首页 > 最新文献

Bioinorganic Chemistry and Applications最新文献

英文 中文
Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential. 利用香橼废皮提取物生物合成光敏氧化镁纳米粒子并评估其抗菌和抗癌潜力
IF 4.7 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-06 eCollection Date: 2024-01-01 DOI: 10.1155/2024/8180102
Nawal M Al Musayeib, Musarat Amina, Farah Maqsood, Kholoud A Bokhary, Nada S Alrashidi

Background: Magnesium oxide nanoparticles (MgONPs) have been fabricated by several approaches, including green chemistry approach due to diverse application and versatile features.

Objectives: The current study aimed to prepare a convenient, biocompatible, and economically viable MgONPs using waste citron peel extract (CP-MgONPs) to evaluate their biological applications.

Methods: The CP-MgONPs were synthesized by a sustainable approach from extract of waste citron peel both as capping and reducing agents without use of any hazardous material. The physicochemical features of formed CP-MgONPs were determined by sophisticated analytical and microscopic techniques. The biogenic CP-MgONPs were examined for their antibacterial, anticarcinogenic, and photocatalytic attributes.

Results: A prominent absorption peak in the UV-Vis spectra at 284 nm was the distinguishing characteristic of the CP-MgONPs. The scanning electron microscopy (SEM) reveals polyhedral morphology of nanoparticles with slight agglomeration of CP-MgONPs. The CP-MgONPs exerted excellent antibacterial potencies against six bacterial strains. The CP-MgONPs displayed significant susceptibility towards E. coli (20.72 ± 0.33 mm) and S. aureus (19.52 ± 0.05 mm) with the highest inhibition zones. The anticancer effect of CP-MgONPs was evaluated against HepG2 (IC50 : 15.3 μg·mL-1) cancer cells and exhibited potential anticancer activity. A prompt inversion of cellular injury manifested as impairment of the integrity of the cell membrane, apoptosis, and oxidative stress was observed in treated cells with CP-MgONPs. The biosynthesized CP-MgONPs also conducted successful photocatalytic potential as much as MgO powder under the UV-light using acid orange 8 (AO-8) dye. The degradation performance of CP-MgONPs showed over 94% photocatalytic degradation efficiency of acid orange 8 (AO-8) dyes within a short time.

Conclusions: Outcomes of this research signify that biogenic CP-MgONPs may be advantageous at low concentrations, with positive environmental impacts.

背景:氧化镁纳米颗粒(MgONPs)具有应用广泛和用途多样的特点,已通过包括绿色化学方法在内的多种方法制备出来:本研究旨在利用废弃香橼皮提取物制备一种方便、生物相容性好且经济可行的氧化镁纳米粒子(CP-MgONPs),以评估其生物应用:方法:本研究采用可持续的方法,在不使用任何有害物质的情况下,利用废香橼皮提取物作为封端剂和还原剂合成了 CP-MgONPs。通过复杂的分析和显微技术测定了所形成的 CP-MgONP 的物理化学特征。结果表明,CP-MgONP 具有抗菌、抗癌和光催化特性:结果:CP-MgONP 的紫外可见光谱在 284 纳米处有一个突出的吸收峰,这是 CP-MgONP 的显著特征。扫描电子显微镜(SEM)显示,CP-MgONPs 的纳米颗粒呈多面体形态,并有轻微团聚。CP-MgONPs 对六种细菌菌株具有优异的抗菌效力。CP-MgONPs 对大肠杆菌(20.72 ± 0.33 mm)和金黄色葡萄球菌(19.52 ± 0.05 mm)具有明显的敏感性,抑制区最大。评估了 CP-MgONP 对 HepG2(IC50:15.3 μg-mL-1)癌细胞的抗癌效果,结果显示其具有潜在的抗癌活性。在使用 CP-MgONPs 处理的细胞中,观察到细胞损伤迅速逆转,表现为细胞膜完整性受损、细胞凋亡和氧化应激。在使用酸性橙 8(AO-8)染料的紫外光下,生物合成的 CP-MgONP 与氧化镁粉末一样具有成功的光催化潜力。在短时间内,CP-MgONPs 对酸性橙 8(AO-8)染料的光催化降解效率超过 94%:这项研究的结果表明,生物源 CP-MgONP 在低浓度下可能具有优势,并对环境产生积极影响。
{"title":"Biogenic Synthesis of Photosensitive Magnesium Oxide Nanoparticles Using Citron Waste Peel Extract and Evaluation of Their Antibacterial and Anticarcinogenic Potential.","authors":"Nawal M Al Musayeib, Musarat Amina, Farah Maqsood, Kholoud A Bokhary, Nada S Alrashidi","doi":"10.1155/2024/8180102","DOIUrl":"10.1155/2024/8180102","url":null,"abstract":"<p><strong>Background: </strong>Magnesium oxide nanoparticles (MgONPs) have been fabricated by several approaches, including green chemistry approach due to diverse application and versatile features.</p><p><strong>Objectives: </strong>The current study aimed to prepare a convenient, biocompatible, and economically viable MgONPs using waste citron peel extract (CP-MgONPs) to evaluate their biological applications.