首页 > 最新文献

MedChemComm最新文献

英文 中文
Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer† 通过调节 STAT3 通路合成一种作为癌症干细胞抑制剂的青霉烯醇衍生物,用于治疗卵巢癌。
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-08-10 DOI: 10.1039/D4MD00468J
Meijuan Liu, Na Li, Zhaoxue Wang, Shuo Wang, Shaoda Ren and Xiaojing Li

Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (Cel-N) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. Cel-N displayed potent activities against all the tested ovarian cancer cells, with the lowest IC50 value of 0.14–0.25 μM. Further studies showed that Cel-N effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44+CD24 and ALDH+ cells, and induced ROS production. Furthermore, western blot analysis indicated that Cel-N significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, Cel-N could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, Cel-N showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of Cel-N is stronger than celastrol. Cel-N attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that Cel-N is a potent drug candidate for ovarian cancer.

越来越多的证据表明,卵巢癌化疗耐药性的根源与癌症干细胞亚群密切相关,而癌症干细胞的活化主要与信号转导和激活转录3(STAT3)信号转导有关。最近,塞拉斯托(celastrol)对卵巢癌有显著的抗癌作用,但由于其口服生物利用度和高器官毒性,其临床转化非常具有挑战性。本研究合成了一种青霉烷醇衍生物(Cel-N),以增强其整体疗效,并探索其潜在机制。研究人员使用不同的卵巢癌细胞(SKOV3 和 A2780)来评估和比较其抗癌效果。Cel-N 对所有测试的卵巢癌细胞都显示出强大的活性,最低 IC50 值为 0.14-0.25 μM。进一步的研究表明,Cel-N能有效抑制细胞的集落形成和球形成能力,降低CD44+CD24-和ALDH+细胞的比例,并诱导ROS的产生。此外,Western 印迹分析表明,Cel-N 能显著抑制 Tyr705 和 Ser727 的磷酸化,并降低 STAT3 的蛋白表达。此外,Cel-N 还能显著诱导细胞凋亡和细胞周期停滞,并抑制细胞的迁移和侵袭。重要的是,在小鼠异种移植模型中,Cel-N显示出了强大的抗肿瘤功效,并且没有或仅有有限的全身毒性。Cel-N 的抗癌效果强于 celastrol。Cel-N 可减轻癌细胞干性,抑制 STAT3 通路,并在细胞和小鼠模型中发挥抗卵巢癌作用。我们的数据支持 Cel-N 是一种治疗卵巢癌的有效候选药物。
{"title":"Synthesis of a celastrol derivative as a cancer stem cell inhibitor through regulation of the STAT3 pathway for treatment of ovarian cancer†","authors":"Meijuan Liu, Na Li, Zhaoxue Wang, Shuo Wang, Shaoda Ren and Xiaojing Li","doi":"10.1039/D4MD00468J","DOIUrl":"10.1039/D4MD00468J","url":null,"abstract":"<p >Accumulating evidence suggests that the root of drug chemoresistance in ovarian cancer is tightly associated with subpopulations of cancer stem cells (CSCs), whose activation is largely associated with signal transducer and activator of transcription 3 (STAT3) signaling. Recently, celastrol has shown a significant anti-cancer effect on ovarian cancer, but its clinical translation is very challenging due to its oral bioavailability and high organ toxicity. In this study, a celastrol derivative (<strong>Cel-N</strong>) was synthesized to augment the overall efficacy, and its underlying mechanisms were also explored. Different ovarian cancer cells, SKOV3 and A2780, were used to evaluate and compare the anticancer effects. <strong>Cel-N</strong> displayed potent activities against all the tested ovarian cancer cells, with the lowest IC<small><sub>50</sub></small> value of 0.14–0.25 μM. Further studies showed that <strong>Cel-N</strong> effectively suppressed the colony formation and sphere formation ability, decreased the percentage of CD44<small><sup>+</sup></small>CD24<small><sup>−</sup></small> and ALDH<small><sup>+</sup></small> cells, and induced ROS production. Furthermore, western blot analysis indicated that <strong>Cel-N</strong> significantly inhibited both Tyr705 and Ser727 phosphorylation and reduced the protein expression of STAT3. In addition, <strong>Cel-N</strong> could dramatically induce apoptosis and cell cycle arrest, and inhibit migration and invasion. Importantly, <strong>Cel-N</strong> showed a potent antitumor efficacy with no or limited systemic toxicity in mice xenograft models. The anticancer effect of <strong>Cel-N</strong> is stronger than celastrol. <strong>Cel-N</strong> attenuates cancer cell stemness, inhibits the STAT3 pathway, and exerts anti-ovarian cancer effects in cell and mouse models. Our data support that <strong>Cel-N</strong> is a potent drug candidate for ovarian cancer.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3433-3443"},"PeriodicalIF":3.597,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comprehensive apoptotic assessment of niloticin in cervical cancer cells: a tirucallane-type triterpenoid from Aphanamixis polystachya (Wall.) Parker† 对宫颈癌细胞中尼洛替丁(niloticin)凋亡作用的全面评估:一种来自 Aphanamixis polystachya (Wall.) Parker 的 tirucallane 型三萜类化合物。
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-08-08 DOI: 10.1039/D4MD00318G
Anuja Gracy Joseph, Mohanan Biji, Vishnu Priya Murali, Daisy R. Sherin, Alisha Valsan, Vimalkumar P. Sukumaran, Kokkuvayil Vasu Radhakrishnan and Kaustabh Kumar Maiti

