1 RNA triple-helix intercalator with therapeutic potential, offering an important chemical scaffold to understand MALAT1 activity in disease development pathways.
{"title":"Metal-free synthesis of N-fused quinazolino-quinazoline-diones as a MALAT1 RNA triple helix intercalator†","authors":"Vijay Babu Pathi, Pranotosh Das, Abhyuday Guin, Manish Debnath and Biswadip Banerji","doi":"10.1039/D4MD00614C","DOIUrl":"10.1039/D4MD00614C","url":null,"abstract":"<p >The development of chemical scaffolds that target highly conserved <em>MALAT1</em> RNA received attention due to its significance in splicing, nuclear organization, and gene expression in disease progression pathways. Here, we synthesized a series of N-fused quinazolino-quinazoline-diones <em>via</em> a PIDA-induced C–N coupling methodology to target <em>MALAT1</em>. Interestingly, compound <strong>2z</strong> binds to the UUG pocket of a <em>MALAT1</em> RNA triple-helix through intercalation, evidenced from molecular docking studies, fluorescence-based assay and CD experiments. <strong>2z</strong> exhibited cytotoxicity towards <em>MALAT1</em> overexpressing cancer cells (SKOV-3, IC<small><sub>50</sub></small> of 8.0 ± 0.4 μM). These findings demonstrated <strong>2z</strong> as a <em>MALAT1</em> RNA triple-helix intercalator with therapeutic potential, offering an important chemical scaffold to understand <em>MALAT1</em> activity in disease development pathways.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 429-434"},"PeriodicalIF":3.597,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolution of antimicrobial-resistant strains jeopardizes the existing clinical drugs and demands new therapeutic interventions. Herein, we report the synthesis of cationic thiazolidine bearing a quaternary pyridinium group, in which thiazolidine was N-acylated with fatty acid to establish a hydrophilic–lipophilic balance that disrupts bacterial membranes. The bacterial growth inhibition assays and hemolytic activity against human red blood cells indicate that the N-acylated cationic thiazolidine (QPyNATh) inhibits Gram-positive bacteria at lower minimum inhibitory concentrations (MIC) and is selective for bacteria over mammalian cells. N-Acylation modulates MIC, and it is found that the N-palmitoylated compound, QPyN16Th, had the lowest MIC (1.95 μM) against Gram-positive, Enterococcus faecalis, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). In contrast, the N-myristoylated compound, QPyN14Th, showed the lowest MIC (31.25 μM) against Gram-negative, Escherichia coli, uropathogenic Escherichia coli, and Pseudomonas aeruginosa. At 1× MIC, QPyNATh permeabilizes the bacterial membrane, depolarizes the cytoplasmic membranes, and produces excess reactive oxygen species to kill the bacteria, as evidenced by live and dead staining. Interestingly, only QPyNATh containing a palmitoyl acyl chain demonstrated membrane-damaging activity at 2 μM concentrations, suggesting that the optimal hydrophilic–lipophilic balance enables QPyN16Th to selectively kill Gram-positive bacteria at lower doses. S. aureus develops resistance to ciprofloxacin quickly; however, no resistance to QPyN16Th is observed after several passages. As a proof of concept, the animal study revealed that QPyN16Th treatment reduced the bacterial burden in MRSA-infected zebrafish, allowing them to recover from infection and resume normal life. The results imply that lipidation and derivatizing thiazolidine with cationic charge offer an antimicrobial that is selective to treat Gram-positive bacterial infections, biocompatible, and less prone to develop resistance.
