Pub Date : 2025-02-01Epub Date: 2024-04-27DOI: 10.1007/s12011-024-04196-3
Marian Grman, Peter Balis, Andrea Berenyiova, Helena Svajdlenkova, Lenka Tomasova, Sona Cacanyiova, Zuzana Rostakova, Iveta Waczulikova, Miroslav Chovanec, Enrique Domínguez-Álvarez, Karol Ondrias, Anton Misak
Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (•cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce •cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed •cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.
{"title":"Products of Selenite/Thiols Interaction Have Reducing Properties, Cleave Plasmid DNA and Decrease Rat Blood Pressure and Tension of Rat Mesenteric Artery.","authors":"Marian Grman, Peter Balis, Andrea Berenyiova, Helena Svajdlenkova, Lenka Tomasova, Sona Cacanyiova, Zuzana Rostakova, Iveta Waczulikova, Miroslav Chovanec, Enrique Domínguez-Álvarez, Karol Ondrias, Anton Misak","doi":"10.1007/s12011-024-04196-3","DOIUrl":"10.1007/s12011-024-04196-3","url":null,"abstract":"<p><p>Selenium compounds exert their antioxidant activity mostly when the selenium atom is incorporated into selenoproteins. In our work, we tested the possibility that selenite itself interacts with thiols to form active species that have reducing properties. Therefore, we studied the reduction of 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazol-1-yloxy-3-oxide radical (<sup>•</sup>cPTIO), damage of plasmid DNA (pDNA), modulation of rat hemodynamic parameters and tension of isolated arteries induced by products of interaction of selenite with thiols. We found that the products of selenite interaction with thiols had significant reducing properties that could be attributed mainly to the selenide and that selenite had catalytic properties in the access of thiols. The potency of thiols to reduce <sup>•</sup>cPTIO in the interaction with selenite was cysteine > homocysteine > glutathione reduced > N-acetylcysteine. Thiol/selenite products cleaved pDNA, with superoxide dismutase enhancing these effects suggesting a positive involvement of superoxide anion in the process. The observed <sup>•</sup>cPTIO reduction and pDNA cleavage were significantly lower when selenomethionine was used instead of selenite. The products of glutathione/selenite interaction affected several hemodynamic parameters including rat blood pressure decrease. Notably, the products relaxed isolated mesenteric artery, which may explain the observed decrease in rat blood pressure. In conclusion, we found that the thiol/selenite interaction products exhibited significant reducing properties which can be used in further studies of the treatment of pathological conditions caused by oxidative stress. The results of decreased rat blood pressure and the tension of mesenteric artery may be perspective in studies focused on cardiovascular disease and their prevention.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":"903-929"},"PeriodicalIF":3.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140855145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Toxicity of lead (Pb) causes several health problems in human beings. The present study reveals the potential effects of Pb on adult zebrafish (Danio rerio) brain at an environmentally relevant concentration. Pb generated reactive oxygen species-mediated oxidative stress, as evidenced by alterations of GSH, MDA levels, and CAT activity. The Nrf2-Keap1 pathway counteracted this stress as a part of cytoprotection. The gene expression and immunolocalization studies confirmed the augmentation of Nrf2 in the brain. Activation of the Nrf2-Keap1 pathway influenced downstream nqo1 and ho1 gene expressions. The alterations in histopathology and mRNA expressions of biomarker genes like hsp70 and ache revealed the toxic insults of Pb in the brain. DNA damage assay verified the genotoxic potential of Pb. The expression pattern of the candidate genes of two critical repair pathways (base excision and mismatch repair) was studied to assess the DNA damage responses. The damages in DNA caused by 15 days of Pb exposure were sufficient to trigger the expression of BER (ogg1, apex1, polβ, and creb1) and MMR (msh2, msh6, and mlh1) genes to protect cells. Chronic exposure for 30 days suppressed both the machinery, predisposing mutations. The overexpression of crucial tumor suppressor genes p53 and brca2 indicated their protective role against cancer progression. Understanding the molecular mechanisms underlying Pb-induced neurotoxicity and the DNA damage response may help to improve our current knowledge for the prevention of Pb poisoning.
