Stefano Tomassi, Benito Natale, Michele Roggia, Luisa Amato, Caterina De Rosa, Carminia Maria Della Corte, Emma Baglini, Giorgio Amendola, Anna Messere, Salvatore Di Maro, Elisabetta Barresi, Federico Da Settimo, Maria Letizia Trincavelli, Fortunato Ciardiello, Sabrina Taliani, Floriana Morgillo and Sandro Cosconati
Non-small cell lung cancer (NSCLC), the leading cause of cancer-related mortality worldwide, poses a formidable challenge due to its heterogeneity and the emergence of resistance to targeted therapies. While initially effective, first- and third-generation EGFR-tyrosine kinase inhibitors (TKIs) often fail to control disease progression, leaving patients with limited treatment options. To address this unmet medical need, we explored the therapeutic potential of multitargeting agents that simultaneously inhibit two key signalling pathways, the mesenchymal-epithelial transition factor (c-MET) and the G protein-coupled receptor Smoothened (SMO), frequently dysregulated in NSCLC. By employing a combination of in silico drug repurposing and structure-based structure–activity relationship (SAR) studies, we identified and developed novel c-MET/SMO-targeting agents with antiproliferative activity against first- as well as third-generation EGFR-TKI-resistant NSCLC cells suggesting a synergistic effect arising from the simultaneous inhibition of c-MET and SMO.
非小细胞肺癌(NSCLC)是全球癌症相关死亡的主要原因,由于其异质性和靶向疗法耐药性的出现,它构成了一项艰巨的挑战。第一代和第三代表皮生长因子受体酪氨酸激酶抑制剂(TKIs)虽然最初有效,但往往无法控制疾病进展,给患者留下的治疗选择非常有限。为了满足这一尚未满足的医疗需求,我们探索了多靶点药物的治疗潜力,这些药物可同时抑制两种关键信号通路,即间充质-上皮转化因子(c-MET)和G蛋白偶联受体SMO(Smoothened),这两种信号通路在NSCLC中经常失调。通过结合使用硅学药物再利用和基于结构的结构-活性关系(SAR)研究,我们发现并开发了新型 c-MET/SMO 靶向药物,它们对第一代和第三代表皮生长因子受体-TKI 抗性 NSCLC 细胞具有抗增殖活性,表明同时抑制 c-MET 和 SMO 可产生协同效应。
{"title":"Discovery of N-substituted-2-oxoindolin benzoylhydrazines as c-MET/SMO modulators in EGFRi-resistant non-small cell lung cancer†","authors":"Stefano Tomassi, Benito Natale, Michele Roggia, Luisa Amato, Caterina De Rosa, Carminia Maria Della Corte, Emma Baglini, Giorgio Amendola, Anna Messere, Salvatore Di Maro, Elisabetta Barresi, Federico Da Settimo, Maria Letizia Trincavelli, Fortunato Ciardiello, Sabrina Taliani, Floriana Morgillo and Sandro Cosconati","doi":"10.1039/D4MD00553H","DOIUrl":"10.1039/D4MD00553H","url":null,"abstract":"<p >Non-small cell lung cancer (NSCLC), the leading cause of cancer-related mortality worldwide, poses a formidable challenge due to its heterogeneity and the emergence of resistance to targeted therapies. While initially effective, first- and third-generation EGFR-tyrosine kinase inhibitors (TKIs) often fail to control disease progression, leaving patients with limited treatment options. To address this unmet medical need, we explored the therapeutic potential of multitargeting agents that simultaneously inhibit two key signalling pathways, the mesenchymal-epithelial transition factor (c-MET) and the G protein-coupled receptor Smoothened (SMO), frequently dysregulated in NSCLC. By employing a combination of <em>in silico</em> drug repurposing and structure-based structure–activity relationship (SAR) studies, we identified and developed novel c-MET/SMO-targeting agents with antiproliferative activity against first- as well as third-generation EGFR-TKI-resistant NSCLC cells suggesting a synergistic effect arising from the simultaneous inhibition of c-MET and SMO.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 77-97"},"PeriodicalIF":3.597,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30–40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC50 of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.