</p><p><strong>Methods: </strong>The CP-MgONPs were synthesized by a sustainable approach from extract of waste citron peel both as capping and reducing agents without use of any hazardous material. The physicochemical features of formed CP-MgONPs were determined by sophisticated analytical and microscopic techniques. The biogenic CP-MgONPs were examined for their antibacterial, anticarcinogenic, and photocatalytic attributes.</p><p><strong>Results: </strong>A prominent absorption peak in the UV-Vis spectra at 284 nm was the distinguishing characteristic of the CP-MgONPs. The scanning electron microscopy (SEM) reveals polyhedral morphology of nanoparticles with slight agglomeration of CP-MgONPs. The CP-MgONPs exerted excellent antibacterial potencies against six bacterial strains. The CP-MgONPs displayed significant susceptibility towards <i>E. coli</i> (20.72 ± 0.33 mm) and <i>S. aureus</i> (19.52 ± 0.05 mm) with the highest inhibition zones. The anticancer effect of CP-MgONPs was evaluated against HepG2 (IC<sub>50</sub> : 15.3 <i>μ</i>g·mL<sup>-1</sup>) cancer cells and exhibited potential anticancer activity. A prompt inversion of cellular injury manifested as impairment of the integrity of the cell membrane, apoptosis, and oxidative stress was observed in treated cells with CP-MgONPs. The biosynthesized CP-MgONPs also conducted successful photocatalytic potential as much as MgO powder under the UV-light using acid orange 8 (AO-8) dye. The degradation performance of CP-MgONPs showed over 94% photocatalytic degradation efficiency of acid orange 8 (AO-8) dyes within a short time.</p><p><strong>Conclusions: </strong>Outcomes of this research signify that biogenic CP-MgONPs may be advantageous at low concentrations, with positive environmental impacts.</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2024 ","pages":"8180102"},"PeriodicalIF":4.7,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11221967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Structure, Spectroscopic, Frontier Molecular Orbital Analysis, Molecular Docking Studies, and In Vitro DNA-Binding Studies of Osmium(II)-Cymene Complexes with Aryl Phosphine and Aryl Phosphonium Assemblies 带有芳基膦和芳基鏻组装的锇(II)-百里香配合物的分子结构、光谱、前沿分子轨道分析、分子对接研究和体外 DNA 结合研究
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-05-29 DOI: 10.1155/2024/6697523
Kgaugelo C. Tapala, Nqobile G. Ndlangamandla, Mpho P. Ngoepe, Hadley S. Clayton
X-ray crystallography, spectroscopy, computational methods, molecular docking studies, and in vitro DNA-binding studies have been useful in the investigations of intermolecular and intramolecular interactions of osmium-cymene oxalato complexes with aryl phosphine and aryl phosphonium groups in both primary and secondary coordination spheres, respectively. Molecular structures of the novel complexes PPh4[Os(η6-p-cymene)Br(κ2-O,O′-C2O4)] (1) and [Os(η6-p-cymene) (κ2-O,O′-C2O4)PPh3] (2) were resolved by single-crystal X-ray diffraction (XRD). Primary and secondary coordination sphere contacts were investigated using Hirshfeld surface analysis which was supported by molecular docking (MD) studies. The MD data obtained predicted significant differences in binding energy across three receptors for the two osmium complexes. An in vitro DNA-binding study was accomplished using UV-Vis spectroscopy which showed that both 1 and 2 bond with DNA through an intercalation approach. The optimized molecular geometry, frontier molecular orbital (EHOMO and ELUMO) energies, global electrophilicity index (ω), chemical hardness (η), chemical potential (µ), and the energy band gap (EHOMO–ELUMO) were calculated utilizing density functional theory (DFT) methods. Computed structural parameters (bond lengths and angles) support the experimental single-crystal XRD data.
