Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its Streptomyces producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different “lipid swapping” through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.
环脂肽(CLiPs)是细菌和真菌产生的一种高度多样化的次级代谢物。已发现的一些 CLiPs 对具有多重耐药性的革兰氏阴性菌具有很强的抗菌活性。Globomycin 是一种 19 元 CLiP,通过抑制脂蛋白信号肽酶 II(Lsp)杀死革兰氏阳性菌和革兰氏阴性菌。它只能从其链霉菌生产菌株中少量获得,因此人们对开发合成方法以获得球霉素及其类似物非常感兴趣。球霉素含有一个 N 端抗α-甲基-β-羟基壬酰基脂质尾部,其羟基与 C 端羧基形成酯。在α-甲基和β-羟基之间构建反排列在合成上具有挑战性,而且以前的球霉素合成方法在安装立体中心后无法实现脂质尾的多样化。在此,我们介绍了一种新的合成球霉素的方法,这种方法可以方便地实现脂质的多样化。利用一种反伊万斯醛缩合反应,可以得到一种通用中间体,通过格拉布斯催化的交叉金属化反应实现不同的 "脂质交换"。辅助裂解后,得到的脂质可用于固相肽合成。鉴于含有β-羟基脂质的脂肽种类繁多,这种方法为聚合生成脂肽类似物提供了一种便捷的方法。
{"title":"A novel approach for the synthesis of the cyclic lipopeptide globomycin†","authors":"Samantha J. Bann and Stephen A. Cochrane","doi":"10.1039/D4MD00685B","DOIUrl":"10.1039/D4MD00685B","url":null,"abstract":"<p >Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its <em>Streptomyces</em> producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different “lipid swapping” through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 373-378"},"PeriodicalIF":3.597,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528322/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shenghua Gao, Letian Song, Bing Ye, Mianling Yang, Junyi Li, Manyu Gu, Ann E. Tollefson, Karoly Toth, Peng Zhan and Xinyong Liu
The continuous mutational nature of SARS-CoV-2 and its inter-species' similarities emphasize the urgent need to design and develop more direct-acting antiviral agents against highly infectious variants. Herein, we report on the efficient discovery of potent non-covalent non-peptide-derived Mpro inhibitors using miniaturized click chemistry and direct screening. Based on the privileged piperazine scaffold, 68 triazole-containing derivatives were assembled and screened. Notably, representative compound C1N46 (IC50 = 1.87 μM, EC50 = 6.99 μM, CC50 > 100 μM) displayed potent inhibition activity against Mpro and showed promising anti-SARS-CoV-2 properties in vitro. Additionally, C1N46 exhibited improved liver microsome stability compared to lead compound GC-14. Docking studies predicted a multi-site binding mode of the triazole-based compounds. In conclusion, our studies validate the efficacy and feasibility of click chemistry in rapidly discovering antiviral agents.