{"title":"Developing peptide-based fusion inhibitors as an antiviral strategy utilizing coronin 1 as a template†","authors":"Manbit Subhadarsi Panda, Bushra Qazi, Vaishali Vishwakarma, Gourab Prasad Pattnaik, Sourav Haldar and Hirak Chakraborty","doi":"10.1039/D4MD00523F","DOIUrl":"10.1039/D4MD00523F","url":null,"abstract":"<p >Enveloped viruses enter the host cells by endocytosis and subsequently fuse with the endosomal membranes, or fuse with the plasma membrane at the cell surface. The crucial stage of viral infection, regardless of the route taken to enter the host cell, is membrane fusion. The present work aims to develop a peptide-based fusion inhibitor that prevents membrane fusion by modifying the properties of the participating membranes, without targeting a protein. This would allow us to develop a fusion inhibitor that might work against a larger spectrum of enveloped viruses as it does not target any specific viral fusion protein. With this goal in mind, we have designed a novel peptide by modifying a native sequence derived from coronin 1, a phagosomal protein, that helps to avoid lysosomal degradation of mycobacterium-loaded phagosomes. The designed peptide, mTG-23, inhibits ∼30–40% fusion between small unilamellar vesicles containing varying amounts of cholesterol by modulating the biophysical properties of the participating bilayers. As a proof of principle, we have further demonstrated that the mTG-23 inhibits Influenza A virus infection in A549 and MDCK cells (with ∼EC<small><sub>50</sub></small> of 20.45 μM and 21.55 μM, respectively), where viral envelope and endosomal membrane fusion is a crucial step. Through a gamut of biophysical and biochemical methods, we surmise that mTG-23 inhibits viral infection by inhibiting viral envelope and endosomal membrane fusion. We envisage that the proposed antiviral strategy can be extended to other viruses that employ a similar modus operandi, providing a novel pan-antiviral approach.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 125-136"},"PeriodicalIF":3.597,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David A. Davis, Ashwin Nair, Yana Astter, Emma Treco, Brian Peyser, Rick Gussio, Tam Nguyen, Brett Eaton, Elena Postnikova, Michael Murphy, Prabha Shrestha, Haydar Bulut, Shin-Ichiro Hattorri, Hiroaki Mitsuya and Robert Yarchoan
Coronaviruses rely on the viral-encoded chymotrypsin-like main protease (Mpro or 3CLpro) for replication and assembly. Our previous research on Mpro of SARS-CoV-2 identified cysteine 300 (Cys300) as a potential allosteric site of Mpro inhibition. Here, we identified tixocortol (TX) as a covalent modifier of Cys300 which inhibits Mpro activity in vitro as well as in a cell-based Mpro expression assay. Most importantly TX inhibited SARS-CoV-2 replication in ACE2 expressing HeLa cells. Biochemical analysis and kinetic assays were consistent with TX acting as a non-competitive inhibitor. By contrast, TX was a weaker inhibitor and modifier of C300S Mpro, confirming a role for Cys300 in inhibition of WT Mpro but also providing evidence for an additional Cys target. TX pivalate (TP), a prodrug for TX that was previously marketed as a nasal spray, also inhibited SARS-CoV-2 replication in HeLa–ACE2 cells at low micromolar IC50s. These studies suggest that TX and/or TP could possibly be repurposed for the prevention and/or treatment of SARS-CoV-2 infection.
