Herein, we report the synthesis and anticancer properties of 21 new 1,3,4-thiadiazole-2-yl-imino-thiazolidine-4-one containing binary heterocyclic molecules. Cytotoxicity of the synthesized molecules was evaluated on various in vitro cancer cell lines (MCF-7, PC3, 4T1, MDA-MB-231, and MOC2) and normal human embryonic cell lines (HEK-293) via MTT assay. The cytotoxicity data of developed compounds was compared with the reference anticancer molecule BG45, a selective inhibitor of the HDAC3 enzyme. All compounds showed a significant cytotoxic effect higher than BG45 on tested cancer cell lines. Moreover, the compounds exhibited better selectivity on cancer cells than on normal cells. Among the molecules, compound 6e is the most potent in cytotoxic activity on MCF-7 cell lines (IC50 value of 3.85 μM). Additional mechanistic investigation revealed that compound 6e promotes apoptosis (25.3%) and G0/G1 phase cell cycle arrest of MCF-7 cells. Also, compound 6e induces intracellular ROS accumulation and subsequent nuclear fragmentation. Hence, this research finds new hybrid molecules active against in vitro cancer cells.
在此,我们报告了 21 种新的 1,3,4-噻二唑-2-基-亚氨基噻唑烷-4-酮二元杂环分子的合成和抗癌特性。通过 MTT 试验评估了合成分子对各种体外癌细胞株(MCF-7、PC3、4T1、MDA-MB-231 和 MOC2)和正常人胚胎细胞株(HEK-293)的细胞毒性。所开发化合物的细胞毒性数据与参考抗癌分子 BG45(一种 HDAC3 酶的选择性抑制剂)进行了比较。在测试的癌细胞系中,所有化合物的细胞毒性效果均明显高于 BG45。此外,这些化合物对癌细胞的选择性优于正常细胞。在这些分子中,化合物 6e 对 MCF-7 细胞株的细胞毒性最强(IC50 值为 3.85 μM)。其他机理研究表明,化合物 6e 能促进 MCF-7 细胞凋亡(25.3%)和 G0/G1 期细胞周期停滞。此外,化合物 6e 还能诱导细胞内 ROS 的积累和随后的核破碎。因此,这项研究发现了对体外癌细胞具有活性的新混合分子。
{"title":"Synthesis and antiproliferative potency of 1,3,4-thiadiazole and 1,3-thiazolidine-4-one based new binary heterocyclic molecules: in vitro cell-based anticancer studies†","authors":"Avik Maji, Ambati Himaja, Sripathi Nikhitha, Soumitra Rana, Abhik Paul, Ajeya Samanta, Uday Shee, Chhanda Mukhopadhyay, Balaram Ghosh and Tapan Kumar Maity","doi":"10.1039/D4MD00279B","DOIUrl":"10.1039/D4MD00279B","url":null,"abstract":"<p >Herein, we report the synthesis and anticancer properties of 21 new 1,3,4-thiadiazole-2-yl-imino-thiazolidine-4-one containing binary heterocyclic molecules. Cytotoxicity of the synthesized molecules was evaluated on various <em>in vitro</em> cancer cell lines (MCF-7, PC3, 4T1, MDA-MB-231, and MOC2) and normal human embryonic cell lines (HEK-293) <em>via</em> MTT assay. The cytotoxicity data of developed compounds was compared with the reference anticancer molecule <strong>BG45</strong>, a selective inhibitor of the HDAC3 enzyme. All compounds showed a significant cytotoxic effect higher than <strong>BG45</strong> on tested cancer cell lines. Moreover, the compounds exhibited better selectivity on cancer cells than on normal cells. Among the molecules, compound <strong>6e</strong> is the most potent in cytotoxic activity on MCF-7 cell lines (IC<small><sub>50</sub></small> value of 3.85 μM). Additional mechanistic investigation revealed that compound <strong>6e</strong> promotes apoptosis (25.3%) and G0/G1 phase cell cycle arrest of MCF-7 cells. Also, compound <strong>6e</strong> induces intracellular ROS accumulation and subsequent nuclear fragmentation. Hence, this research finds new hybrid molecules active against <em>in vitro</em> cancer cells.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3057-3069"},"PeriodicalIF":3.597,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuying Liu, Zeyu Yang, Jie Zhang, Na Guo, Nanxin Liu, Qingqing Zhang, Xintao Dang, Yanchen Li, Jie Zhang and Xiaoyan Pan
Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-AblT315I. In continuation of these studies, we further enriched the linker types by developing a library of compounds with tert-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-AblWT and Bcr-AblT315I kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds TL8, TL10, BS4, BS10, SR5 and SR11 exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds TL8, BS4 and SR5 effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of tert-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, tert-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds BS4, SR5, and especially TL8, can be used as starting points for further optimization.