Pharmacologically active small organic molecules derived from natural resources are prominent drug candidates due to their inherent structural diversity. Herein, we explored one such bioactive molecule, niloticin, which is a tirucallane-type triterpenoid isolated from the stem barks of Aphanamixis polystachya (Wall.) Parker. After initial screening with other isolated compounds from the same plant, niloticin demonstrated selective cytotoxicity against cervical cancer cells (HeLa) with an IC50 value of 11.64 μM. Whereas the compound exhibited minimal cytotoxicity in normal epithelial cell line MCF-10A, with an IC50 value of 83.31 μM. Subsequently, in silico molecular docking studies of niloticin based on key apoptotic proteins such as p53, Fas, FasL, and TNF β revealed striking binding affinity, reflecting docking scores of −7.2, −7.1, −6.8, and −7.2. Thus, the binding stability was evaluated through molecular dynamic simulation. In a downstream process, the apoptotic capability of niloticin was effectively validated through in vitro fluorimetric assays, encompassing nuclear fragmentation. Additionally, an insightful approach involving surface-enhanced Raman spectroscopy (SERS) re-establishes the occurrence of DNA cleavage during cellular apoptosis. Furthermore, niloticin was observed to induce apoptosis through both intrinsic and extrinsic pathways. This was evidenced by the upregulation of upstream regulatory molecules such as CD40 and TNF, which facilitate the activation of caspase 8. Concurrently, niloticin-induced p53 activation augmented the expression of proapoptotic proteins Bax and Bcl-2 and downregulation of IAPs, leading to the release of cytochrome C and subsequent activation of caspase 9. Therefore, the reflection of mitochondrial-mediated apoptosis is in good agreement with molecular docking studies. Furthermore, the anti-metastatic potential was evidenced by wound area closure and Ki67 expression patterns. This pivotal in vitro assessment confirms the possibility of niloticin being a potent anti-cancer drug candidate, and to the best of our knowledge, this is the first comprehensive anticancer assessment of niloticin in HeLa cells.

从自然资源中提取的具有药理活性的有机小分子因其固有的结构多样性而成为重要的候选药物。在本文中,我们探索了这样一种生物活性分子--niloticin,它是从 Aphanamixis polystachya (Wall.) Parker 的茎皮中分离出来的一种桐木烷型三萜类化合物。在与从同一种植物中分离出来的其他化合物进行初步筛选后,尼罗替丁对宫颈癌细胞(HeLa)具有选择性细胞毒性,IC50 值为 11.64 μM。而该化合物对正常上皮细胞系 MCF-10A 的细胞毒性很小,IC50 值为 83.31 μM。随后,基于 p53、Fas、FasL 和 TNF β 等关键凋亡蛋白对尼洛替星进行的硅学分子对接研究显示,该化合物与这些蛋白的结合亲和力惊人,对接得分分别为 -7.2、-7.1、-6.8 和 -7.2。因此,通过分子动力学模拟对其结合稳定性进行了评估。在下游过程中,通过体外荧光测定(包括核破碎)有效地验证了尼罗替丁的凋亡能力。此外,一种涉及表面增强拉曼光谱(SERS)的具有洞察力的方法再次证实了细胞凋亡过程中 DNA 断裂的发生。此外,还观察到尼洛替星通过内在和外在途径诱导细胞凋亡。CD40和TNF等上游调控分子的上调证明了这一点,它们促进了caspase 8的活化。同时,尼罗替丁诱导的 p53 激活增加了促凋亡蛋白 Bax 和 Bcl-2 的表达,并下调了 IAPs,导致细胞色素 C 的释放和随后的 caspase 9 激活。因此,线粒体介导的细胞凋亡反映与分子对接研究非常吻合。此外,伤口面积闭合和 Ki67 表达模式也证明了抗转移潜力。据我们所知,这是首次在 HeLa 细胞中对尼洛替星进行全面的抗癌评估。
{"title":"A comprehensive apoptotic assessment of niloticin in cervical cancer cells: a tirucallane-type triterpenoid from Aphanamixis polystachya (Wall.) Parker†","authors":"Anuja Gracy Joseph, Mohanan Biji, Vishnu Priya Murali, Daisy R. Sherin, Alisha Valsan, Vimalkumar P. Sukumaran, Kokkuvayil Vasu Radhakrishnan and Kaustabh Kumar Maiti","doi":"10.1039/D4MD00318G","DOIUrl":"10.1039/D4MD00318G","url":null,"abstract":"<p >Pharmacologically active small organic molecules derived from natural resources are prominent drug candidates due to their inherent structural diversity. Herein, we explored one such bioactive molecule, niloticin, which is a tirucallane-type triterpenoid isolated from the stem barks of <em>Aphanamixis polystachya</em> (Wall.) Parker. After initial screening with other isolated compounds from the same plant, niloticin demonstrated selective cytotoxicity against cervical cancer cells (HeLa) with an IC<small><sub>50</sub></small> value of 11.64 μM. Whereas the compound exhibited minimal cytotoxicity in normal epithelial cell line MCF-10A, with an IC<small><sub>50</sub></small> value of 83.31 μM. Subsequently, <em>in silico</em> molecular docking studies of niloticin based on key apoptotic proteins such as p53, Fas, FasL, and TNF β revealed striking binding affinity, reflecting docking scores of −7.2, −7.1, −6.8, and −7.2. Thus, the binding stability was evaluated through molecular dynamic simulation. In a downstream process, the apoptotic capability of niloticin was effectively validated through <em>in vitro</em> fluorimetric assays, encompassing nuclear fragmentation. Additionally, an insightful approach involving surface-enhanced Raman spectroscopy (SERS) re-establishes the occurrence of DNA cleavage during cellular apoptosis. Furthermore, niloticin was observed to induce apoptosis through both intrinsic and extrinsic pathways. This was evidenced by the upregulation of upstream regulatory molecules such as CD40 and TNF, which facilitate the activation of caspase 8. Concurrently, niloticin-induced p53 activation augmented the expression of proapoptotic proteins Bax and Bcl-2 and downregulation of IAPs, leading to the release of cytochrome C and subsequent activation of caspase 9. Therefore, the reflection of mitochondrial-mediated apoptosis is in good agreement with molecular docking studies. Furthermore, the anti-metastatic potential was evidenced by wound area closure and Ki67 expression patterns. This pivotal <em>in vitro</em> assessment confirms the possibility of niloticin being a potent anti-cancer drug candidate, and to the best of our knowledge, this is the first comprehensive anticancer assessment of niloticin in HeLa cells.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3444-3459"},"PeriodicalIF":3.597,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and cytotoxic activity of madecassic acid–silybin conjugate compounds in liver cancer cells† 马黛茶酸-水飞蓟宾共轭化合物的合成及其对肝癌细胞的细胞毒性活性
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-08-02 DOI: 10.1039/D4MD00170B
Chien Van Tran, Thao Thi Phuong Tran, Anh The Nguyen, Loc Van Tran, Ninh Thi Pham, Luu Thi Nguyen, Dung Thi Nguyen, Michelle D. Garrett, Nga Thi Nguyen, Thao Thi Do, Christopher J. Serpell and Sung Van Tran