{"title":"Discovery of a nasal spray steroid, tixocortol, as an inhibitor of SARS-CoV-2 main protease and viral replication†","authors":"David A. Davis, Ashwin Nair, Yana Astter, Emma Treco, Brian Peyser, Rick Gussio, Tam Nguyen, Brett Eaton, Elena Postnikova, Michael Murphy, Prabha Shrestha, Haydar Bulut, Shin-Ichiro Hattorri, Hiroaki Mitsuya and Robert Yarchoan","doi":"10.1039/D4MD00454J","DOIUrl":"10.1039/D4MD00454J","url":null,"abstract":"<p >Coronaviruses rely on the viral-encoded chymotrypsin-like main protease (M<small><sup>pro</sup></small> or 3CL<small><sup>pro</sup></small>) for replication and assembly. Our previous research on M<small><sup>pro</sup></small> of SARS-CoV-2 identified cysteine 300 (Cys300) as a potential allosteric site of M<small><sup>pro</sup></small> inhibition. Here, we identified tixocortol (TX) as a covalent modifier of Cys300 which inhibits M<small><sup>pro</sup></small> activity <em>in vitro</em> as well as in a cell-based M<small><sup>pro</sup></small> expression assay. Most importantly TX inhibited SARS-CoV-2 replication in ACE2 expressing HeLa cells. Biochemical analysis and kinetic assays were consistent with TX acting as a non-competitive inhibitor. By contrast, TX was a weaker inhibitor and modifier of C300S M<small><sup>pro</sup></small>, confirming a role for Cys300 in inhibition of WT M<small><sup>pro</sup></small> but also providing evidence for an additional Cys target. TX pivalate (TP), a prodrug for TX that was previously marketed as a nasal spray, also inhibited SARS-CoV-2 replication in HeLa–ACE2 cells at low micromolar IC<small><sub>50</sub></small>s. These studies suggest that TX and/or TP could possibly be repurposed for the prevention and/or treatment of SARS-CoV-2 infection.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 4193-4205"},"PeriodicalIF":3.597,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura P. R. Figueroa, Renato L. de Carvalho, Renata G. Almeida, Esther R. S. Paz, Emilay B. T. Diogo, Maria H. Araujo, Warley S. Borges, Victor F. S. Ramos, Rubem F. S. Menna-Barreto, James M. Wood, John F. Bower and Eufrânio N. da Silva Júnior
The regioselective synthesis of functionalized naphthoquinones via the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using N-nucleophiles, and the second scope using pyridine N-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of T. cruzi has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC50/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.
{"title":"Generation and capture of naphthoquinonynes: a new frontier in the development of trypanocidal quinones via aryne chemistry†","authors":"Laura P. R. Figueroa, Renato L. de Carvalho, Renata G. Almeida, Esther R. S. Paz, Emilay B. T. Diogo, Maria H. Araujo, Warley S. Borges, Victor F. S. Ramos, Rubem F. S. Menna-Barreto, James M. Wood, John F. Bower and Eufrânio N. da Silva Júnior","doi":"10.1039/D4MD00558A","DOIUrl":"10.1039/D4MD00558A","url":null,"abstract":"<p >The regioselective synthesis of functionalized naphthoquinones <em>via</em> the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using <em>N</em>-nucleophiles, and the second scope using pyridine <em>N</em>-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of <em>T. cruzi</em> has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds <strong>29b-I</strong> and <strong>30b</strong>, with IC<small><sub>50</sub></small>/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 694-708"},"PeriodicalIF":3.597,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the anti-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of anti-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with N,N,N′,N′-tetraalkyldiaminomethane in the presence of an IrIII complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent anti-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.