{"title":"Integrating amino acids into Bcr-Abl inhibitors: design, synthesis, biological evaluation, and in silico studies†","authors":"Yuying Liu, Zeyu Yang, Jie Zhang, Na Guo, Nanxin Liu, Qingqing Zhang, Xintao Dang, Yanchen Li, Jie Zhang and Xiaoyan Pan","doi":"10.1039/D4MD00417E","DOIUrl":"10.1039/D4MD00417E","url":null,"abstract":"<p >Bcr-Abl is successfully applied to drug discovery as a CML therapeutic target, but point mutation resistance has become a major challenge in the clinical treatment of CML. Our previous studies have shown that the introduction of amino acids as flexible linkers and heterocyclic structures as HBMs can achieve potent inhibition of Bcr-Abl<small><sup>T315I</sup></small>. In continuation of these studies, we further enriched the linker types by developing a library of compounds with <em>tert</em>-leucine or serine as a linker. Biological results showed that these compounds exhibited enhanced inhibition against Bcr-Abl<small><sup>WT</sup></small> and Bcr-Abl<small><sup>T315I</sup></small> kinases as well as improved antiproliferative activity in leukemia cell assays compared to previously disclosed compounds. In particular, compounds <strong>TL8</strong>, <strong>TL10</strong>, <strong>BS4</strong>, <strong>BS10</strong>, <strong>SR5</strong> and <strong>SR11</strong> exhibited potent inhibitory activities against Ba/F3 cells bearing a T315I mutant. Additionally, compounds <strong>TL8</strong>, <strong>BS4</strong> and <strong>SR5</strong> effectively induced K562 cell apoptosis, arrested the cell cycle at the S or G2/M phase, and inhibited the phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies verified the rationality of <em>tert</em>-leucine or serine as a flexible linker and indicated that phenylpyridine with an amide side chain favored the potency of these inhibitors. Moreover, ADME prediction suggested that the tested compounds had a favorable safety profile. Thus, <em>tert</em>-leucine or serine can be used as a promising class of flexible linkers for Bcr-Abl inhibitors with heterocyclic structures as HBMs, and compounds <strong>BS4</strong>, <strong>SR5</strong>, and especially <strong>TL8</strong>, can be used as starting points for further optimization.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 10","pages":" 3507-3528"},"PeriodicalIF":3.597,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rachael Pirie, Harriet A. Stanway-Gordon, Hannah L. Stewart, Kirsty L. Wilson, Summer Patton, Jack Tyerman, Daniel J. Cole, Katherine Fowler and Michael J. Waring
Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape, guided by descriptors that approximate to these properties, can greatly increase the chances of successful drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of these properties and thus there is much interest in approaches to find oral drug candidates outside of this space. These considerations have been a focus for a while and hence we analysed the physicochemical properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced the output of the drug-discovery community. Our findings show that it is possible to find drug molecules that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight >500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more accurate and robust means of understanding substructural classes, shape and conformation are likely to be required to improve the chances of success in this space.