X 射线晶体学、光谱学、计算方法、分子对接研究和体外 DNA 结合研究有助于研究锇-亚甲基草酸络合物与芳基膦和芳基鏻基团在一级和二级配位层中的分子间和分子内相互作用。新型配合物 PPh4[Os(η6-p-cymene)Br(κ2-O,O′-C2O4)] (1) 和 [Os(η6-p-cymene) (κ2-O,O′-C2O4)PPh3] (2) 的分子结构已通过单晶 X 射线衍射 (XRD) 得到解析。利用分子对接(MD)研究支持的 Hirshfeld 表面分析对主配位层和次配位层接触进行了研究。获得的 MD 数据预测,两种锇配合物在三种受体上的结合能存在显著差异。利用紫外可见光谱进行的体外 DNA 结合研究表明,1 和 2 都是通过插层方法与 DNA 结合的。利用密度泛函理论(DFT)方法计算了优化后的分子几何形状、前沿分子轨道(EHOMO 和 ELUMO)能量、全局亲电指数(ω)、化学硬度(η)、化学势(µ)和能带隙(EHOMO-ELUMO)。计算得出的结构参数(键长和角度)支持单晶 XRD 实验数据。
{"title":"Molecular Structure, Spectroscopic, Frontier Molecular Orbital Analysis, Molecular Docking Studies, and In Vitro DNA-Binding Studies of Osmium(II)-Cymene Complexes with Aryl Phosphine and Aryl Phosphonium Assemblies","authors":"Kgaugelo C. Tapala, Nqobile G. Ndlangamandla, Mpho P. Ngoepe, Hadley S. Clayton","doi":"10.1155/2024/6697523","DOIUrl":"https://doi.org/10.1155/2024/6697523","url":null,"abstract":"X-ray crystallography, spectroscopy, computational methods, molecular docking studies, and <i>in vitro</i> DNA-binding studies have been useful in the investigations of intermolecular and intramolecular interactions of osmium-cymene oxalato complexes with aryl phosphine and aryl phosphonium groups in both primary and secondary coordination spheres, respectively. Molecular structures of the novel complexes PPh<sub>4</sub>[Os(<i>η</i><sup>6</sup>-<i>p</i>-cymene)Br(<i>κ</i><sup>2</sup>-<i>O,O′</i>-C<sub>2</sub>O<sub>4</sub>)] (<b>1</b>) and [Os(<i>η</i><sup>6</sup>-<i>p</i>-cymene) (<i>κ</i><sup>2</sup>-<i>O,O′</i>-C<sub>2</sub>O<sub>4</sub>)PPh<sub>3</sub>] (<b>2</b>) were resolved by single-crystal X-ray diffraction (XRD). Primary and secondary coordination sphere contacts were investigated using Hirshfeld surface analysis which was supported by molecular docking (MD) studies. The MD data obtained predicted significant differences in binding energy across three receptors for the two osmium complexes. An <i>in vitro</i> DNA-binding study was accomplished using UV-Vis spectroscopy which showed that both <b>1</b> and <b>2</b> bond with DNA through an intercalation approach. The optimized molecular geometry, frontier molecular orbital (E<sub>HOMO</sub> and E<sub>LUMO</sub>) energies, global electrophilicity index (<i>ω</i>), chemical hardness (<i>η</i>), chemical potential (<i>µ</i>), and the energy band gap (E<sub>HOMO</sub>–E<sub>LUMO</sub>) were calculated utilizing density functional theory (DFT) methods. Computed structural parameters (bond lengths and angles) support the experimental single-crystal XRD data.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"41 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity 新的锡(IV)和有机锡(IV)配合物与混合硫代氨基甲酸酮/腙配体:合成、晶体结构和抗增殖活性
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-04-03 DOI: 10.1155/2024/1018375
Belén Blázquez-Tapias, Satyajit Halder, M. Antonia Mendiola, Nivedita Roy, Nilima Sahu, Chittaranjan Sinha, Kuladip Jana, Elena López-Torres
Nowadays, the search for new chemotherapeutic agents with low toxicity and high selectivity is a major concern. In this paper, we report the synthesis and characterization of a hybrid thiosemicarbazone/hydrazone ligand in its neutral form (L1H2) and as the chloride salt ([L1H3]Cl)-, three diorganotin (IV) complexes, and one complex with Sn (IV). The compounds have been fully characterized by IR, mass spectra, 1H, 13C, and 119Sn NMR, 119Sn CP/MAS NMR, and by single crystal X-ray diffraction. The organotin compounds have the empirical formula [SnR2L1] (R = Me, Bu, and Ph), but in the solid state, they are polymeric species with seven coordination number due to weak coordination of the pyridine nitrogen, whereas in solution, the polymeric structure is lost to afford hexacoordinate monomeric species. Reaction with SnI4 yields complex [Sn (L1)2]·EtOH, with the metal in a distorted dodecahedral arrangement. We have evaluated the antiproliferative activity of the two forms of the ligands and the four coordination compounds against MDA-MB-231, HeLa, PC3, and HepG2 cancer cell lines, and WI-38 normal cell line, and all the compounds present higher activity than cisplatin, used as the standard control. To investigate the mode of action, we have selected the most active complex, containing phenyl substituents, and used the triple negative breast cancer cell line MDA-MB-231. The results show that the complex induces apoptotic cell death promoted by generation of reactive oxygen species and by disruption of mitochondrial membrane potential.