抗菌药耐药菌株的演变危及现有的临床药物,需要新的治疗干预措施。在本文中,我们报告了带有季铵基吡啶的阳离子噻唑烷的合成,其中噻唑烷与脂肪酸进行了 N-酰化,以建立亲水-亲脂平衡,从而破坏细菌膜。细菌生长抑制试验和对人类红细胞的溶血活性表明,N-酰化阳离子噻唑烷(QPyNATh)能以较低的最低抑菌浓度(MIC)抑制革兰氏阳性细菌,而且对细菌的选择性高于哺乳动物细胞。研究发现,N-棕榈酰化化合物 QPyN16Th 对革兰氏阳性菌、粪肠球菌、金黄色葡萄球菌和耐甲氧西林金黄色葡萄球菌(MRSA)的 MIC 最低(1.95 μM)。相比之下,N-肉豆蔻酰化化合物 QPyN14Th 对革兰氏阴性菌、大肠杆菌、尿路致病性大肠杆菌和绿脓杆菌的 MIC 最低(31.25 μM)。在 1 倍 MIC 的浓度下,QPyNATh 可使细菌膜通透,使细胞质膜去极化,并产生过量的活性氧来杀死细菌,这一点可通过活菌和死菌染色来证明。有趣的是,只有含有棕榈酰酰基酰基链的 QPyNATh 在 2 μM 浓度下才具有破坏膜的活性,这表明最佳的亲水-亲脂平衡使 QPyN16Th 能够在较低剂量下选择性地杀死革兰氏阳性细菌。金黄色葡萄球菌很快就会对环丙沙星产生抗药性,但经过数次传代后,它们对 QPyN16Th 没有产生抗药性。作为概念验证,动物研究显示,QPyN16Th 治疗可减少受 MRSA 感染的斑马鱼体内的细菌负担,使它们能够从感染中恢复并恢复正常生活。研究结果表明,噻唑烷的脂化和阳离子电荷衍生化提供了一种选择性抗菌剂,可治疗革兰氏阳性细菌感染,生物相容性好,不易产生耐药性。
{"title":"Synthesis of cationic N-acylated thiazolidine for selective activity against Gram-positive bacteria and evaluation of N-acylation's role in membrane-disrupting activity†","authors":"Aleena Pious, Vignesh Venkatasubramanian, Dharshini Karnan Singaravelu, Subburethinam Ramesh, Fuad Ameen and Anbazhagan Veerappan","doi":"10.1039/D4MD00626G","DOIUrl":"10.1039/D4MD00626G","url":null,"abstract":"<p >The evolution of antimicrobial-resistant strains jeopardizes the existing clinical drugs and demands new therapeutic interventions. Herein, we report the synthesis of cationic thiazolidine bearing a quaternary pyridinium group, in which thiazolidine was <em>N</em>-acylated with fatty acid to establish a hydrophilic–lipophilic balance that disrupts bacterial membranes. The bacterial growth inhibition assays and hemolytic activity against human red blood cells indicate that the <em>N</em>-acylated cationic thiazolidine (QPyNATh) inhibits Gram-positive bacteria at lower minimum inhibitory concentrations (MIC) and is selective for bacteria over mammalian cells. <em>N</em>-Acylation modulates MIC, and it is found that the <em>N</em>-palmitoylated compound, QPyN16Th, had the lowest MIC (1.95 μM) against Gram-positive, <em>Enterococcus faecalis</em>, <em>Staphylococcus aureus</em> and methicillin-resistant <em>Staphylococcus aureus</em> (MRSA). In contrast, the <em>N</em>-myristoylated compound, QPyN14Th, showed the lowest MIC (31.25 μM) against Gram-negative, <em>Escherichia coli</em>, uropathogenic <em>Escherichia coli</em>, and <em>Pseudomonas aeruginosa</em>. At 1× MIC, QPyNATh permeabilizes the bacterial membrane, depolarizes the cytoplasmic membranes, and produces excess reactive oxygen species to kill the bacteria, as evidenced by live and dead staining. Interestingly, only QPyNATh containing a palmitoyl acyl chain demonstrated membrane-damaging activity at 2 μM concentrations, suggesting that the optimal hydrophilic–lipophilic balance enables QPyN16Th to selectively kill Gram-positive bacteria at lower doses. <em>S. aureus</em> develops resistance to ciprofloxacin quickly; however, no resistance to QPyN16Th is observed after several passages. As a proof of concept, the animal study revealed that QPyN16Th treatment reduced the bacterial burden in MRSA-infected zebrafish, allowing them to recover from infection and resume normal life. The results imply that lipidation and derivatizing thiazolidine with cationic charge offer an antimicrobial that is selective to treat Gram-positive bacterial infections, biocompatible, and less prone to develop resistance.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 721-731"},"PeriodicalIF":3.597,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}