{"title":"An analysis of the physicochemical properties of oral drugs from 2000 to 2022†","authors":"Rachael Pirie, Harriet A. Stanway-Gordon, Hannah L. Stewart, Kirsty L. Wilson, Summer Patton, Jack Tyerman, Daniel J. Cole, Katherine Fowler and Michael J. Waring","doi":"10.1039/D4MD00160E","DOIUrl":"10.1039/D4MD00160E","url":null,"abstract":"<p >Calculable physicochemical descriptors are a useful guide to assist compound design in medicinal chemistry. It is well established that controlling size, lipophilicity, hydrogen bonding, flexibility and shape, guided by descriptors that approximate to these properties, can greatly increase the chances of successful drug discovery. Many therapeutic targets and new modalities are incompatible with the optimal ranges of these properties and thus there is much interest in approaches to find oral drug candidates outside of this space. These considerations have been a focus for a while and hence we analysed the physicochemical properties of oral drugs approved by the FDA from 2000 to 2022 to assess if such concepts had influenced the output of the drug-discovery community. Our findings show that it is possible to find drug molecules that lie outside of the optimal descriptor ranges and that large molecules in particular (molecular weight >500 Da) can be oral drugs. The analysis suggests that this is more likely if lipophilicity, hydrogen bonding and flexibility are controlled. Crude physicochemical descriptors are useful in that regard but more accurate and robust means of understanding substructural classes, shape and conformation are likely to be required to improve the chances of success in this space.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3125-3132"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/md/d4md00160e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinay Kumar Banka, Stefano Sainas, Elena Martino, Jiacheng Wang, Marco Lucio Lolli and Yu-Shin Ding
Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the de novo pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an in vivo imaging probe that is able to demonstrate in vivo target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate p-nitrobenzyl ester (4) or tributylstannate (tin) p-nitrobenzyl ester (5), chosen for their suitability as a precursor to [18F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [18F]brequinar, and a preliminary PET imaging study of DHODH in vivo. This study provides the strategies to create [18F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.
二氢烟酸脱氢酶(DHODH)是一种在嘧啶从头生物合成过程中发挥关键作用的酶,已被公认为是治疗自身免疫性疾病和癌症等涉及细胞增殖的疾病的一个很有前景的靶点。药理抑制人类 DHODH(hDHODH)为治疗急性髓性白血病(AML)成人患者提供了一种潜在的治疗策略,最近治疗复发/难治性 AML 患者的 I/II 期临床试验支持了这一策略。为了促进优化的 hDHODH 抑制剂的开发,体内成像探针的存在至关重要,它能够证明体内靶点的参与。Brequinar 是迄今为止发现的最有效的 hDHODH 抑制剂之一。在这项工作中,我们采用了铜介导的放射性氟化(CMRF)策略,并比较了从硼酸频哪醇对硝基苯甲酯(4)或锡酸三丁酯(锡)对硝基苯甲酯(5)开始的化学设计和放射性合成。我们在此报告[18F]brequinar 的设计、合成、放射性标记和表征,以及 DHODH 在体内的 PET 成像初步研究。这项研究提供了创建[18F]brequinar--首个 hDHODH 抑制剂 PET 放射性示踪剂的策略,这将有助于将其作为一种工具(治疗学)用于 hDHODH 药物开发以及急性髓细胞性白血病和癌症的诊断和疗效监测。
{"title":"Radiosynthesis of [18F]brequinar for in vivo PET imaging of hDHODH for potential studies of acute myeloid leukemia and cancers†","authors":"Vinay Kumar Banka, Stefano Sainas, Elena Martino, Jiacheng Wang, Marco Lucio Lolli and Yu-Shin Ding","doi":"10.1039/D4MD00433G","DOIUrl":"10.1039/D4MD00433G","url":null,"abstract":"<p >Dihydroorotate dehydrogenase (DHODH), an enzyme that plays a critical role in the <em>de novo</em> pyrimidine biosynthesis, has been recognized as a promising target for the treatment of diseases that involve cellular proliferation, such as autoimmune diseases and cancers. Pharmacological inhibition of human DHODH (hDHODH) that offers a potential therapeutic strategy for the treatment in adult subjects with acute myeloid leukemia (AML) has recently been supported by phase I/II clinical trials for the treatment of patients with relapsed/refractory AML. To facilitate the development of optimized hDHODH inhibitors, the presence of an <em>in vivo</em> imaging probe that is able to demonstrate <em>in vivo</em> target engagement is critical and desirable. Brequinar is one of the most potent hDHODH inhibitors so far discovered. In this work, we use a copper-mediated radiofluorination (CMRF) strategy and compare the chemical design and