如今,寻找低毒性、高选择性的新型化疗药物已成为人们关注的焦点。本文报告了一种中性硫代氨基甲酸酮/腙配体(L1H2)和氯盐([L1H3]Cl)的合成和表征、三种二甘锡(IV)配合物和一种与锡(IV)的配合物。这些化合物通过红外光谱、质谱、1H、13C 和 119Sn NMR、119Sn CP/MAS NMR 以及单晶 X 射线衍射进行了全面表征。这些有机锡化合物的经验公式为 [SnR2L1](R = Me、Bu 和 Ph),但在固态下,由于吡啶氮的弱配位,它们是具有七个配位数的聚合体,而在溶液中,聚合体结构消失,形成六配位单体。与 SnI4 反应会产生[Sn (L1)2]-EtOH 复合物,其中的金属呈扭曲的十二面体排列。我们评估了配体的两种形式和四种配位化合物对 MDA-MB-231、HeLa、PC3 和 HepG2 癌细胞株以及 WI-38 正常细胞株的抗增殖活性,所有化合物的活性都高于作为标准对照的顺铂。为了研究其作用模式,我们选择了含苯基取代基的活性最高的复合物,并使用了三阴性乳腺癌细胞株 MDA-MB-231。结果表明,该复合物可通过产生活性氧和破坏线粒体膜电位诱导细胞凋亡。
{"title":"New Tin (IV) and Organotin (IV) Complexes with a Hybrid Thiosemicarbazone/Hydrazone Ligand: Synthesis, Crystal Structure, and Antiproliferative Activity","authors":"Belén Blázquez-Tapias, Satyajit Halder, M. Antonia Mendiola, Nivedita Roy, Nilima Sahu, Chittaranjan Sinha, Kuladip Jana, Elena López-Torres","doi":"10.1155/2024/1018375","DOIUrl":"https://doi.org/10.1155/2024/1018375","url":null,"abstract":"Nowadays, the search for new chemotherapeutic agents with low toxicity and high selectivity is a major concern. In this paper, we report the synthesis and characterization of a hybrid thiosemicarbazone/hydrazone ligand in its neutral form (L<sup>1</sup>H<sub>2</sub>) and as the chloride salt ([L<sup>1</sup>H<sub>3</sub>]Cl)-, three diorganotin (IV) complexes, and one complex with Sn (IV). The compounds have been fully characterized by IR, mass spectra, <sup>1</sup>H, <sup>13</sup>C, and <sup>119</sup>Sn NMR, <sup>119</sup>Sn CP/MAS NMR, and by single crystal X-ray diffraction. The organotin compounds have the empirical formula [SnR<sub>2</sub>L<sup>1</sup>] (<i>R</i> = Me, Bu, and Ph), but in the solid state, they are polymeric species with seven coordination number due to weak coordination of the pyridine nitrogen, whereas in solution, the polymeric structure is lost to afford hexacoordinate monomeric species. Reaction with SnI<sub>4</sub> yields complex [Sn (L<sup>1</sup>)<sub>2</sub>]·EtOH, with the metal in a distorted dodecahedral arrangement. We have evaluated the antiproliferative activity of the two forms of the ligands and the four coordination compounds against MDA-MB-231, HeLa, PC3, and HepG2 cancer cell lines, and WI-38 normal cell line, and all the compounds present higher activity than cisplatin, used as the standard control. To investigate the mode of action, we have selected the most active complex, containing phenyl substituents, and used the triple negative breast cancer cell line MDA-MB-231. The results show that the complex induces apoptotic cell death promoted by generation of reactive oxygen species and by disruption of mitochondrial membrane potential.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"50 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140580973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity 紫杉醇负载银纳米粒子的合成与表征:细胞毒性效应和抗菌活性评估
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-13 DOI: 10.1155/2024/9916187
Tutku Tunç, Ceylan Hepokur, Afşin Kari̇per
Carrier system therapies based on combining cancer drugs with nanoparticles have been reported to control tumor growth and significantly reduce the side effects of cancer drugs. We thought that paclitaxel-loaded silver nanoparticles (AgNPs-PTX) were the right carrier to target cancer cells. We also carried out antimicrobial activity experiments as systems formed with nanoparticles have been shown to have antimicrobial activity. In our study, we used easy-to-synthesize and low-cost silver nanoparticles (AgNPs) with biocatalytic and photocatalytic advantages as drug carriers. We investigated the antiproliferative activities of silver nanoparticles synthesized by adding paclitaxel on MCF-7 (breast adenocarcinoma cell line), A549 (lung carcinoma cell line), C6 (brain glioma cell line) cells, and healthy WI-38 (fibroblast normal cell line) cell lines and their antimicrobial activities on 10 different microorganisms. The synthesized AgNPs and AgNPs-PTX were characterized by dynamic light scattering (DLS), scanning transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray spectroscopy. The nanoparticles were spherical in shape, with AgNPs ranging in size from 2.32 to 5.6 nm and AgNPs-PTXs from 24.36 to 58.77 nm. AgNPs demonstrated well stability of −47.3 mV, and AgNPs-PTX showed good stability of −25.4 mV. The antiproliferative effects of the synthesized nanoparticles were determined by XTT (tetrazolium dye; 2,3-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-tetrazolium-5-carboxanilide), and the proapoptotic effects were determined by annexin V/propidium iodide (PI) staining. The effect of AgNPs-PTX was more effective, and anticancer activity was higher than PTX in all cell lines. When selectivity indices were calculated, AgNPs-PTX was more selective in the A549 cell line (SI value 6.53 μg/mL). AgNPs-PTX was determined to increase apoptosis cells by inducing DNA fragmentation. To determine the antimicrobial activity, the MIC (minimum inhibitory concentration) test was performed using 8 different bacteria and 2 different fungi. Seven of the 10 microorganisms tested exhibited high antimicrobial activity according to the MIC ≤100 μg/mL standard, reaching MIC values below 100 μg/mL and 100 μg/mL for both AgNPs and AgNPs-PTX compared to reference sources. Compared to standard antibiotics, AgNPs-PTX was highly effective against 4 microorganisms.