{"title":"Miniaturized click chemistry and direct screening facilitate the discovery of triazole piperazine SARS-CoV-2 Mpro inhibitors with improved metabolic stability†","authors":"Shenghua Gao, Letian Song, Bing Ye, Mianling Yang, Junyi Li, Manyu Gu, Ann E. Tollefson, Karoly Toth, Peng Zhan and Xinyong Liu","doi":"10.1039/D4MD00555D","DOIUrl":"10.1039/D4MD00555D","url":null,"abstract":"<p >The continuous mutational nature of SARS-CoV-2 and its inter-species' similarities emphasize the urgent need to design and develop more direct-acting antiviral agents against highly infectious variants. Herein, we report on the efficient discovery of potent non-covalent non-peptide-derived M<small><sup>pro</sup></small> inhibitors using miniaturized click chemistry and direct screening. Based on the privileged piperazine scaffold, 68 triazole-containing derivatives were assembled and screened. Notably, representative compound <strong>C1N46</strong> (IC<small><sub>50</sub></small> = 1.87 μM, EC<small><sub>50</sub></small> = 6.99 μM, CC<small><sub>50</sub></small> > 100 μM) displayed potent inhibition activity against M<small><sup>pro</sup></small> and showed promising anti-SARS-CoV-2 properties <em>in vitro</em>. Additionally, <strong>C1N46</strong> exhibited improved liver microsome stability compared to lead compound <strong>GC-14</strong>. Docking studies predicted a multi-site binding mode of the triazole-based compounds. In conclusion, our studies validate the efficacy and feasibility of click chemistry in rapidly discovering antiviral agents.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 400-411"},"PeriodicalIF":3.597,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Branislava Tenjović, Sofija Bekić, Andjelka Ćelić, Edward Petri, Julia Scholda, Florian Kopp, Marija Sakač and Andrea Nikolić
In this study, a series of 13 new D-ring fused steroidal N(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives 3a and 3h and estratriene derivative 4e showed highly specific and strong binding affinity for estrogen receptor β, while 3b, 3e, 4a and 4b displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo–keto reductases 1C3 and 1C4 in vitro by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo–keto reductase 1C3 inhibitors were compounds 3h (71.17%) and 3f (69.9%). Moreover, a molecular docking study was carried out for compounds 3f and 3h against aldo–keto reductase 1C3 and results showed that compounds 3h and 3f could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP+ cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound 3f demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that N(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo–keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.
{"title":"Synthesis and biological evaluation of novel D-ring fused steroidal N(2)-substituted-1,2,3-triazoles†","authors":"Branislava Tenjović, Sofija Bekić, Andjelka Ćelić, Edward Petri, Julia Scholda, Florian Kopp, Marija Sakač and Andrea Nikolić","doi":"10.1039/D4MD00297K","DOIUrl":"10.1039/D4MD00297K","url":null,"abstract":"<p >In this study, a series of 13 new D-ring fused steroidal <em>N</em>(2)-substituted-1,2,3-triazoles were synthesized, characterized and evaluated for their biological activities. The relative binding affinities of the synthesized compounds for the ligand-binding domains of estrogen receptors α and β, androgen receptor and glucocorticoid receptor demonstrated that androstane derivatives <strong>3a</strong> and <strong>3h</strong> and estratriene derivative <strong>4e</strong> showed highly specific and strong binding affinity for estrogen receptor β, while <strong>3b</strong>, <strong>3e</strong>, <strong>4a</strong> and <strong>4b</strong> displayed high binding affinity for the glucocorticoid receptor. The synthesized compounds were tested for their ability to inhibit aldo–keto reductases 1C3 and 1C4 <em>in vitro</em> by monitoring NADPH consumption using fluorescence spectroscopy. The most potent aldo–keto reductase 1C3 inhibitors were compounds <strong>3h</strong> (71.17%) and <strong>3f</strong> (69.9%). Moreover, a molecular docking study was carried out for compounds <strong>3f</strong> and <strong>3h</strong> against aldo–keto reductase 1C3 and results showed that compounds <strong>3h</strong> and <strong>3f</strong> could bind in the same site and orientation as EM1404. However, polar atoms in the triazole group enable additional hydrogen bonding deeper in SP1 with Tyr319, Tyr216 and the NADP<small><sup>+</sup></small> cofactor, which are not visible in the AKR1C3-EM1404 crystal structure. The synthesized compounds were screened for their anticancer activity against four cancer cell lines. Compound <strong>3f</strong> demonstrated moderate toxic effects across various cancer types, while displaying lower toxicity towards the healthy cell line. In summary, our findings indicate that <em>N</em>(2)-substituted-1,2,3-triazoles are high-affinity ligands for estrogen receptor β and glucocorticoid receptor, inhibitors of aldo–keto reductase 1C3 enzyme, and exhibit antiproliferative effects against cancer cells, suggesting that they could serve as scaffolds for anticancer drug development.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 232-246"},"PeriodicalIF":3.597,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marina Perieteanu, Tayner Rodriguez Garzon, Leah M. C. McGee, Abedawn I. Khalaf, Colin J. Suckling, Rebecca Beveridge, Vicky M. Avery and Fraser J. Scott