A series of 14 conjugates of 2α,3β,23-triacetyl-madecassic acid and silybin were designed and synthesized. The madecassic acid unit was linked to silybin either directly at position C-7 or C-3; or through an amino acid linker (glycine, β-alanine, or 11-aminoundecanoic acid) at position C-3. The conjugates were tested in vitro for their cytotoxic effect on HepG2 cells using the MTT assay. The results confirmed that the conjugated compounds demonstrated a stronger cytotoxic effect compared to the parent compounds. Of these compounds, the most promising conjugate, compound 8, was evaluated for cytotoxic activity in the additional Hep3B, Huh7, and Huh7R human hepatocellular carcinoma cell lines and also for cell cycle changes and induction of apoptosis in HepG2 cells. This compound caused a rapid and significant induction of caspase 3 activity and induced cell cycle arrest in the S phase – effects distinct from the activity of madecassic acid. This is the first study on the synthesis and cytotoxicity of madecassic acid–silybin conjugates, and of their testing against liver cancer cell lines and provides evidence for a distinct biological profile versus madecassic acid alone.

我们设计并合成了一系列 14 种 2α,3β,23-三乙酰基棕榈酸与水飞蓟宾的共轭物。水飞蓟酸单元与水飞蓟宾的连接方式有两种,一种是在 C-7 位或 C-3 位直接连接,另一种是在 C-3 位通过氨基酸连接体(甘氨酸、β-丙氨酸或 11-氨基十一烷酸)连接。采用 MTT 法体外测试了共轭物对 HepG2 细胞的细胞毒性作用。结果证实,与母体化合物相比,共轭化合物具有更强的细胞毒性作用。在这些化合物中,最有前景的共轭化合物化合物 8 在其他 Hep3B、Huh7 和 Huh7R 人肝癌细胞系中进行了细胞毒性活性评估,并在 HepG2 细胞中进行了细胞周期变化和诱导细胞凋亡评估。该化合物可快速、显著地诱导 Caspase 3 的活性,并诱导细胞周期停滞在 S 期,其效果与马来酸的活性截然不同。这是第一项关于疯草酸-水飞蓟宾共轭物的合成和细胞毒性的研究,也是第一项针对肝癌细胞系的测试研究,为其与单独的疯草酸相比具有不同的生物特性提供了证据。
{"title":"Synthesis and cytotoxic activity of madecassic acid–silybin conjugate compounds in liver cancer cells†","authors":"Chien Van Tran, Thao Thi Phuong Tran, Anh The Nguyen, Loc Van Tran, Ninh Thi Pham, Luu Thi Nguyen, Dung Thi Nguyen, Michelle D. Garrett, Nga Thi Nguyen, Thao Thi Do, Christopher J. Serpell and Sung Van Tran","doi":"10.1039/D4MD00170B","DOIUrl":"10.1039/D4MD00170B","url":null,"abstract":"<p >A series of 14 conjugates of 2α,3β,23-triacetyl-madecassic acid and silybin were designed and synthesized. The madecassic acid unit was linked to silybin either directly at position C-7 or C-3; or through an amino acid linker (glycine, β-alanine, or 11-aminoundecanoic acid) at position C-3. The conjugates were tested <em>in vitro</em> for their cytotoxic effect on HepG2 cells using the MTT assay. The results confirmed that the conjugated compounds demonstrated a stronger cytotoxic effect compared to the parent compounds. Of these compounds, the most promising conjugate, compound <strong>8</strong>, was evaluated for cytotoxic activity in the additional Hep3B, Huh7, and Huh7R human hepatocellular carcinoma cell lines and also for cell cycle changes and induction of apoptosis in HepG2 cells. This compound caused a rapid and significant induction of caspase 3 activity and induced cell cycle arrest in the S phase – effects distinct from the activity of madecassic acid. This is the first study on the synthesis and cytotoxicity of madecassic acid–silybin conjugates, and of their testing against liver cancer cell lines and provides evidence for a distinct biological profile <em>versus</em> madecassic acid alone.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3418-3432"},"PeriodicalIF":3.597,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The synthesis and bioactivities of ROCK2 inhibitors with 1,2-dithiolan-3-yl motif† 具有 1,2-二硫环戊-3-基基团的 ROCK2 抑制剂的合成及其生物活性
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-08-01 DOI: 10.1039/D4MD00438H
Ruolin Cao, Fangyu Du, Zhiqiang Liu, Pengcheng Cai, Minggang Qi, Wei Xiao, Xuefei Bao and Guoliang Chen