{"title":"Chronic Exposure to Lead Causes Neurotoxicity by Generating Oxidative Stress and Inducing DNA Damages in Zebrafish Brain: Involvement of Nrf2-Keap1 Regulation and DNA Repair Pathways.","authors":"Koushik Kumar Dey, Sreejata Kamila, Tanmoy Das, Ansuman Chattopadhyay","doi":"10.1007/s12011-025-04534-z","DOIUrl":"https://doi.org/10.1007/s12011-025-04534-z","url":null,"abstract":"<p><p>Toxicity of lead (Pb) causes several health problems in human beings. The present study reveals the potential effects of Pb on adult zebrafish (Danio rerio) brain at an environmentally relevant concentration. Pb generated reactive oxygen species-mediated oxidative stress, as evidenced by alterations of GSH, MDA levels, and CAT activity. The Nrf2-Keap1 pathway counteracted this stress as a part of cytoprotection. The gene expression and immunolocalization studies confirmed the augmentation of Nrf2 in the brain. Activation of the Nrf2-Keap1 pathway influenced downstream nqo1 and ho1 gene expressions. The alterations in histopathology and mRNA expressions of biomarker genes like hsp70 and ache revealed the toxic insults of Pb in the brain. DNA damage assay verified the genotoxic potential of Pb. The expression pattern of the candidate genes of two critical repair pathways (base excision and mismatch repair) was studied to assess the DNA damage responses. The damages in DNA caused by 15 days of Pb exposure were sufficient to trigger the expression of BER (ogg1, apex1, polβ, and creb1) and MMR (msh2, msh6, and mlh1) genes to protect cells. Chronic exposure for 30 days suppressed both the machinery, predisposing mutations. The overexpression of crucial tumor suppressor genes p53 and brca2 indicated their protective role against cancer progression. Understanding the molecular mechanisms underlying Pb-induced neurotoxicity and the DNA damage response may help to improve our current knowledge for the prevention of Pb poisoning.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H2O2), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.
{"title":"Cadmium Pollution Deteriorates the Muscle Quality of Labeo rohita by Altering Its Nutrients and Intestinal Microbiota Diversity.","authors":"Ayesha Begum, Md Golam Rabbane, Mohammad Moniruzzaman, Md Rakibul Hasan, Xuexiu Chang","doi":"10.1007/s12011-025-04524-1","DOIUrl":"https://doi.org/10.1007/s12011-025-04524-1","url":null,"abstract":"<p><p>The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.00 (control), 0.05, and 0.40 mg/L for 30 days and assessed fish health, muscle quality, and intestinal bacterial diversity. We observed significant Cd bioaccumulation in the fish muscle and intestine at 0.40 mg/L treatment, adversely impacting fish health with lower growth indices, higher mortality, behavioral aberrations, and clinical anomalies. More interestingly, Cd exposure decreased muscle quality by reducing nutrient levels, including fat, protein, iron, zinc, mono and polyunsaturated fatty acids, and increasing free amino acids and saturated fatty acids. Elevated oxidative stress markers, including total superoxide dismutase (T-SOD), catalase (CAT), and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), were detected in the muscles, indicating degraded quality as a result of damage to cellular structures including proteins, lipids, and DNA. Simultaneously, we found Cd exposure altered fish intestinal microbial diversity, impairing muscle nutrient assimilation, thereby influencing muscle quality. Functional predictions suggested a decrease in pathways related to fermentation and chemoheterotrophy in the exposed groups. Overall, this study highlights how Cd toxicity jeopardizes fish health and deteriorates muscle quality which needs to be addressed for human benefit.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143063397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1007/s12011-025-04532-1
Ningning Xu, Liping Li, James A Ippolito, Weiqin Xing, Yale Wang, Baozhong Zhang, Yongqiang Yang, Ling Bai, Linlin Zhao
The effect of heavy metal availability and interaction in feed on feces heavy metal excretion in mice has rarely been investigated. In this work, feed containing a polluted soil (total Cd = 6.34, total Pb = 387 mg kg-1) amended with phosphate, bentonite and lime, or feed spiked with soluble Pb and Cd were fed to mice for 10 days. Feces were collected on Day 2 and Day 10 and analyzed for Cd, Cu, Mn, Ni, Pb and Zn concentrations. Results indicated that Day 10 samples had 10% greater heavy metal concentrations in some treatments than Day 2. For the Pb and Cd spiked treatments, significant positive correlations were found between Pb and Cd rates and feces Pb and Cd concentrations on both dates. Significantly greater feces Pb and Cd concentrations were found in Day 10 samples than in Day 2 samples. Significant correlations were also found between feed Pb and Cd spiking rates and feces Cu, Mn, Ni and Zn concentrations, indicating mouse metal absorption dynamics and metal interactions. Although the phosphate and lime amended soils had lower DTPA-Pb and Cd than the unamended soil (6.2-17.9%, p < 0.05), no significant difference was found for feces Pb and Cd concentrations between treatments. A marginally negative correlation (p = 0.073) between soil DTPA-Zn and feces Zn concentration for Day 2 samples implied the soil amendment only affected mice absorption of Zn. Overall results imply that mice feces heavy metal concentrations can be used to indicate heavy metal absorption from feed and metal interactions in mice.