There were an estimated 249 million cases of malaria globally in 2022, causing approximately 608 000 deaths. Most of these are attributed to infection by P. falciparum. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms, including P. falciparum. A panel of 25 S-MGBs was synthesised, including those bearing an amidine tail group, and their antiplasmodial activity against 3D7 and Dd2 strains was determined in vitro using an asexual P. falciparum imaging assay. Determination of activity against HEK293 cells allowed for selective cytotoxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. A comparison of 3D7 (chloroquine sensitive) and Dd2 (chloroquine resistant) potency showed no evidence of cross-resistance across the S-MGB set. S-MGB-356, S-MGB-368 and S-MGB-359, amidine tail containing S-MGBs, were identified as the most promising hit compounds based on their selectivity indices (HEK293/3D7) of >612.6, >335.8 and >264.8, respectively. S-MGB-356, S-MGB-368 and S-MGB-359 were confirmed to bind to DNA as dimers, with gDNA thermal shifts (ΔTm) of 12 °C, 3 °C and 16 °C, respectively. Together, these data demonstrate that amidine tail bearing S-MGBs are promising hit compounds against P. falciparum, and can be further optimised into lead compounds.
{"title":"S-MGBs bearing amidine tail groups are potent, selective antiplasmodial agents†","authors":"Marina Perieteanu, Tayner Rodriguez Garzon, Leah M. C. McGee, Abedawn I. Khalaf, Colin J. Suckling, Rebecca Beveridge, Vicky M. Avery and Fraser J. Scott","doi":"10.1039/D4MD00619D","DOIUrl":"10.1039/D4MD00619D","url":null,"abstract":"<p >There were an estimated 249 million cases of malaria globally in 2022, causing approximately 608 000 deaths. Most of these are attributed to infection by <em>P. falciparum</em>. Strathclyde minor groove binders (S-MGBs) are a promising new class of anti-infective agent that have been shown to be effective against many infectious organisms, including <em>P. falciparum</em>. A panel of 25 S-MGBs was synthesised, including those bearing an amidine tail group, and their antiplasmodial activity against 3D7 and Dd2 strains was determined <em>in vitro</em> using an asexual <em>P. falciparum</em> imaging assay. Determination of activity against HEK293 cells allowed for selective cytotoxicity to be measured. DNA binding studies were carried out using native mass spectrometry and DNA thermal shift assays. A comparison of 3D7 (chloroquine sensitive) and Dd2 (chloroquine resistant) potency showed no evidence of cross-resistance across the S-MGB set. <strong>S-MGB-356</strong>, <strong>S-MGB-368</strong> and <strong>S-MGB-359</strong>, amidine tail containing S-MGBs, were identified as the most promising hit compounds based on their selectivity indices (HEK293/3D7) of >612.6, >335.8 and >264.8, respectively. <strong>S-MGB-356</strong>, <strong>S-MGB-368</strong> and <strong>S-MGB-359</strong> were confirmed to bind to DNA as dimers, with gDNA thermal shifts (Δ<em>T</em><small><sub>m</sub></small>) of 12 °C, 3 °C and 16 °C, respectively. Together, these data demonstrate that amidine tail bearing S-MGBs are promising hit compounds against <em>P. falciparum</em>, and can be further optimised into lead compounds.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 412-419"},"PeriodicalIF":3.597,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528320/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ping Gao, Shu Song, Christophe Pannecouque, Erik De Clercq, Peng Zhan and Xinyong Liu
This article presents the rapid identification of novel indolylarylsulfone (IAS) derivatives as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 through a miniaturized click-chemistry-based combinatorial library approach. Utilizing copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC), a reliable and biocompatible click chemistry technique, the researchers synthesized and characterized a series of IAS derivatives. Several compounds selected through the in situ enzyme inhibition assay demonstrated promising activity in subsequent cellular level tests. Notably, compound C1N4 displayed the most potent anti-HIV-1 IIIB activity with an EC50 of 0.024 μM and low cytotoxicity (CC50 > 215.88 μM). Molecular docking studies provided insights into the binding mode of these novel compounds within the NNIBP, aiding in the structure-based design of future NNRTIs. The findings underscore the potential of click chemistry in the discovery of new anti-HIV agents with improved efficacy and safety profiles.