Rho-associated coiled-coil containing kinase (ROCK) plays an important role in inflammation. Herein, a series of compounds were designed and synthesized as ROCK inhibitors based on the structure-based drug design (SBDD) strategy and were evaluated for cytotoxicity, antioxidant activity and anti-inflammatory activity. Among them, compound DC24 was identified as the optimal hit in enzymatic screening with an IC50 value of 0.124 μM against ROCK2 and 50-fold selectivity over ROCK1. DC24 has a novel lipid amide scaffold with a bis(4-fluorophenyl)methyl substituent, and DC24 is the first ROCK2 inhibitor interacting with the hinge region of ROCK2 via the 1,2-dithiolan-3-yl motif, which has been confirmed by the binding model of DC24 with ROCK2. In a complete Freund's adjuvant (CFA) induced acute inflammation model, DC24 at a dose of 5 mg kg−1 exhibited an anti-inflammatory effect better than that of belumosudil. Furthermore, DC24 exhibits good safety in vivo.

Rho相关含盘卷激酶(ROCK)在炎症中发挥着重要作用。本文基于基于结构的药物设计(SBDD)策略,设计合成了一系列化合物作为ROCK抑制剂,并对其细胞毒性、抗氧化活性和抗炎活性进行了评价。其中,化合物 DC24 在酶筛选中被确定为最佳靶点,其对 ROCK2 的 IC50 值为 0.124 μM,选择性是 ROCK1 的 50 倍。DC24 具有双(4-氟苯基)甲基取代基的新型脂质酰胺支架,是首个通过 1,2-二硫环戊-3-基基团与 ROCK2 铰链区相互作用的 ROCK2 抑制剂,DC24 与 ROCK2 的结合模型证实了这一点。在完全弗氏佐剂(CFA)诱导的急性炎症模型中,剂量为 5 mg kg-1 的 DC24 的抗炎效果优于贝卢莫司地。此外,DC24 在体内表现出良好的安全性。
{"title":"The synthesis and bioactivities of ROCK2 inhibitors with 1,2-dithiolan-3-yl motif†","authors":"Ruolin Cao, Fangyu Du, Zhiqiang Liu, Pengcheng Cai, Minggang Qi, Wei Xiao, Xuefei Bao and Guoliang Chen","doi":"10.1039/D4MD00438H","DOIUrl":"10.1039/D4MD00438H","url":null,"abstract":"<p >Rho-associated coiled-coil containing kinase (ROCK) plays an important role in inflammation. Herein, a series of compounds were designed and synthesized as ROCK inhibitors based on the structure-based drug design (SBDD) strategy and were evaluated for cytotoxicity, antioxidant activity and anti-inflammatory activity. Among them, compound <strong>DC24</strong> was identified as the optimal hit in enzymatic screening with an IC<small><sub>50</sub></small> value of 0.124 μM against ROCK2 and 50-fold selectivity over ROCK1. <strong>DC24</strong> has a novel lipid amide scaffold with a bis(4-fluorophenyl)methyl substituent, and <strong>DC24</strong> is the first ROCK2 inhibitor interacting with the hinge region of ROCK2 <em>via</em> the 1,2-dithiolan-3-yl motif, which has been confirmed by the binding model of <strong>DC24</strong> with ROCK2. In a complete Freund's adjuvant (CFA) induced acute inflammation model, <strong>DC24</strong> at a dose of 5 mg kg<small><sup>−1</sup></small> exhibited an anti-inflammatory effect better than that of belumosudil. Furthermore, <strong>DC24</strong> exhibits good safety <em>in vivo</em>.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3576-3596"},"PeriodicalIF":3.597,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold(i) and gold(iii) carbene complexes from the marine betaine norzooanemonin: inhibition of thioredoxin reductase, antiproliferative and antimicrobial activity† 来自海洋甜菜碱 norzooanemonin 的金(i)和金(iii)碳烯配合物:抑制硫氧还原酶、抗增殖和抗菌活性。
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-31 DOI: 10.1039/D4MD00358F
Seyedeh Mahbobeh Mahdavi, Dirk Bockfeld, Igor V. Esarev, Petra Lippmann, René Frank, Mark Brönstrup, Ingo Ott and Matthias Tamm