{"title":"Anti-Schistosomal activity and ADMET properties of 1,2,5-oxadiazinane-containing compound synthesized by visible-light photoredox catalysis†","authors":"Kennosuke Itoh, Hiroki Nakahara, Atsushi Takashino, Aya Hara, Akiho Katsuno, Yuriko Abe, Takaaki Mizuguchi, Fumika Karaki, Shigeto Hirayama, Kenichiro Nagai, Reiko Seki, Noriko Sato, Kazuki Okuyama, Masashi Hashimoto, Ken Tokunaga, Hitoshi Ishida, Fusako Mikami, Kofi Dadzie Kwofie, Hayato Kawada, Bangzhong Lin, Kazuto Nunomura, Toshio Kanai, Takeshi Hatta, Naotoshi Tsuji, Junichi Haruta and Hideaki Fujii","doi":"10.1039/D4MD00599F","DOIUrl":"10.1039/D4MD00599F","url":null,"abstract":"<p >The incorporation of saturated nitrogen-containing heterocycle 1,2,5-oxadiazinane into small molecules represents a compelling avenue in drug discovery due to its unexplored behavior within biological systems and incomplete protocols for synthesis. In this study, we present 1,2,5-oxadiazinane, an innovative heterocyclic bioisostere of piperizin-2-one and novel chemotype of the <em>anti</em>-schistosomal drug praziquantel (PZQ), which has been the only clinical drug available for three decades. PZQ is associated with significant drawbacks, including poor solubility, a bitter taste, and low metabolic stability. Therefore, the discovery of a new class of <em>anti</em>-schistosomal agents is imperative. To address this challenge, we introduce a pioneering method for the synthesis of 1,2,5-oxadiazinane derivatives through the cycloaddition of nitrones with <em>N</em>,<em>N</em>,<em>N′</em>,<em>N′</em>-tetraalkyldiaminomethane in the presence of an Ir<small><sup>III</sup></small> complex photosensitizer. This transformative reaction offers a streamlined route to various kinds of 1,2,5-oxadiazinanes that is characterized by mild reaction conditions and broad substrate scope. Mechanistic investigations suggest that the photoredox pathway underlies the [3 + 3] photocycloaddition process. Thus, based on bioisosteric replacement, we identified a remarkable molecule as a new chemotype of a potent <em>anti</em>-schistosomal compound that not only exhibits superior solubility, but also retains the potent biological activity inherent to PZQ.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 4001-4010"},"PeriodicalIF":3.597,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahabuddin, Uzma, Mohammad Azam, Mehtab Parveen, Nurul Huda Abd Kadir, Kim Min and Mahboob Alam
In light of the ongoing pandemic caused by SARS-CoV-2, effective and clinically translatable treatments are desperately needed for COVID-19 and its emerging variants. In this study, some derivatives, including 7β-aminocholestene compounds, and 3β-acetoxy-6-nitrocholesta-4,6-diene were synthesized, in quantitative yields from 7β-bromo-6-nitrocholest-5-enes (1–3) with a small library of amines. The synthesized steroidal products were then thoroughly characterized using a range of physicochemical techniques, including IR, NMR, UV, MS, and elemental analysis. Next, a virtual screening based on structures using docking studies was conducted to investigate the potential of these synthesized compounds as therapeutic candidates against SARS-CoV-2. Specifically, we evaluated the compounds' binding energy of the reactants and their products with three SARS-CoV-2 functional proteins: the papain-like protease, 3C-like protease or main protease, and RNA-dependent RNA polymerase. Our results indicate that the 7β-aminocholestene derivatives (4–8) display intermediate to excellent binding energy, suggesting that they interact strongly with the receptor's active amino acids and may be promising drug candidates for inhibiting SARS-CoV-2. Although the starting steroid derivatives; 7β-bromo-6-nitrocholest-5-enes (1–3) and one steroid product; 3β-acetoxy-6-nitrocholesta-4,6-diene (9) exhibited strong binding energies with various SARS-CoV-2 receptors, they did not meet the Lipinski Rule and ADMET properties required for drug development. These compounds showed either mutagenic or reproductive/developmental toxicity when assessed using toxicity prediction software. The findings based on structure-based virtual screening, suggest that 7β-aminocholestaines (4–8) may be useful for reducing the susceptibility to SARS-CoV-2 infection. The docking pose of compound 4, which has a high score of −7.4 kcal mol−1, was subjected to AI-assisted deep learning to generate 60 AI-designed molecules for drug design. Molecular docking of these AI molecules was performed to select optimal candidates for further analysis and visualization. The cytotoxicity and antioxidant effects of 3β-acetoxy-6-nitrocholesta-4,6-diene were tested in vitro, showing marked cytotoxicity and antioxidant activity. To elucidate the molecular basis for these effects, steroidal compound 9 was subjected to molecular docking analysis to identify potential binding interactions. The stability of the top-ranked docking pose was subsequently assessed using molecular dynamics simulations.