据报道,将抗癌药物与纳米粒子相结合的载体系统疗法可以控制肿瘤生长,并显著降低抗癌药物的副作用。我们认为紫杉醇负载银纳米粒子(AgNPs-PTX)是靶向癌细胞的合适载体。我们还进行了抗菌活性实验,因为纳米颗粒形成的体系已被证明具有抗菌活性。在我们的研究中,我们使用了易于合成且成本低廉、具有生物催化和光催化优势的银纳米粒子(AgNPs)作为药物载体。我们研究了加入紫杉醇合成的银纳米粒子对 MCF-7(乳腺癌细胞系)、A549(肺癌细胞系)、C6(脑胶质瘤细胞系)和健康 WI-38(成纤维正常细胞系)细胞系的抗增殖活性,以及对 10 种不同微生物的抗菌活性。通过动态光散射(DLS)、扫描透射电子显微镜、紫外可见光谱、傅立叶变换红外光谱和 X 射线光谱对合成的 AgNPs 和 AgNPs-PTX 进行了表征。纳米颗粒呈球形,AgNPs 的尺寸范围为 2.32 至 5.6 nm,AgNPs-PTX 的尺寸范围为 24.36 至 58.77 nm。AgNPs 显示出良好的稳定性(-47.3 mV),AgNPs-PTX 显示出良好的稳定性(-25.4 mV)。用 XTT(四唑染料;2,3-双-(2-甲氧基-4-硝基-5-亚磺酰基)-(2H)-四唑-5-甲酰苯胺)测定了合成纳米粒子的抗增殖作用,用 annexin V/propidium iodide (PI) 染色测定了其促凋亡作用。在所有细胞系中,AgNPs-PTX 的效果更佳,抗癌活性高于 PTX。在计算选择性指数时,AgNPs-PTX 对 A549 细胞系的选择性更高(SI 值为 6.53 μg/mL)。经测定,AgNPs-PTX 可通过诱导 DNA 断裂增加细胞凋亡。为了确定抗菌活性,使用 8 种不同的细菌和 2 种不同的真菌进行了 MIC(最小抑菌浓度)测试。根据 MIC ≤100 μg/mL 的标准,10 种受测微生物中有 7 种表现出较高的抗菌活性,与参考来源相比,AgNPs 和 AgNPs-PTX 的 MIC 值分别低于 100 μg/mL 和 100 μg/mL。与标准抗生素相比,AgNPs-PTX 对 4 种微生物非常有效。
{"title":"Synthesis and Characterization of Paclitaxel-Loaded Silver Nanoparticles: Evaluation of Cytotoxic Effects and Antimicrobial Activity","authors":"Tutku Tunç, Ceylan Hepokur, Afşin Kari̇per","doi":"10.1155/2024/9916187","DOIUrl":"https://doi.org/10.1155/2024/9916187","url":null,"abstract":"Carrier system therapies based on combining cancer drugs with nanoparticles have been reported to control tumor growth and significantly reduce the side effects of cancer drugs. We thought that paclitaxel-loaded silver nanoparticles (AgNPs-PTX) were the right carrier to target cancer cells. We also carried out antimicrobial activity experiments as systems formed with nanoparticles have been shown to have antimicrobial activity. In our study, we used easy-to-synthesize and low-cost silver nanoparticles (AgNPs) with biocatalytic and photocatalytic advantages as drug carriers. We investigated the antiproliferative activities of silver nanoparticles synthesized by adding paclitaxel on MCF-7 (breast adenocarcinoma cell line), A549 (lung carcinoma cell line), C6 (brain glioma cell line) cells, and healthy WI-38 (fibroblast normal cell line) cell lines and their antimicrobial activities on 10 different microorganisms. The synthesized AgNPs and AgNPs-PTX were characterized by dynamic light scattering (DLS), scanning transmission electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray spectroscopy. The nanoparticles were spherical in shape, with AgNPs ranging in size from 2.32 to 5.6 nm and AgNPs-PTXs from 24.36 to 58.77 nm. AgNPs demonstrated well stability of −47.3 mV, and AgNPs-PTX showed good stability of −25.4 mV. The antiproliferative effects of the synthesized nanoparticles were determined by XTT (tetrazolium dye; 2,3-bis-(2-methoxy-4-nitro-5-sulfenyl)-(2H)-tetrazolium-5-carboxanilide), and the proapoptotic effects were determined by annexin V/propidium iodide (PI) staining. The effect of AgNPs-PTX was more effective, and anticancer activity was higher than PTX in all cell lines. When selectivity indices were calculated, AgNPs-PTX was more selective in the A549 cell line (SI value 6.53 <i>μ</i>g/mL). AgNPs-PTX was determined to increase apoptosis cells by inducing DNA fragmentation. To determine the antimicrobial activity, the MIC (minimum inhibitory concentration) test was performed using 8 different bacteria and 2 different fungi. Seven of the 10 microorganisms tested exhibited high antimicrobial activity according to the MIC ≤100 <i>μ</i>g/mL standard, reaching MIC values below 100 <i>μ</i>g/mL and 100 <i>μ</i>g/mL for both AgNPs and AgNPs-PTX compared to reference sources. Compared to standard antibiotics, AgNPs-PTX was highly effective against 4 microorganisms.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"38 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139761965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria-Targeting and Oxygen Self-Supplying Eccentric Hollow Nanoplatform for Enhanced Breast Cancer Photodynamic Therapy 用于增强乳腺癌光动力疗法的线粒体靶向和氧自给偏心中空纳米平台
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-02-01 DOI: 10.1155/2024/6618388
Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng
Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and in vitro toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.