The natural marine betaine norzooanemonin (1,3-dimethylimidazolim-4-carboxylate) and its methyl and ethyl esters were used as ligand precursors to prepare a systematic series (12 members) of neutral monocarbene gold(I/III) and cationic dicarbene gold(I/III) complexes. The complexes were evaluated as inhibitors of bacterial thioredoxin reductase and for their antiproliferative and antimicrobial activities. While gold complexes with the parent norzooanemonin scaffold resulted in overall poor performance, the more lipophilic esters proved to be highly bioactive agents, related to their higher cellular uptake. The monocarbene gold(I/III) complexes showed significant potency as inhibitors of bacterial thioredoxin reductase. In most assays, the efficacy of both gold(I) and gold(III) analogues was found to be comparable. The cytotoxicity of dicarbene gold(I/III) complexes against cancer cells was strong, in some cases exceeding that of the standard reference auranofin.

研究人员以天然海洋甜菜碱 Norzooanemonin(1,3-二甲基咪唑啉-4-羧酸酯)及其甲酯和乙酯为配体前体,制备了一系列(12 个成员)中性单碳烯金(i/iii)和阳离子二碳烯金(i/iii)配合物。这些配合物被评估为细菌硫氧还蛋白还原酶的抑制剂,并具有抗增殖和抗菌活性。亲脂性更强的酯类被证明具有很高的生物活性,这与它们较高的细胞吸收率有关。单碳烯金(i/iii)复合物作为细菌硫代还原酶的抑制剂显示出显著的效力。在大多数试验中,金(i)和金(iii)类似物的功效相当。二碳烯金(i/iii)复合物对癌细胞的细胞毒性很强,在某些情况下甚至超过了标准参考物金诺芬。
{"title":"Gold(i) and gold(iii) carbene complexes from the marine betaine norzooanemonin: inhibition of thioredoxin reductase, antiproliferative and antimicrobial activity†","authors":"Seyedeh Mahbobeh Mahdavi, Dirk Bockfeld, Igor V. Esarev, Petra Lippmann, René Frank, Mark Brönstrup, Ingo Ott and Matthias Tamm","doi":"10.1039/D4MD00358F","DOIUrl":"10.1039/D4MD00358F","url":null,"abstract":"<p >The natural marine betaine norzooanemonin (1,3-dimethylimidazolim-4-carboxylate) and its methyl and ethyl esters were used as ligand precursors to prepare a systematic series (12 members) of neutral monocarbene gold(<small>I</small>/<small>III</small>) and cationic dicarbene gold(<small>I</small>/<small>III</small>) complexes. The complexes were evaluated as inhibitors of bacterial thioredoxin reductase and for their antiproliferative and antimicrobial activities. While gold complexes with the parent norzooanemonin scaffold resulted in overall poor performance, the more lipophilic esters proved to be highly bioactive agents, related to their higher cellular uptake. The monocarbene gold(<small>I</small>/<small>III</small>) complexes showed significant potency as inhibitors of bacterial thioredoxin reductase. In most assays, the efficacy of both gold(<small>I</small>) and gold(<small>III</small>) analogues was found to be comparable. The cytotoxicity of dicarbene gold(<small>I</small>/<small>III</small>) complexes against cancer cells was strong, in some cases exceeding that of the standard reference auranofin.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3248-3255"},"PeriodicalIF":3.597,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and antiproliferative potency of 1,3,4-thiadiazole and 1,3-thiazolidine-4-one based new binary heterocyclic molecules: in vitro cell-based anticancer studies† 基于 1,3,4-噻二唑和 1,3-噻唑烷-4-酮的新二元杂环分子的合成和抗增殖效力:体外细胞抗癌研究
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-31 DOI: 10.1039/D4MD00279B
Avik Maji, Ambati Himaja, Sripathi Nikhitha, Soumitra Rana, Abhik Paul, Ajeya Samanta, Uday Shee, Chhanda Mukhopadhyay, Balaram Ghosh and Tapan Kumar Maity

Herein, we report the synthesis and anticancer properties of 21 new 1,3,4-thiadiazole-2-yl-imino-thiazolidine-4-one containing binary heterocyclic molecules. Cytotoxicity of the synthesized molecules was evaluated on various in vitro cancer cell lines (MCF-7, PC3, 4T1, MDA-MB-231, and MOC2) and normal human embryonic cell lines (HEK-293) via MTT assay. The cytotoxicity data of developed compounds was compared with the reference anticancer molecule BG45, a selective inhibitor of the HDAC3 enzyme. All compounds showed a significant cytotoxic effect higher than BG45 on tested cancer cell lines. Moreover, the compounds exhibited better selectivity on cancer cells than on normal cells. Among the molecules, compound 6e is the most potent in cytotoxic activity on MCF-7 cell lines (IC50 value of 3.85 μM). Additional mechanistic investigation revealed that compound 6e promotes apoptosis (25.3%) and G0/G1 phase cell cycle arrest of MCF-7 cells. Also, compound 6e induces intracellular ROS accumulation and subsequent nuclear fragmentation. Hence, this research finds new hybrid molecules active against in vitro cancer cells.