{"title":"Rapid identification of novel indolylarylsulfone derivatives as potent HIV-1 NNRTIs via miniaturized CuAAC click-chemistry-based combinatorial libraries","authors":"Ping Gao, Shu Song, Christophe Pannecouque, Erik De Clercq, Peng Zhan and Xinyong Liu","doi":"10.1039/D4MD00469H","DOIUrl":"10.1039/D4MD00469H","url":null,"abstract":"<p >This article presents the rapid identification of novel indolylarylsulfone (IAS) derivatives as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV-1 through a miniaturized click-chemistry-based combinatorial library approach. Utilizing copper(<small>I</small>)-catalyzed azide–alkyne cycloaddition (CuAAC), a reliable and biocompatible click chemistry technique, the researchers synthesized and characterized a series of IAS derivatives. Several compounds selected through the <em>in situ</em> enzyme inhibition assay demonstrated promising activity in subsequent cellular level tests. Notably, compound <strong>C1N4</strong> displayed the most potent anti-HIV-1 IIIB activity with an EC<small><sub>50</sub></small> of 0.024 μM and low cytotoxicity (CC<small><sub>50</sub></small> > 215.88 μM). Molecular docking studies provided insights into the binding mode of these novel compounds within the NNIBP, aiding in the structure-based design of future NNRTIs. The findings underscore the potential of click chemistry in the discovery of new anti-HIV agents with improved efficacy and safety profiles.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 157-167"},"PeriodicalIF":3.597,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nilesh Raghunath Khedkar, Milind Sindkhedkar and Alex Joseph
Correction for ‘Computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy’ by Nilesh Raghunath Khedkar et al., RSC Med. Chem., 2024, 15, 1626–1639, https://doi.org/10.1039/D4MD00055B.
[此处更正了文章 DOI:10.1039/D4MD00055B]。
{"title":"Correction: computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1H-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy","authors":"Nilesh Raghunath Khedkar, Milind Sindkhedkar and Alex Joseph","doi":"10.1039/D4MD90040E","DOIUrl":"10.1039/D4MD90040E","url":null,"abstract":"<p >Correction for ‘Computational design, synthesis, and assessment of 3-(4-(4-(1,3,4-oxadiazol-2-yl)-1<em>H</em>-imidazol-2-yl)phenyl)-1,2,4-oxadiazole derivatives as effective epidermal growth factor receptor inhibitors: a prospective strategy for anticancer therapy’ by Nilesh Raghunath Khedkar <em>et al.</em>, <em>RSC Med. Chem.</em>, 2024, <strong>15</strong>, 1626–1639, https://doi.org/10.1039/D4MD00055B.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 11","pages":" 3912-3912"},"PeriodicalIF":3.597,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cecilia C. Ayala-Aguilera, Yang Ge, Álvaro Lorente-Macías, Benjamin N. Jones, Catherine Adam, Neil O. Carragher and Asier Unciti-Broceta
Oesophageal cancer (OC) is one of the leading causes of cancer-related deaths worldwide. Due in part to its high heterogeneity, OC prognosis remains poor despite the introduction of targeted and immunotherapy drugs. Although numerous kinases play a significant role in the oncogenesis and progression of OC, targeting kinases have shown so far limited therapeutic success. Based on our understanding of the pharmacological properties of the pyrazolo[3,4-d]pyrimidine scaffold and the complex biology of OC, we implemented a ligand-centred strategy combined with phenotypic screening to develop novel antiproliferative inhibitors against OC. This approach is specifically designed to accelerate the discovery of lead compounds in cancers of high molecular heterogeneity such as OC. In an iterative process driven by structure–antiproliferative activity relationships (SAARs), we synthesised and tested 54 novel pyrazolo[3,4-d]pyrimidine derivatives against OC cell lines. The lead compound 2D7 (a.k.a. eCCA352) induces pan-OC activity and cell cycle arrest in the submicromolar range and was determined to inhibit Aurora kinase A, providing a new starting point to develop anticancer targeted agents against OC.