光动力疗法(PDT)因其微创性和时空选择性,在肿瘤治疗中受到越来越多的关注。然而,光敏剂的靶向性差和肿瘤微环境的缺氧限制了光动力疗法的疗效。本文通过各向异性封装和水热刻蚀法制备了偏心中空介孔有机硅纳米颗粒(EHMONs),用于构建具有靶向性和缓解缺氧特性的PDT纳米平台。所制备的 EHMONs 具有独特的偏心中空结构、均匀的尺寸(300 nm)、较大的空腔和有序的介孔通道(2.3 nm)。线粒体靶向分子三苯基膦(CTPP)和光敏剂氯素 e6(Ce6)对 EHMONs 进行了修饰。载氧化合物全氟化碳(PFCs)被进一步载入 EHMONs 的内腔。溶血实验和体外毒性实验表明,EHMONs-Ce6-CTPP 具有很好的生物相容性,可以靶向三阴性乳腺癌的线粒体,从而增加光敏剂 Ce6 进入癌细胞后在线粒体的积累。具有携氧能力的 EHMONs-Ce6-CTPP@PFCs 进入癌细胞后可缓解缺氧。模型和细胞实验表明,EHMONs-Ce6-CTPP@PFCs 能产生更多的单线态氧活性氧(ROS)。因此,体外和体内实验表明,EHMONs-Ce6-CTPP@PFCs 对三阴性乳腺癌有很好的治疗效果。这项研究为提高 PDF 的有效性提供了一种靶向和载氧纳米平台的新方法。
{"title":"Mitochondria-Targeting and Oxygen Self-Supplying Eccentric Hollow Nanoplatform for Enhanced Breast Cancer Photodynamic Therapy","authors":"Jing Li, Yu Wang, Jun Tao, Xiaodan Su, Feipeng Zhu, Wei Lu, Xiaolin Han, Meng Dang, Lixing Weng","doi":"10.1155/2024/6618388","DOIUrl":"https://doi.org/10.1155/2024/6618388","url":null,"abstract":"Photodynamic therapy (PDT) has received increasing attention for tumor therapy due to its minimal invasiveness and spatiotemporal selectivity. However, the poor targeting of photosensitizer and hypoxia of the tumor microenvironment limit the PDT efficacy. Herein, eccentric hollow mesoporous organic silica nanoparticles (EHMONs) are prepared by anisotropic encapsulation and hydrothermal etching for constructing PDT nanoplatforms with targeting and hypoxia-alleviating properties. The prepared EHMONs possess a unique eccentric hollow structure, a uniform size (300 nm), a large cavity, and ordered mesoporous channels (2.3 nm). The EHMONs are modified with the mitochondria-targeting molecule triphenylphosphine (CTPP) and photosensitizers chlorin e6 (Ce6). Oxygen-carrying compound perfluorocarbons (PFCs) are further loaded in the internal cavity of EHMONs. Hemolytic assays and <i>in vitro</i> toxicity experiments show that the EHMONs-Ce6-CTPP possesses very good biocompatibility and can target mitochondria of triple-negative breast cancer, thus increasing the accumulation of photosensitizers Ce6 at mitochondria after entering cancer cells. The EHMONs-Ce6-CTPP@PFCs with oxygen-carrying ability can alleviate hypoxia after entering in the cancer cell. Phantom and cellular experiments show that the EHMONs-Ce6-CTPP@PFCs produce more singlet oxygen reactive oxygen species (ROSs). Thus, in vitro and in vivo experiments demonstrated that the EHMONs-Ce6-CTPP@PFCs showed excellent treatment effects for triple-negative breast cancer. This research provides a new method for a targeting and oxygen-carrying nanoplatform for enhancing PDF effectiveness.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"6 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139658540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Degrees of Sulfated Laminaria Polysaccharides Recovered Damaged HK-2 Cells and Inhibited Adhesion of Nano-COM and Nano-COD Crystals 不同程度的硫酸化层状多糖可恢复受损的 HK-2 细胞并抑制纳米-COM 和纳米-COD 晶体的粘附性
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-02 DOI: 10.1155/2024/8843214
Qiu-Shi Xu, Zhi-Jian Wu, Jian-Ming Sun, Jing-Hong Liu, Wei-Bo Huang, Jian-Ming Ouyang
Purpose. The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (–OSO3) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. Methods. Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with –OSO3 contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. Results. The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. Conclusions. As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high –OSO3 content may be a potential drug to prevent kidney stones.