在此,我们报告了 21 种新的 1,3,4-噻二唑-2-基-亚氨基噻唑烷-4-酮二元杂环分子的合成和抗癌特性。通过 MTT 试验评估了合成分子对各种体外癌细胞株(MCF-7、PC3、4T1、MDA-MB-231 和 MOC2)和正常人胚胎细胞株(HEK-293)的细胞毒性。所开发化合物的细胞毒性数据与参考抗癌分子 BG45(一种 HDAC3 酶的选择性抑制剂)进行了比较。在测试的癌细胞系中,所有化合物的细胞毒性效果均明显高于 BG45。此外,这些化合物对癌细胞的选择性优于正常细胞。在这些分子中,化合物 6e 对 MCF-7 细胞株的细胞毒性最强(IC50 值为 3.85 μM)。其他机理研究表明,化合物 6e 能促进 MCF-7 细胞凋亡(25.3%)和 G0/G1 期细胞周期停滞。此外,化合物 6e 还能诱导细胞内 ROS 的积累和随后的核破碎。因此,这项研究发现了对体外癌细胞具有活性的新混合分子。
{"title":"Synthesis and antiproliferative potency of 1,3,4-thiadiazole and 1,3-thiazolidine-4-one based new binary heterocyclic molecules: in vitro cell-based anticancer studies†","authors":"Avik Maji, Ambati Himaja, Sripathi Nikhitha, Soumitra Rana, Abhik Paul, Ajeya Samanta, Uday Shee, Chhanda Mukhopadhyay, Balaram Ghosh and Tapan Kumar Maity","doi":"10.1039/D4MD00279B","DOIUrl":"10.1039/D4MD00279B","url":null,"abstract":"<p >Herein, we report the synthesis and anticancer properties of 21 new 1,3,4-thiadiazole-2-yl-imino-thiazolidine-4-one containing binary heterocyclic molecules. Cytotoxicity of the synthesized molecules was evaluated on various <em>in vitro</em> cancer cell lines (MCF-7, PC3, 4T1, MDA-MB-231, and MOC2) and normal human embryonic cell lines (HEK-293) <em>via</em> MTT assay. The cytotoxicity data of developed compounds was compared with the reference anticancer molecule <strong>BG45</strong>, a selective inhibitor of the HDAC3 enzyme. All compounds showed a significant cytotoxic effect higher than <strong>BG45</strong> on tested cancer cell lines. Moreover, the compounds exhibited better selectivity on cancer cells than on normal cells. Among the molecules, compound <strong>6e</strong> is the most potent in cytotoxic activity on MCF-7 cell lines (IC<small><sub>50</sub></small> value of 3.85 μM). Additional mechanistic investigation revealed that compound <strong>6e</strong> promotes apoptosis (25.3%) and G0/G1 phase cell cycle arrest of MCF-7 cells. Also, compound <strong>6e</strong> induces intracellular ROS accumulation and subsequent nuclear fragmentation. Hence, this research finds new hybrid molecules active against <em>in vitro</em> cancer cells.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3057-3069"},"PeriodicalIF":3.597,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating amino acids into Bcr-Abl inhibitors: design, synthesis, biological evaluation, and in silico studies† 将氨基酸整合到 Bcr-Abl 抑制剂中:设计、合成、生物评估和硅学研究。
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-24 DOI: 10.1039/D4MD00417E
Yuying Liu, Zeyu Yang, Jie Zhang, Na Guo, Nanxin Liu, Qingqing Zhang, Xintao Dang, Yanchen Li, Jie Zhang and Xiaoyan Pan

Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-AblT315I. In continuation of these studies, we further enriched the linker types by developing a library of compounds with tert-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-AblWT and Bcr-AblT315I kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds TL8, TL10, BS4, BS10, SR5 and SR11 exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds TL8, BS4 and SR5 effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of tert-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, tert-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds BS4, SR5, and especially TL8, can be used as starting points for further optimization.