radiosynthesis starting from either pinacole boronate <em>p</em>-nitrobenzyl ester (<strong>4</strong>) or tributylstannate (tin) <em>p</em>-nitrobenzyl ester (<strong>5</strong>), chosen for their suitability as a precursor to [<small><sup>18</sup></small>F]brequinar. We report here the design, synthesis, radiolabeling and characterization of [<small><sup>18</sup></small>F]brequinar, and a preliminary PET imaging study of DHODH <em>in vivo</em>. This study provides the strategies to create [<small><sup>18</sup></small>F]brequinar, the first hDHODH inhibitor PET radiotracer, which will facilitate its use as a tool (theranostics) for hDHODH drug development and for diagnosis and monitoring therapeutic efficacy in AML and cancers.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3147-3161"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mousumi Deb, Hoshiyar Singh, Diksha Manhas, Utpal Nandi, Santosh K. Guru and Parthasarathi Das
The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1H-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, via an in vitro growth inhibition assay. At 10 μM concentration, 4k, 4m, 4q, and 4t have displayed good anticancer potency in the MCF-7 cell line, among which 4q has shown the best efficacy (IC50 = 4.8 μM). Mechanistic investigations of 4q have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of 4q in humans, establishing it as a promising lead compound of this series that deserves further investigation.
{"title":"Development of di-arylated 1,2,4-triazole-based derivatives as therapeutic agents against breast cancer: synthesis and biological evaluation†","authors":"Mousumi Deb, Hoshiyar Singh, Diksha Manhas, Utpal Nandi, Santosh K. Guru and Parthasarathi Das","doi":"10.1039/D4MD00285G","DOIUrl":"10.1039/D4MD00285G","url":null,"abstract":"<p >The synthesis, anticancer activity, and metabolic stability of di-arylated 1,2,4-triazole molecules have been reported. Utilizing an efficient programmed arylation technique which starts from commercially available 3-bromo-1<em>H</em>-1,2,4-triazole, a series of therapeutic agents have been synthesized and screened against three human breast cancer cell lines, MDA-MB-231, MCF-7, and ZR-75-1, <em>via</em> an <em>in vitro</em> growth inhibition assay. At 10 μM concentration, <strong>4k</strong>, <strong>4m</strong>, <strong>4q</strong>, and <strong>4t</strong> have displayed good anticancer potency in the MCF-7 cell line, among which <strong>4q</strong> has shown the best efficacy (IC<small><sub>50</sub></small> = 4.8 μM). Mechanistic investigations of <strong>4q</strong> have indicated the elevation of the pro-apoptotic BAX protein in the malignant cells along with mitochondrial outer membrane permeabilization which are hallmarks of apoptosis. Further metabolic stability studies in diverse liver microsomes have provided insights into the favorable pharmacokinetic properties of <strong>4q</strong> in humans, establishing it as a promising lead compound of this series that deserves further investigation.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3097-3113"},"PeriodicalIF":3.597,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
{"title":"Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities","authors":"Alex Murray, Peter Kilbride and Matthew I. Gibson","doi":"10.1039/D4MD00174E","DOIUrl":"10.1039/D4MD00174E","url":null,"abstract":"<p >Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or <em>via</em> selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 2980-2995"},"PeriodicalIF":3.597,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/md/d4md00174e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanna Ballarin, Maddalena Biasiotto, Annika Reisbitzer, Marlen Hegels, Michael Bolte, Sybille Krauß and Daria V. Berdnikova
Huntington's disease (HD) is a devastating, incurable condition whose pathophysiological mechanism relies on mutant RNA CAG repeat expansions. Aberrant recruitment of RNA-binding proteins by mutant CAG hairpins contributes to the progress of neurodegeneration. In this work, we identified a novel binder based on an aurone scaffold that reduces the level of binding of HTT mRNA to the MID1 protein in vitro. The obtained results introduce aurones as a novel platform for the design of functional ligands for disease-related RNA sequences.