目的:肾小管上皮细胞(HK-2肾小管上皮细胞(HK-2)受损导致的晶体粘附是肾结石形成的关键。然而,目前尚未发现有效的预防药物。本研究旨在探讨四种不同硫酸盐(-OSO3-)含量的层藻多糖(SLPs)对受损 HK-2 细胞的恢复作用,以及恢复前后受损细胞对纳米级一水草酸钙(COM)和二水草酸钙(COD)粘附性的差异。研究方法使用草酸钠(2.6 mmol/L)损伤 HK-2 细胞,建立损伤模型。用 -OSO3- 含量分别为 0.73%、15.1%、22.8% 和 31.3% 的 SLPs(SLP0、SLP1、SLP2 和 SLP3)修复受损细胞,并测量 SLPs 在修复前后对大小约为 100 nm 的 COM 和 COD 粘附性的影响。结果SLPs 使受损的 HK-2 细胞复原后,观察到以下结果:细胞活力增强,细胞形态恢复,活性氧水平降低,线粒体膜电位升高,磷脂酰丝氨酸倒置比降低,细胞迁移能力增强,细胞表面的附件蛋白 A1、跨膜蛋白和热休克蛋白 90 表达降低,细胞与 COM 和 COD 的粘附量减少。在相同条件下,细胞对 COD 晶体的粘附能力弱于对 COM 晶体的粘附能力。结论随着 SLPs 中硫酸盐含量的增加,SLPs 恢复受损 HK-2 细胞和抑制晶体粘附的能力也会增加。高-OSO3-含量的SLP3可能是一种预防肾结石的潜在药物。
{"title":"Different Degrees of Sulfated Laminaria Polysaccharides Recovered Damaged HK-2 Cells and Inhibited Adhesion of Nano-COM and Nano-COD Crystals","authors":"Qiu-Shi Xu, Zhi-Jian Wu, Jian-Ming Sun, Jing-Hong Liu, Wei-Bo Huang, Jian-Ming Ouyang","doi":"10.1155/2024/8843214","DOIUrl":"https://doi.org/10.1155/2024/8843214","url":null,"abstract":"<i>Purpose</i>. The crystal adhesion caused by the damage of renal tubular epithelial cells (HK-2) is the key to the formation of kidney stones. However, no effective preventive drug has been found. This study aims to explore the recovery effects of four Laminaria polysaccharides (SLPs) with different sulfate (–OSO<sub>3</sub><sup>–</sup>) contents on damaged HK-2 cells and the difference in the adhesion of damaged cells to nanometer calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) before and after recovery. <i>Methods</i>. Sodium oxalate (2.6 mmol/L) was used to damage HK-2 cells to establish a damaged model. SLPs (LP0, SLP1, SLP2, and SLP3) with –OSO<sub>3</sub><sup>–</sup> contents of 0.73%, 15.1%, 22.8%, and 31.3%, respectively, were used to restore the damaged cells, and the effects of SLPs on the adhesion of COM and COD, with a size of about 100 nm before and after recovery, were measured. <i>Results</i>. The following results were observed after SLPs recovered the damaged HK-2 cells: increased cell viability, restored cell morphology, decreased reactive oxygen levels, increased mitochondrial membrane potential, decreased phosphatidylserine eversion ratio, increased cell migration ability, reduced expression of annexin A1, transmembrane protein, and heat shock protein 90 on the cell surface, and reduced adhesion amount of cells to COM and COD. Under the same conditions, the adhesion ability of cells to COD crystals was weaker than that to COM crystals. <i>Conclusions</i>. As the sulfate content in SLPs increases, the ability of SLPs to recover damaged HK-2 cells and inhibit crystal adhesion increases. SLP3 with high –OSO<sub>3</sub><sup>–</sup> content may be a potential drug to prevent kidney stones.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"21 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139077928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells 不同分子量的黑木耳多糖的抗氧化活性及多糖调节 CaOx 对 HK-2 细胞的细胞毒性差异
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-23 DOI: 10.1155/2023/9968886
Bao-Li Heng, Fan-Yu Wu, Jing-Hong Liu, Jian-Ming Ouyang
Objective. This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by Auricularia auricular polysaccharides (AAPs) with different viscosity-average molecular weights (), the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. Methods. The scavenging capability and reducing capacity of four kinds of AAPs ( of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. Results. The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 < AAP1 < AAP2 < AAP3. Thus, AAP3, which had the smallest , had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. Conclusion. AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.
研究目的本研究旨在探讨不同粘均分子量()的耳穴多糖(AAPs)对草酸钙(CaOx)结晶生长的调控作用、AAPs调控的CaOx结晶对HK-2细胞的毒性以及AAPs对CaOx结石的预防和治疗作用。研究方法检测四种 AAPs(31.52、11.82、5.86 和 3.34 kDa)对羟基、ABTS 和 DPPH 自由基的清除能力和还原能力及其对二价铁离子的螯合能力。利用ZETA电位、热重分析、X射线衍射和扫描电子显微镜对AAP调控的CaOx晶体进行了评估。通过检测细胞活力、细胞死亡、丙二醛(MDA)含量和细胞表面透明质酸(HA)的表达,评估了 AAP 调节晶体的细胞毒性。结果四种抗氧化剂的体外抗氧化活性按以下顺序排列:AAP0;AAP1;AAP2;AAP3。因此,AAP3 的抗氧化活性最强,而 AAP1 的抗氧化活性最小。AAPs 可以抑制一水 CaOx(COM)的生长,诱导二水 CaOx(COD)的形成,并降低晶体的聚集程度,其中 AAP3 的能力最强。细胞实验显示,AAP3 调节的 CaOx 晶体细胞毒性最低,MDA 含量、HA 表达和细胞死亡率也最低。此外,COD 的细胞毒性低于 COM。同时,钝晶体的细胞毒性低于尖晶体。结论AAPs(尤其是 AAP3)在体外表现出卓越的抗氧化能力,AAP3 调节的 CaOx 晶体的细胞毒性极低。