Bcr-Abl作为CML治疗靶点已成功应用于药物研发,但点突变耐药已成为CML临床治疗的一大挑战。我们之前的研究表明,引入氨基酸作为柔性连接体和杂环结构作为 HBM 可以实现对 Bcr-AblT315I 的强效抑制。在这些研究的基础上,我们进一步丰富了连接体类型,开发了以叔亮氨酸或丝氨酸为连接体的化合物库。生物学结果表明,与之前公开的化合物相比,这些化合物对 Bcr-AblWT 和 Bcr-AblT315I 激酶的抑制作用增强,在白血病细胞实验中的抗增殖活性也有所提高。特别是,化合物 TL8、TL10、BS4、BS10、SR5 和 SR11 对带有 T315I 突变体的 Ba/F3 细胞具有强效抑制活性。此外,化合物 TL8、BS4 和 SR5 还能有效诱导 K562 细胞凋亡,使细胞周期停滞在 S 期或 G2/M 期,并以剂量依赖的方式抑制 Bcr-Abl 和 STAT5 的磷酸化。对接研究验证了叔亮氨酸或丝氨酸作为柔性连接体的合理性,并表明带有酰胺侧链的苯基吡啶更有利于提高这些抑制剂的效力。此外,ADME 预测表明,所测试的化合物具有良好的安全性。因此,叔亮氨酸或丝氨酸可以作为一类很有前景的柔性连接物,用于具有杂环结构的 Bcr-Abl 抑制剂 HBM,化合物 BS4、SR5,尤其是 TL8 可以作为进一步优化的起点。
{"title":"Integrating amino acids into Bcr-Abl inhibitors: design, synthesis, biological evaluation, and in silico studies†","authors":"Yuying Liu, Zeyu Yang, Jie Zhang, Na Guo, Nanxin Liu, Qingqing Zhang, Xintao Dang, Yanchen Li, Jie Zhang and Xiaoyan Pan","doi":"10.1039/D4MD00417E","DOIUrl":"10.1039/D4MD00417E","url":null,"abstract":"<p >Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-Abl<small><sup>T315I</sup></small>. In continuation of these studies, we further enriched the linker types by developing a library of compounds with <em>tert</em>-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-Abl<small><sup>WT</sup></small> and Bcr-Abl<small><sup>T315I</sup></small> kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds <strong>TL8</strong>, <strong>TL10</strong>, <strong>BS4</strong>, <strong>BS10</strong>, <strong>SR5</strong> and <strong>SR11</strong> exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds <strong>TL8</strong>, <strong>BS4</strong> and <strong>SR5</strong> effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of <em>tert</em>-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, <em>tert</em>-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds <strong>BS4</strong>, <strong>SR5</strong>, and especially <strong>TL8</strong>, can be used as starting points for further optimization.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3507-3528"},"PeriodicalIF":3.597,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analysis of the physicochemical properties of oral drugs from 2000 to 2022† 2000 至 2022 年口服药物理化特性分析
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-22 DOI: 10.1039/D4MD00160E
Rachael Pirie, Harriet A. Stanway-Gordon, Hannah L. Stewart, Kirsty L. Wilson, Summer Patton, Jack Tyerman, Daniel J. Cole, Katherine Fowler and Michael J. Waring

Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape, guided by descriptors that approximate to these properties, can greatly increase the chances of successful drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of these properties and thus there is much interest in approaches to find oral drug candidates outside of this space. These considerations have been a focus for a while and hence we analysed the physicochemical properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced the output of the drug-discovery community. Our findings show that it is possible to find drug molecules that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight >500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more accurate and robust means of understanding substructural classes, shape and conformation are likely to be required to improve the chances of success in this space.

可计算的理化描述指标是协助药物化学化合物设计的有用指南。众所周知,在近似于这些性质的描述因子的指导下,控制药物的大小、亲油性、氢键、柔韧性和形状可以大大增加药物发现的成功几率。许多治疗靶点和新模式与这些特性的最佳范围不相容,因此,人们对在这一范围之外寻找口服候选药物的方法非常感兴趣。这些考虑因素一直是我们关注的焦点,因此我们分析了 2000 年至 2022 年美国食品与药物管理局批准的口服药物的理化性质,以评估这些概念是否影响了药物发现界的成果。我们的研究结果表明,我们有可能发现超出最佳描述符范围的药物分子,尤其是大分子(分子量 500 Da)可以成为口服药物。分析表明,如果对亲脂性、氢键和柔韧性进行控制,这种可能性会更大。在这方面,粗略的物理化学描述符是有用的,但要提高在这一领域取得成功的机会,可能需要更准确、更可靠的方法来了解亚结构类别、形状和构象。
{"title":"An analysis of the physicochemical properties of oral drugs from 2000 to 2022†","authors":"Rachael Pirie, Harriet A. Stanway-Gordon, Hannah L. Stewart, Kirsty L. Wilson, Summer Patton, Jack Tyerman, Daniel J. Cole, Katherine Fowler and Michael J. Waring","doi":"10.1039/D4MD00160E","DOIUrl":"10.1039/D4MD00160E","url":null,"abstract":"<p >Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape, guided by descriptors that approximate to these properties, can greatly increase the chances of successful drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of these properties and thus there is much interest in approaches to find oral drug candidates outside of this space. These considerations have been a focus for a while and hence we analysed the physicochemical properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced the output of the drug-discovery community. Our findings show that it is possible to find drug molecules that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight &gt;500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more accurate and robust means of understanding substructural classes, shape and conformation are likely to be required to improve the chances of success in this space.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3125-3132"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/md/d4md00160e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiosynthesis of [18F]brequinar for in vivo PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers† 用于 hDHODH 体内 PET 成像的[18F]brequinar 的放射合成,可用于急性髓性白血病和癌症的潜在研究。
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-22 DOI: 10.1039/D4MD00433G
Vinay Kumar Banka, Stefano Sainas, Elena Martino, Jiacheng Wang, Marco Lucio Lolli and Yu-Shin Ding

Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the de novo pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an in vivo imaging probe that is able to demonstrate in vivo target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate p-nitrobenzyl ester (4) or tributylstannate (tin) p-nitrobenzyl ester (5), chosen for their suitability as a precursor to [18F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [18F]brequinar, and a preliminary PET imaging study of DHODH in vivo. This study provides the strategies to create [18F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.