{"title":"A novel aurone RNA CAG binder inhibits the huntingtin RNA–protein interaction†","authors":"Giovanna Ballarin, Maddalena Biasiotto, Annika Reisbitzer, Marlen Hegels, Michael Bolte, Sybille Krauß and Daria V. Berdnikova","doi":"10.1039/D4MD00403E","DOIUrl":"10.1039/D4MD00403E","url":null,"abstract":"<p >Huntington's disease (HD) is a devastating, incurable condition whose pathophysiological mechanism relies on mutant RNA CAG repeat expansions. Aberrant recruitment of RNA-binding proteins by mutant CAG hairpins contributes to the progress of neurodegeneration. In this work, we identified a novel binder based on an aurone scaffold that reduces the level of binding of HTT mRNA to the MID1 protein <em>in vitro</em>. The obtained results introduce aurones as a novel platform for the design of functional ligands for disease-related RNA sequences.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 9","pages":" 3092-3096"},"PeriodicalIF":3.597,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/md/d4md00403e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alonzo González-González, Oscar Sánchez-Sánchez, Baojie Wan, Scott Franzblau, Isidro Palos, José C. Espinoza-Hicks, Adriana Moreno-Rodríguez, Ana Verónica Martínez-Vázquez, Edgar E. Lara-Ramírez, Eyra Ortiz-Pérez, Alma D. Paz-González and Gildardo Rivera
Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of Mycobacterium tuberculosis (M. tuberculosis) multidrug resistant strains. In this study, n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated against replicating and non-replicating H37Rv M. tuberculosis strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were T-148, T-149, T-163, and T-164, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-N-oxide against M. tuberculosis to develop and obtain new and more safety antituberculosis drugs.
{"title":"Expanding the chemical space of ester of quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives as potential antitubercular agents†","authors":"Alonzo González-González, Oscar Sánchez-Sánchez, Baojie Wan, Scott Franzblau, Isidro Palos, José C. Espinoza-Hicks, Adriana Moreno-Rodríguez, Ana Verónica Martínez-Vázquez, Edgar E. Lara-Ramírez, Eyra Ortiz-Pérez, Alma D. Paz-González and Gildardo Rivera","doi":"10.1039/D4MD00221K","DOIUrl":"10.1039/D4MD00221K","url":null,"abstract":"<p >Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of <em>Mycobacterium tuberculosis</em> (<em>M. tuberculosis</em>) multidrug resistant strains. In this study, <em>n</em>-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-<em>N</em>-oxide were evaluated against replicating and non-replicating H37Rv <em>M. tuberculosis</em> strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were <strong><strong>T-148</strong></strong>, <strong><strong>T-149</strong></strong>, <strong><strong>T-163</strong></strong>, and <strong><strong>T-164</strong></strong>, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-<em>N</em>-oxide against <em>M. tuberculosis</em> to develop and obtain new and more safety antituberculosis drugs.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2785-2791"},"PeriodicalIF":3.597,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141742999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vojtěch Chmil, Natálie Živná, Marcela Milanová, Alžběta Filipová, Jaroslav Pejchal, Lukáš Prchal, Darina Muthná, Vít Řeháček, Martina Řezáčová, Jan Marek, Aleš Tichý and Radim Havelek
The increasing threat of nuclear incidents and the widespread use of ionizing radiation (IR) in medical treatments underscore the urgent need for effective radiation countermeasures. Despite the availability of compounds such as amifostine, their clinical utility is significantly limited by adverse side effects and logistical challenges in administration. This study focuses on the synthesis and evaluation of novel piperazine derivatives as potential radioprotective agents, with the aim of overcoming the limitations associated with current countermeasures. We designed, synthesized, and evaluated a series of 1-(2-hydroxyethyl)piperazine derivatives. The compounds were assessed for cytotoxicity across a panel of human cell lines, and for their radioprotective effects in the MOLT-4 lymphoblastic leukemia cell line and in peripheral blood mononuclear cells (PBMCs) exposed to gamma radiation. The radioprotective efficacy was further quantified using the dicentric chromosome assay (DCA) to measure DNA damage mitigation. Among the synthesized derivatives, compound 6 demonstrated the most significant radioprotective effects in vitro, with minimal cytotoxicity across the tested cell lines. Compound 3 also showed notable efficacy, particularly in reducing dicentric chromosomes, thus indicating its potential to mitigate DNA damage from IR. Both compounds exhibited superior safety profiles and effectiveness compared to amifostine, suggesting their potential as more viable radioprotective agents. This study highlights the development of novel piperazine derivatives with promising radioprotective properties. Compound 6 emerged as the leading candidate, offering an optimal balance between efficacy and safety, with compound 3 also displaying significant potential. These findings support the further development and clinical evaluation of these compounds as safer, and more effective radiation countermeasures.