{"title":"Exploring 7β-amino-6-nitrocholestens as COVID-19 antivirals: in silico, synthesis, evaluation, and integration of artificial intelligence (AI) in drug design: assessing the cytotoxicity and antioxidant activity of 3β-acetoxynitrocholestane†","authors":"Shahabuddin, Uzma, Mohammad Azam, Mehtab Parveen, Nurul Huda Abd Kadir, Kim Min and Mahboob Alam","doi":"10.1039/D4MD00257A","DOIUrl":"10.1039/D4MD00257A","url":null,"abstract":"<p >In light of the ongoing pandemic caused by SARS-CoV-2, effective and clinically translatable treatments are desperately needed for COVID-19 and its emerging variants. In this study, some derivatives, including 7β-aminocholestene compounds, and 3β-acetoxy-6-nitrocholesta-4,6-diene were synthesized, in quantitative yields from 7β-bromo-6-nitrocholest-5-enes (<strong>1–3</strong>) with a small library of amines. The synthesized steroidal products were then thoroughly characterized using a range of physicochemical techniques, including IR, NMR, UV, MS, and elemental analysis. Next, a virtual screening based on structures using docking studies was conducted to investigate the potential of these synthesized compounds as therapeutic candidates against SARS-CoV-2. Specifically, we evaluated the compounds' binding energy of the reactants and their products with three SARS-CoV-2 functional proteins: the papain-like protease, 3C-like protease or main protease, and RNA-dependent RNA polymerase. Our results indicate that the 7β-aminocholestene derivatives (<strong>4–8</strong>) display intermediate to excellent binding energy, suggesting that they interact strongly with the receptor's active amino acids and may be promising drug candidates for inhibiting SARS-CoV-2. Although the starting steroid derivatives; 7β-bromo-6-nitrocholest-5-enes (<strong>1–3</strong>) and one steroid product; 3β-acetoxy-6-nitrocholesta-4,6-diene (<strong>9</strong>) exhibited strong binding energies with various SARS-CoV-2 receptors, they did not meet the Lipinski Rule and ADMET properties required for drug development. These compounds showed either mutagenic or reproductive/developmental toxicity when assessed using toxicity prediction software. The findings based on structure-based virtual screening, suggest that 7β-aminocholestaines (<strong>4–8</strong>) may be useful for reducing the susceptibility to SARS-CoV-2 infection. The docking pose of compound <strong>4</strong>, which has a high score of −7.4 kcal mol<small><sup>−1</sup></small>, was subjected to AI-assisted deep learning to generate 60 AI-designed molecules for drug design. Molecular docking of these AI molecules was performed to select optimal candidates for further analysis and visualization. The cytotoxicity and antioxidant effects of 3β-acetoxy-6-nitrocholesta-4,6-diene were tested <em>in vitro</em>, showing marked cytotoxicity and antioxidant activity. To elucidate the molecular basis for these effects, steroidal compound 9 was subjected to molecular docking analysis to identify potential binding interactions. The stability of the top-ranked docking pose was subsequently assessed using molecular dynamics simulations.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3889-3911"},"PeriodicalIF":3.597,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar Fliss, Louis-David Guay, Ismail Fliss and Éric Biron
The antimicrobial lipopeptide brevibacillin is a non-ribosomally synthesized peptide produced by Brevibacillus laterosporus with inhibitory activity against several clinically relevant Gram-positive pathogenic bacteria such as Staphylococcus aureus, Listeria monocytogenes, and Clostridium difficile. In this study, we report the total synthesis of brevibacillin and analogues thereof as well as structure–activity relationship and cytotoxicity studies. Several novel synthetic analogues exhibited high inhibitory activities with minimal inhibitory concentration values in the low micromolar range against several bacteria including Gram-positive L. monocytogenes, S. aureus, Enterococcus faecalis, and Clostridium perfringens as well as Gram-negative Campylobacter coli and Pseudomonas aeruginosa. Of particular interest, four analogues showed a broad spectrum of action and greater antimicrobial activity versus cytotoxicity ratios than native brevibacillin. With a more accessible and efficient production process and improved pharmacological properties, these synthetic analogues are promising candidates to prevent and control the proliferation of various pathogens in the food industry as well as veterinary and human medicine.