{"title":"Ligand-centred phenotype-driven development of potent kinase inhibitors against oesophageal cancer†","authors":"Cecilia C. Ayala-Aguilera, Yang Ge, Álvaro Lorente-Macías, Benjamin N. Jones, Catherine Adam, Neil O. Carragher and Asier Unciti-Broceta","doi":"10.1039/D4MD00579A","DOIUrl":"10.1039/D4MD00579A","url":null,"abstract":"<p >Oesophageal cancer (OC) is one of the leading causes of cancer-related deaths worldwide. Due in part to its high heterogeneity, OC prognosis remains poor despite the introduction of targeted and immunotherapy drugs. Although numerous kinases play a significant role in the oncogenesis and progression of OC, targeting kinases have shown so far limited therapeutic success. Based on our understanding of the pharmacological properties of the pyrazolo[3,4-<em>d</em>]pyrimidine scaffold and the complex biology of OC, we implemented a ligand-centred strategy combined with phenotypic screening to develop novel antiproliferative inhibitors against OC. This approach is specifically designed to accelerate the discovery of lead compounds in cancers of high molecular heterogeneity such as OC. In an iterative process driven by structure–antiproliferative activity relationships (SAARs), we synthesised and tested 54 novel pyrazolo[3,4-<em>d</em>]pyrimidine derivatives against OC cell lines. The lead compound <strong>2D7</strong> (a.k.a. eCCA352) induces pan-OC activity and cell cycle arrest in the submicromolar range and was determined to inhibit Aurora kinase A, providing a new starting point to develop anticancer targeted agents against OC.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 379-391"},"PeriodicalIF":3.597,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142570976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Narayanasamy Nivetha, Jevid Don Hamid, Akshaya Simha N, Devanand Devegowda, Ramith Ramu and Sivan Velmathi
Breast and colorectal cancers are the most common tumors, with high recurrence and low survival rates. We designed and synthesized a series of spirooxindole pyrrolidinyl derivatives, which were further evaluated for anti-proliferative activity using MDA-MB-468 and HCT 15 cell lines. The best inhibitor of this class, compound 6f, showed a very good inhibition potency, both on the MDA-MB-468 and HCT 15 cells as confirmed by molecular docking and molecular dynamic studies that predicted its binding mode into the active site of the targets. In summary, this study provided a new anti-proliferative derivative 6f which is worthy of further research.
{"title":"Natural product-inspired [3 + 2] cycloaddition-based spirooxindoles as dual anticancer agents: synthesis, characterization, and biological evaluation by in vitro and in silico methods†","authors":"Narayanasamy Nivetha, Jevid Don Hamid, Akshaya Simha N, Devanand Devegowda, Ramith Ramu and Sivan Velmathi","doi":"10.1039/D4MD00634H","DOIUrl":"10.1039/D4MD00634H","url":null,"abstract":"<p >Breast and colorectal cancers are the most common tumors, with high recurrence and low survival rates. We designed and synthesized a series of spirooxindole pyrrolidinyl derivatives, which were further evaluated for anti-proliferative activity using MDA-MB-468 and HCT 15 cell lines. The best inhibitor of this class, compound <strong>6f</strong>, showed a very good inhibition potency, both on the MDA-MB-468 and HCT 15 cells as confirmed by molecular docking and molecular dynamic studies that predicted its binding mode into the active site of the targets. In summary, this study provided a new anti-proliferative derivative <strong>6f</strong> which is worthy of further research.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 1","pages":" 137-156"},"PeriodicalIF":3.597,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juhyung Song, Cheoljun Park, Francis E. B. Cabanting and Yong Woong Jun
DNA repair activity diminishes with age and genetic mutations, leading to a significantly increased risk of cancer and other diseases. Upregulating the DNA repair system has emerged as a potential strategy to mitigate disease susceptibility while minimizing cytotoxic side effects. However, enhancing DNA repair activity presents significant challenges due to the inherent inefficiency in activator screening processes. Additionally, pinpointing a critical target that can effectively upregulate overall repair processes is complicated as the available information is somewhat sporadic. In this review, we discuss potential therapeutic targets for upregulating DNA repair pathways, along with the chemical structures and properties of reported small-molecule activators. We also elaborate on the diverse mechanisms by which these targets modulate repair activity, highlighting the critical need for a comprehensive understanding to guide the development of more effective therapeutic strategies.