核事故的威胁与日俱增,电离辐射(IR)在医疗中的广泛应用凸显了对有效辐射防护措施的迫切需求。尽管存在阿米福斯汀等化合物,但由于其不良副作用和给药方面的后勤挑战,它们的临床实用性受到很大限制。本研究的重点是合成和评估新型哌嗪衍生物,将其作为潜在的辐射防护剂,目的是克服现有对策的局限性。我们设计、合成并评估了一系列 1-(2-羟乙基)哌嗪衍生物。我们评估了这些化合物对一系列人类细胞系的细胞毒性,以及它们对暴露于伽马射线的 MOLT-4 淋巴细胞白血病细胞系和外周血单核细胞(PBMCs)的辐射防护作用。利用双中心染色体测定法(DCA)测量 DNA 损伤缓解情况,进一步量化了辐射防护功效。在合成的衍生物中,化合物 6 在体外表现出了最显著的辐射防护效果,对所有受试细胞株的细胞毒性最小。化合物 3 也显示出显著的功效,尤其是在减少双中心染色体方面,从而表明它具有减轻红外对 DNA 损伤的潜力。与阿米福斯汀相比,这两种化合物的安全性和有效性都更胜一筹,表明它们有可能成为更可行的辐射保护剂。这项研究强调了具有良好放射保护特性的新型哌嗪衍生物的开发。化合物 6 是最主要的候选化合物,在有效性和安全性之间实现了最佳平衡,化合物 3 也显示出巨大的潜力。这些发现支持进一步开发和临床评估这些化合物,使其成为更安全、更有效的辐射防护措施。
{"title":"Second-generation piperazine derivatives as promising radiation countermeasures†","authors":"Vojtěch Chmil, Natálie Živná, Marcela Milanová, Alžběta Filipová, Jaroslav Pejchal, Lukáš Prchal, Darina Muthná, Vít Řeháček, Martina Řezáčová, Jan Marek, Aleš Tichý and Radim Havelek","doi":"10.1039/D4MD00311J","DOIUrl":"10.1039/D4MD00311J","url":null,"abstract":"<p >The increasing threat of nuclear incidents and the widespread use of ionizing radiation (IR) in medical treatments underscore the urgent need for effective radiation countermeasures. Despite the availability of compounds such as amifostine, their clinical utility is significantly limited by adverse side effects and logistical challenges in administration. This study focuses on the synthesis and evaluation of novel piperazine derivatives as potential radioprotective agents, with the aim of overcoming the limitations associated with current countermeasures. We designed, synthesized, and evaluated a series of 1-(2-hydroxyethyl)piperazine derivatives. The compounds were assessed for cytotoxicity across a panel of human cell lines, and for their radioprotective effects in the MOLT-4 lymphoblastic leukemia cell line and in peripheral blood mononuclear cells (PBMCs) exposed to gamma radiation. The radioprotective efficacy was further quantified using the dicentric chromosome assay (DCA) to measure DNA damage mitigation. Among the synthesized derivatives, compound <strong>6</strong> demonstrated the most significant radioprotective effects <em>in vitro</em>, with minimal cytotoxicity across the tested cell lines. Compound <strong>3</strong> also showed notable efficacy, particularly in reducing dicentric chromosomes, thus indicating its potential to mitigate DNA damage from IR. Both compounds exhibited superior safety profiles and effectiveness compared to amifostine, suggesting their potential as more viable radioprotective agents. This study highlights the development of novel piperazine derivatives with promising radioprotective properties. Compound <strong>6</strong> emerged as the leading candidate, offering an optimal balance between efficacy and safety, with compound <strong>3</strong> also displaying significant potential. These findings support the further development and clinical evaluation of these compounds as safer, and more effective radiation countermeasures.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2855-2866"},"PeriodicalIF":3.597,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/md/d4md00311j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ajay Kishor Kushawaha, Arvind Kumar Jaiswal, Jay Gupta, Sarita Katiyar, Alisha Ansari, Hemlata Bhatt, Sandeep K. Sharma, Abhijit Deb Choudhury, Rabi Sankar Bhatta, Bhupendra N. Singh and Koneni V. Sashidhara