{"title":"Synthesis and structure–activity study of the antimicrobial lipopeptide brevibacillin†","authors":"Omar Fliss, Louis-David Guay, Ismail Fliss and Éric Biron","doi":"10.1039/D4MD00612G","DOIUrl":"10.1039/D4MD00612G","url":null,"abstract":"<p >The antimicrobial lipopeptide brevibacillin is a non-ribosomally synthesized peptide produced by <em>Brevibacillus laterosporus</em> with inhibitory activity against several clinically relevant Gram-positive pathogenic bacteria such as <em>Staphylococcus aureus</em>, <em>Listeria monocytogenes</em>, and <em>Clostridium difficile</em>. In this study, we report the total synthesis of brevibacillin and analogues thereof as well as structure–activity relationship and cytotoxicity studies. Several novel synthetic analogues exhibited high inhibitory activities with minimal inhibitory concentration values in the low micromolar range against several bacteria including Gram-positive <em>L. monocytogenes</em>, <em>S. aureus</em>, <em>Enterococcus faecalis</em>, and <em>Clostridium perfringens</em> as well as Gram-negative <em>Campylobacter coli</em> and <em>Pseudomonas aeruginosa</em>. Of particular interest, four analogues showed a broad spectrum of action and greater antimicrobial activity <em>versus</em> cytotoxicity ratios than native brevibacillin. With a more accessible and efficient production process and improved pharmacological properties, these synthetic analogues are promising candidates to prevent and control the proliferation of various pathogens in the food industry as well as veterinary and human medicine.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 4168-4179"},"PeriodicalIF":3.597,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
{"title":"Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii","authors":"Vishwani Jamwal, Tashi Palmo and Kuljit Singh","doi":"10.1039/D4MD00449C","DOIUrl":"10.1039/D4MD00449C","url":null,"abstract":"<p >Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. <em>Acinetobacter baumannii</em> is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against <em>A. baumannii</em> continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant <em>A. baumannii</em> strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to <em>A. baumannii</em> drug discovery. The present review discusses the bacterial research community's efforts in the field of <em>A. baumannii</em>, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in <em>A. baumannii</em> bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant <em>A. baumannii</em> strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 3925-3949"},"PeriodicalIF":3.597,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniele Pala, David Clark, Christine Edwards, Elisa Pasqua, Laura Tigli, Barbara Pioselli, Piotr Malysa, Fabrizio Facchinetti, Fabio Rancati and Alessandro Accetta
We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration. The overall design approach exploited previous SARs available for congeneric series and crystallographic information to optimize the hinge-binding group as well as the terminal aromatic moiety interacting with the glycine-rich loop. The introduction of elongated and flexible charged groups led to compound 15, which exhibited sub-nanomolar potencies in biochemical and cellular assays, as well as a remarkable selectivity over PKA. HDX studies not only supported the postulated binding mode of compound 15 but also confirmed the crucial role of specific ROCK peptide segments in driving ligand selectivity.
我们报告了通过跳核策略鉴定的强效和选择性 ROCK 抑制剂的特征。我们采用虚拟筛选工作流程,结合配体和基于结构的方法,对已知的一系列带有乙酰氨基噻唑支架的 ROCK 抑制剂进行了筛选。苯并氮杂卓环代表了最有希望的中心核心替代物,被选为后续化学探索的起点。总体设计方法利用了以前同源系列的 SAR 和晶体学信息,优化了铰链结合基团以及与富含甘氨酸的环相互作用的末端芳香分子。通过引入拉长而灵活的带电基团,化合物 15 在生化和细胞实验中表现出亚纳摩尔的效力,并对 PKA 具有显著的选择性。HDX 研究不仅支持化合物 15 的假设结合模式,还证实了特定 ROCK 肽段在驱动配体选择性方面的关键作用。
{"title":"Design and synthesis of novel 8-(azaindolyl)-benzoazepinones as potent and selective ROCK inhibitors†","authors":"Daniele Pala, David Clark, Christine Edwards, Elisa Pasqua, Laura Tigli, Barbara Pioselli, Piotr Malysa, Fabrizio Facchinetti, Fabio Rancati and Alessandro Accetta","doi":"10.1039/D4MD00313F","DOIUrl":"10.1039/D4MD00313F","url":null,"abstract":"<p >We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration. The overall design approach exploited previous SARs available for congeneric series and crystallographic information to optimize the hinge-binding group as well as the terminal aromatic moiety interacting with the glycine-rich loop. The introduction of elongated and flexible charged groups led to compound <strong>15</strong>, which exhibited sub-nanomolar potencies in biochemical and cellular assays, as well as a remarkable selectivity over PKA. HDX studies not only supported the postulated binding mode of compound <strong>15</strong> but also confirmed the crucial role of specific ROCK peptide segments in driving ligand selectivity.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3862-3879"},"PeriodicalIF":3.597,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS1) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS1 could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (JMV 7489) designed to target PSMA and/or NTS1 bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive Kd and Bmax values. On the PC3-PIP cells, [68Ga]Ga-JMV 7489 displayed good affinity towards PSMA (Kd = 53 ± 17 nM; Bmax = 1393 ± 29 fmol/106 cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS1 was depicted (Kd = 157 ± 71 nM; Bmax = 241 ± 42 fmol/106 cells on PC3-PIP cells; Kd = 246 ± 1 nM; Bmax = 151 ± 44 fmol/106 cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [68Ga]Ga-JMV 7089. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS1 with high affinity towards NTS1.