{"title":"Antioxidant Activity of Auricularia auricula Polysaccharides with Different Molecular Weights and Cytotoxicity Difference of Polysaccharides Regulated CaOx to HK-2 Cells","authors":"Bao-Li Heng, Fan-Yu Wu, Jing-Hong Liu, Jian-Ming Ouyang","doi":"10.1155/2023/9968886","DOIUrl":"https://doi.org/10.1155/2023/9968886","url":null,"abstract":"<i>Objective</i>. This study aimed to investigate the growth of calcium oxalate (CaOx) crystals regulated by <i>Auricularia auricular</i> polysaccharides (AAPs) with different viscosity-average molecular weights (<span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"></path></g></svg>),</span> the toxicity of AAP-regulated CaOx crystals toward HK-2 cells, and the prevention and treatment capabilities of AAPs for CaOx stones. <i>Methods</i>. The scavenging capability and reducing capacity of four kinds of AAPs (<svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"><use xlink:href=\"#g185-40\"></use></g></svg> of 31.52, 11.82, 5.86, and 3.34 kDa) on hydroxyl, ABTS, and DPPH free radicals and their capability to chelate divalent iron ions were detected. AAP-regulated CaOx crystals were evaluated by using zeta potential, thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy. The cytotoxicity of AAP-regulated crystals was evaluated through examination of cell viability, cell death, malondialdehyde (MDA) content, and cell surface hyaluronic acid (HA) expression. <i>Results</i>. The in vitro antioxidant activities of the four AAPs were observed in the following order: AAP0 &lt; AAP1 &lt; AAP2 &lt; AAP3. Thus, AAP3, which had the smallest <span><svg height=\"11.9453pt\" style=\"vertical-align:-3.309401pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 16.9831 11.9453\" width=\"16.9831pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.22,3.132)\"><use xlink:href=\"#g185-40\"></use></g></svg>,</span> had the strongest antioxidant activity. AAPs can inhibit the growth of CaOx monohydrate (COM), induce the formation of CaOx dihydrate (COD), and reduce the degree of crystal aggregation, with AAP3 exhibiting the strongest capability. Cell experiments showed the lowest cytotoxicity in AAP3-regulated CaOx crystals, along with the lowest MDA content, HA expression, and cell mortality. In addition, COD presented less cytotoxicity than COM. Meanwhile, the cytotoxicity of blunt crystals was less than that of sharp crystals. <i>Conclusion</i>. AAPs, particularly AAP3, showed an excellent antioxidative capability in vitro, and AAP3-regulated CaOx crystals presented minimal cytotoxicity.","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"41 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Pisonia Alba Assisted Synthesis of Nanosilver for Wound Healing Activity 撤回:白皮松辅助合成纳米银以提高伤口愈合活性
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-20 DOI: 10.1155/2023/9841820
Bioinorganic Chemistry and Applications
{"title":"Retracted: Pisonia Alba Assisted Synthesis of Nanosilver for Wound Healing Activity","authors":"Bioinorganic Chemistry and Applications","doi":"10.1155/2023/9841820","DOIUrl":"https://doi.org/10.1155/2023/9841820","url":null,"abstract":"<jats:p />","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"118 10","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138953937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Synthesis and Workability Behavior of Cu-X wt.% TiC (x = 0, 4, 8, and 12) Powder Metallurgy Composites 撤回:Cu-X wt.% TiC(x = 0、4、8 和 12)粉末冶金复合材料的合成与加工性能
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-20 DOI: 10.1155/2023/9873501
Bioinorganic Chemistry and Applications
{"title":"Retracted: Synthesis and Workability Behavior of Cu-X wt.% TiC (x = 0, 4, 8, and 12) Powder Metallurgy Composites","authors":"Bioinorganic Chemistry and Applications","doi":"10.1155/2023/9873501","DOIUrl":"https://doi.org/10.1155/2023/9873501","url":null,"abstract":"<jats:p />","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"79 6","pages":""},"PeriodicalIF":3.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138957795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Biosynthesis of Iron Oxide Nanoparticles Using Leaf Extract of Ruellia tuberosa: Mechanical and Dynamic Mechanical Behaviour Kevlar-Based Hybrid Epoxy Composites. 撤回:利用块茎鸢尾叶提取物生物合成氧化铁纳米颗粒:基于 Kevlar 的混合环氧树脂复合材料的力学和动态力学行为。
IF 3.8 3区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-20 eCollection Date: 2023-01-01 DOI: 10.1155/2023/9869405
Bioinorganic Chemistry And Applications

[This retracts the article DOI: 10.1155/2023/1731931.].

[本文撤回了文章 DOI:10.1155/2023/1731931.]。
{"title":"Retracted: Biosynthesis of Iron Oxide Nanoparticles Using Leaf Extract of Ruellia tuberosa: Mechanical and Dynamic Mechanical Behaviour Kevlar-Based Hybrid Epoxy Composites.","authors":"Bioinorganic Chemistry And Applications","doi":"10.1155/2023/9869405","DOIUrl":"10.1155/2023/9869405","url":null,"abstract":"<p><p>[This retracts the article DOI: 10.1155/2023/1731931.].</p>","PeriodicalId":8914,"journal":{"name":"Bioinorganic Chemistry and Applications","volume":"2023 ","pages":"9869405"},"PeriodicalIF":3.8,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Bioinorganic Chemistry and Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1