DNA 修复活性会随着年龄的增长和基因突变而减弱,从而导致癌症和其他疾病的风险大大增加。上调 DNA 修复系统已成为一种潜在的策略,既能减轻疾病易感性,又能最大限度地减少细胞毒副作用。然而,由于激活剂筛选过程固有的低效率,提高 DNA 修复活性面临着巨大挑战。此外,由于现有信息较为零散,要准确找到一个能有效上调整体修复过程的关键靶点非常复杂。在这篇综述中,我们讨论了上调 DNA 修复途径的潜在治疗靶点,以及已报道的小分子激活剂的化学结构和性质。我们还详细阐述了这些靶点调节修复活性的各种机制,强调了全面了解这些机制以指导开发更有效治疗策略的迫切需要。
{"title":"Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators","authors":"Juhyung Song, Cheoljun Park, Francis E. B. Cabanting and Yong Woong Jun","doi":"10.1039/D4MD00673A","DOIUrl":"10.1039/D4MD00673A","url":null,"abstract":"<p >DNA repair activity diminishes with age and genetic mutations, leading to a significantly increased risk of cancer and other diseases. Upregulating the DNA repair system has emerged as a potential strategy to mitigate disease susceptibility while minimizing cytotoxic side effects. However, enhancing DNA repair activity presents significant challenges due to the inherent inefficiency in activator screening processes. Additionally, pinpointing a critical target that can effectively upregulate overall repair processes is complicated as the available information is somewhat sporadic. In this review, we discuss potential therapeutic targets for upregulating DNA repair pathways, along with the chemical structures and properties of reported small-molecule activators. We also elaborate on the diverse mechanisms by which these targets modulate repair activity, highlighting the critical need for a comprehensive understanding to guide the development of more effective therapeutic strategies.</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 12","pages":" 3970-3977"},"PeriodicalIF":3.597,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shekhar, Shefali Chowdhary, Joel Mosnier, Isabelle Fonta, Bruno Pradines and Vipan Kumar
In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1H-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. In vitro assessment against chloroquine-susceptible (3D7) and resistant (W2) P. falciparum strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC50 values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of P. falciparum, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a P. falciparum chloroquine resistance transporter (PfCRT), respectively. In silico studies of the most potent compound revealed that it shows better binding affinity with PfACP and PfCRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).
{"title":"Design, synthesis and mechanistic insights into triclosan derived dimers as potential anti-plasmodials†","authors":"Shekhar, Shefali Chowdhary, Joel Mosnier, Isabelle Fonta, Bruno Pradines and Vipan Kumar","doi":"10.1039/D4MD00494A","DOIUrl":"10.1039/D4MD00494A","url":null,"abstract":"<p >In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1<em>H</em>-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. <em>In vitro</em> assessment against chloroquine-susceptible (3D7) and resistant (W2) <em>P. falciparum</em> strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC<small><sub>50</sub></small> values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of <em>P. falciparum</em>, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a <em>P. falciparum</em> chloroquine resistance transporter (<em>Pf</em>CRT), respectively. <em>In silico</em> studies of the most potent compound revealed that it shows better binding affinity with <em>Pf</em>ACP and <em>Pf</em>CRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).</p>","PeriodicalId":88,"journal":{"name":"MedChemComm","volume":" 2","pages":" 709-720"},"PeriodicalIF":3.597,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142507035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}