利用放射性药物靶向前列腺特异性膜抗原(PSMA)进行成像和/或治疗,在前列腺癌患者的治疗方面取得了重大进展。然而,PSMA靶向治疗在PSMA低表达的前列腺癌中仍不成功,而这一比例仅为15%。神经营养素受体-1(NTS1)被认为是 PSMA 阴性前列腺癌病灶成像和治疗的合适靶点。因此,同时靶向 PSMA 和 NTS1 的异价探针可以改善前列腺癌的治疗。在此,我们报告了针对 PSMA 和/或 NTS1 的支化杂交探针(JMV 7489)的开发情况,该探针带有相关的药效团,并以 DOTA 作为螯合剂。新配体采用混合方法合成,包括批量和固相合成。接下来在 HT-29 和 PC3-PIP 细胞上进行了饱和结合实验,以得出 K d 和 B max 值。在 PC3-PIP 细胞上,[68Ga]Ga-JMV 7489 对 PSMA 显示出良好的亲和力(K d = 53 ± 17 nM;B max = 1393 ± 29 fmol/106个细胞),与相应的参比单体范围相同。对 NTS1 的亲和值较低(在 PC3-PIP 细胞上,K d = 157 ± 71 nM;B max = 241 ± 42 fmol/106 cells;在 HT-29 细胞上,K d = 246 ± 1 nM;B max = 151 ± 44 fmol/106 cells),令人惊讶的是,相应的单体 [68Ga]Ga-JMV 7089 也是如此。这些结果表明,DOTA 大环和连接体是设计对 NTS1 具有高亲和力的 PSMA 和 NTS1 靶向异源探针的关键元素。
{"title":"Rational design of NT-PSMA heterobivalent probes for prostate cancer theranostics†","authors":"Santo Previti, Sacha Bodin, Emmanuelle Rémond, Delphine Vimont, Elif Hindié, Clément Morgat and Florine Cavelier","doi":"10.1039/D4MD00491D","DOIUrl":"10.1039/D4MD00491D","url":null,"abstract":"<p >Targeting the prostate-specific membrane antigen (PSMA) with radiopharmaceuticals for imaging and/or therapy has demonstrated significant advancement in the management of prostate cancer patients. However, PSMA targeting remains unsuccessful in prostate cancers with low expression of PSMA, which account for 15% of cases. The neurotensin receptor-1 (NTS<small><sub>1</sub></small>) has been highlighted as a suitable oncotarget for imaging and therapy of PSMA-negative prostate cancer lesions. Therefore, heterobivalent probes targeting both PSMA and NTS<small><sub>1</sub></small> could improve the prostate cancer management. Herein, we report the development of a branched hybrid probe (<strong>JMV 7489</strong>) designed to target PSMA and/or NTS<small><sub>1</sub></small> bearing relevant pharmacophores and DOTA as the chelating agent. The new ligand was synthesized with a hybrid approach, which includes both syntheses in batch and in the solid phase. Saturation binding experiments were next performed on HT-29 and PC3-PIP cells to derive <em>K</em><small><sub>d</sub></small> and <em>B</em><small><sub>max</sub></small> values. On the PC3-PIP cells, [<small><sup>68</sup></small>Ga]Ga-<strong>JMV 7489</strong> displayed good affinity towards PSMA (<em>K</em><small><sub>d</sub></small> = 53 ± 17 nM; <em>B</em><small><sub>max</sub></small> = 1393 ± 29 fmol/10<small><sup>6</sup></small> cells) in the same range as the corresponding reference monomer. A lower affinity value towards NTS<small><sub>1</sub></small> was depicted (<em>K</em><small><sub>d</sub></small> = 157 ± 71 nM; <em>B</em><small><sub>max</sub></small> = 241 ± 42 fmol/10<small><sup>6</sup></small> cells on PC3-PIP cells; <em>K</em><small><sub>d</sub></small> = 246 ± 1 nM; <em>B</em><small><sub>max</sub></small> = 151 ± 44 fmol/10<small><sup>6</sup></small> cells on HT-29 cells) and, surprisingly, it was also the case for the corresponding monomer [<small><sup>68</sup></small>Ga]Ga-<strong>JMV 7089</strong>. These results indicate that the DOTA macrocycle and the linker are critical elements to design heterobivalent probes targeting PSMA and NTS<small><sub>1</sub></small> with high affinity towards NTS<small><sub>1</sub></small>.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 4153-4158"},"PeriodicalIF":3.597,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142381605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}