This study investigates the potential of click chemistry for the development of novel anti-tuberculosis agents. A targeted library of 1,4-dihydropyridine–1,2,3-triazole conjugates was synthesized and evaluated for their in vitro activity against Mycobacterium tuberculosis H37Ra using the resazurin microtiter assay (REMA). Among the synthesized derivatives, compounds J10, J11, J14, J22 and J23 demonstrated significant antimycobacterial activity. These compounds exhibited low MIC values ranging from 6.24 to 6.64 μg mL−1, highlighting their promising potential as lead compounds for further developing novel tuberculosis therapeutics. In addition to the promising in vitro activity, structure–activity relationship (SAR) analysis revealed that electron-withdrawing groups on the aryl-substituted ring of the dihydropyridines (J10–J24), a triazole with an unsubstituted aryl ring or with electron-donating groups (methyl or methoxy), and a geminal dimethyl group are essential structural features for the observed antitubercular activity. Furthermore, in silico ADME (absorption, distribution, metabolism, and excretion) parameters and pharmacokinetic studies supported the potential of these conjugates for oral bioavailability. These findings collectively highlight the 1,4-dihydropyridine–1,2,3-triazole scaffold as a promising platform for developing novel orally active anti-tuberculosis drugs.
{"title":"Antitubercular evaluation of dihydropyridine–triazole conjugates: design, synthesis, in vitro screening, SAR and in silico ADME predictions†","authors":"Ajay Kishor Kushawaha, Arvind Kumar Jaiswal, Jay Gupta, Sarita Katiyar, Alisha Ansari, Hemlata Bhatt, Sandeep K. Sharma, Abhijit Deb Choudhury, Rabi Sankar Bhatta, Bhupendra N. Singh and Koneni V. Sashidhara","doi":"10.1039/D4MD00377B","DOIUrl":"10.1039/D4MD00377B","url":null,"abstract":"<p >This study investigates the potential of click chemistry for the development of novel anti-tuberculosis agents. A targeted library of 1,4-dihydropyridine–1,2,3-triazole conjugates was synthesized and evaluated for their <em>in vitro</em> activity against <em>Mycobacterium tuberculosis</em> H<small><sub>37</sub></small>Ra using the resazurin microtiter assay (REMA). Among the synthesized derivatives, compounds <strong>J10</strong>, <strong>J11</strong>, <strong>J14</strong>, <strong>J22</strong> and <strong>J23</strong> demonstrated significant antimycobacterial activity. These compounds exhibited low MIC values ranging from 6.24 to 6.64 μg mL<small><sup>−1</sup></small>, highlighting their promising potential as lead compounds for further developing novel tuberculosis therapeutics. In addition to the promising <em>in vitro</em> activity, structure–activity relationship (SAR) analysis revealed that electron-withdrawing groups on the aryl-substituted ring of the dihydropyridines (<strong>J10–J24</strong>), a triazole with an unsubstituted aryl ring or with electron-donating groups (methyl or methoxy), and a geminal dimethyl group are essential structural features for the observed antitubercular activity. Furthermore, <em>in silico</em> ADME (absorption, distribution, metabolism, and excretion) parameters and pharmacokinetic studies supported the potential of these conjugates for oral bioavailability. These findings collectively highlight the 1,4-dihydropyridine–1,2,3-triazole scaffold as a promising platform for developing novel orally active anti-tuberculosis drugs.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 8","pages":" 2867-2881"},"PeriodicalIF":3.597,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}