二氢烟酸脱氢酶(DHODH)是一种在嘧啶从头生物合成过程中发挥关键作用的酶,已被公认为是治疗自身免疫性疾病和癌症等涉及细胞增殖的疾病的一个很有前景的靶点。药理抑制人类 DHODH(hDHODH)为治疗急性髓性白血病(AML)成人患者提供了一种潜在的治疗策略,最近治疗复发/难治性 AML 患者的 I/II 期临床试验支持了这一策略。为了促进优化的 hDHODH 抑制剂的开发,体内成像探针的存在至关重要,它能够证明体内靶点的参与。Brequinar 是迄今为止发现的最有效的 hDHODH 抑制剂之一。在这项工作中,我们采用了铜介导的放射性氟化(CMRF)策略,并比较了从硼酸频哪醇对硝基苯甲酯(4)或锡酸三丁酯(锡)对硝基苯甲酯(5)开始的化学设计和放射性合成。我们在此报告[18F]brequinar 的设计、合成、放射性标记和表征,以及 DHODH 在体内的 PET 成像初步研究。这项研究提供了创建[18F]brequinar--首个 hDHODH 抑制剂 PET 放射性示踪剂的策略,这将有助于将其作为一种工具(治疗学)用于 hDHODH 药物开发以及急性髓细胞性白血病和癌症的诊断和疗效监测。
{"title":"Radiosynthesis of [18F]brequinar for in vivo PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers†","authors":"Vinay Kumar Banka, Stefano Sainas, Elena Martino, Jiacheng Wang, Marco Lucio Lolli and Yu-Shin Ding","doi":"10.1039/D4MD00433G","DOIUrl":"10.1039/D4MD00433G","url":null,"abstract":"<p >Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the <em>de novo</em> pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an <em>in vivo</em> imaging probe that is able to demonstrate <em>in vivo</em> target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate <em>p</em>-nitrobenzyl ester (<strong>4</strong>) or tributylstannate (tin) <em>p</em>-nitrobenzyl ester (<strong>5</strong>), chosen for their suitability as a precursor to [<small><sup>18</sup></small>F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [<small><sup>18</sup></small>F]brequinar, and a preliminary PET imaging study of DHODH <em>in vivo</em>. This study provides the strategies to create [<small><sup>18</sup></small>F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3147-3161"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of di-arylated 1,2,4-triazole-based derivatives as therapeutic agents against breast cancer: synthesis and biological evaluation† 开发作为乳腺癌治疗药物的二芳基化 1,2,4 三唑基衍生物:合成与生物学评价
IF 3.597 Q2 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-22 DOI: 10.1039/D4MD00285G
Mousumi Deb, Hoshiyar Singh, Diksha Manhas, Utpal Nandi, Santosh K. Guru and Parthasarathi Das

The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1H-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, via an in vitro growth inhibition assay. At 10 μM concentration, 4k, 4m, 4q, and 4t have displayed good anticancer potency in the MCF-7 cell line, among which 4q has shown the best efficacy (IC50 = 4.8 μM). Mechanistic investigations of 4q have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of 4q in humans, establishing it as a promising lead compound of this series that deserves further investigation.

二芳基化 1,2,4-三唑分子的合成、抗癌活性和代谢稳定性已被报道。利用高效的程序芳基化技术,从市场上可买到的 3-溴-1H-1,2,4-三唑开始,合成了一系列治疗药物,并通过体外生长抑制试验,对 MDA-MB-231、MCF-7 和 ZR-75-1 三种人类乳腺癌细胞系进行了筛选。在 10 μM 浓度下,4k、4m、4q 和 4t 对 MCF-7 细胞株显示出良好的抗癌效力,其中 4q 的疗效最好(IC50 = 4.8 μM)。4q 的机理研究表明,恶性细胞中促凋亡的 BAX 蛋白升高,线粒体外膜通透,这些都是细胞凋亡的标志。在不同的肝脏微粒体中进行的进一步代谢稳定性研究使人们了解到 4q 在人体中的良好药代动力学特性,从而使其成为该系列中一个有潜力的先导化合物,值得进一步研究。
{"title":"Development of di-arylated 1,2,4-triazole-based derivatives as therapeutic agents against breast cancer: synthesis and biological evaluation†","authors":"Mousumi Deb, Hoshiyar Singh, Diksha Manhas, Utpal Nandi, Santosh K. Guru and Parthasarathi Das","doi":"10.1039/D4MD00285G","DOIUrl":"10.1039/D4MD00285G","url":null,"abstract":"<p >The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1<em>H</em>-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, <em>via</em> an <em>in vitro</em> growth inhibition assay. At 10 μM concentration, <strong>4k</strong>, <strong>4m</strong>, <strong>4q</strong>, and <strong>4t</strong> have displayed good anticancer potency in the MCF-7 cell line, among which <strong>4q</strong> has shown the best efficacy (IC<small><sub>50</sub></small> = 4.8 μM). Mechanistic investigations of <strong>4q</strong> have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of <strong>4q</strong> in humans, establishing it as a promising lead compound of this series that deserves further investigation.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3097-3113"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
MedChemComm
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1