{"title":"Effect of Feeding Mice Soluble Metals and Heavy Metal Contaminated Soil on Feces Metal Concentrations.","authors":"Ningning Xu, Liping Li, James A Ippolito, Weiqin Xing, Yale Wang, Baozhong Zhang, Yongqiang Yang, Ling Bai, Linlin Zhao","doi":"10.1007/s12011-025-04532-1","DOIUrl":"https://doi.org/10.1007/s12011-025-04532-1","url":null,"abstract":"<p><p>The effect of heavy metal availability and interaction in feed on feces heavy metal excretion in mice has rarely been investigated. In this work, feed containing a polluted soil (total Cd = 6.34, total Pb = 387 mg kg<sup>-1</sup>) amended with phosphate, bentonite and lime, or feed spiked with soluble Pb and Cd were fed to mice for 10 days. Feces were collected on Day 2 and Day 10 and analyzed for Cd, Cu, Mn, Ni, Pb and Zn concentrations. Results indicated that Day 10 samples had 10% greater heavy metal concentrations in some treatments than Day 2. For the Pb and Cd spiked treatments, significant positive correlations were found between Pb and Cd rates and feces Pb and Cd concentrations on both dates. Significantly greater feces Pb and Cd concentrations were found in Day 10 samples than in Day 2 samples. Significant correlations were also found between feed Pb and Cd spiking rates and feces Cu, Mn, Ni and Zn concentrations, indicating mouse metal absorption dynamics and metal interactions. Although the phosphate and lime amended soils had lower DTPA-Pb and Cd than the unamended soil (6.2-17.9%, p < 0.05), no significant difference was found for feces Pb and Cd concentrations between treatments. A marginally negative correlation (p = 0.073) between soil DTPA-Zn and feces Zn concentration for Day 2 samples implied the soil amendment only affected mice absorption of Zn. Overall results imply that mice feces heavy metal concentrations can be used to indicate heavy metal absorption from feed and metal interactions in mice.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-29DOI: 10.1007/s12011-025-04529-w
Masoumeh Najibzadeh
Contamination of aquatic ecosystems with heavy metals poses a significant global issue due to its hazardous effects and persistent accumulation in living organisms. This study analyzed 51 fish samples from two species of Black Fish, Capoeta saadii and Capoeta trutta, collected from Iran's Khorramroud River during the summer and fall of 2022 to assess heavy metal accumulation in their gill, liver, and muscle tissues. After biometry, the studied tissues of each fish were isolated to measure the concentration of heavy metals (cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), copper (Cu), and nickel (Ni)). The tissue concentration of the studied metals was obtained by measuring in the inductively coupled plasma optical emission spectroscopy (ICP-OES) device after chemical digestion. Based on the results of this study, muscle and liver tissues had the lowest and highest accumulation of heavy metals, respectively, with zinc concentration in the liver of C. saadii reaching 118.557 mg/kg, which exceeds the permissible limit of 75 mg/kg. Also, there was no significant correlation between the amount of absorption of heavy elements and the biometric indicators of body weight and length. Although C. saadii accumulated higher levels of Zn, Cu, Cd, and Cr than C. trutta, statistical analysis (ANOVA and PCA) revealed no significant differences in heavy metal accumulation between the two species (P > 0.05). Comparisons with international standards indicated that chromium (2.10-9.97 mg/kg) and zinc concentrations (41.72-118.557 mg/kg) exceeded permissible limits, while Ni, Cu, Pb, and Cr levels remained below the allowable thresholds. These findings underscore the need for strategic planning, management, and continuous environmental monitoring to mitigate heavy metal pollution in aquatic ecosystems and safeguard the health of fish populations in the Khorramroud River.
{"title":"Monitoring and Assessment of Heavy Metal Concentrations in Two Black Fish Species, Capoeta saadii (Heckel, 1847) and Capoeta trutta (Heckel, 1843), in Western Iran.","authors":"Masoumeh Najibzadeh","doi":"10.1007/s12011-025-04529-w","DOIUrl":"https://doi.org/10.1007/s12011-025-04529-w","url":null,"abstract":"<p><p>Contamination of aquatic ecosystems with heavy metals poses a significant global issue due to its hazardous effects and persistent accumulation in living organisms. This study analyzed 51 fish samples from two species of Black Fish, Capoeta saadii and Capoeta trutta, collected from Iran's Khorramroud River during the summer and fall of 2022 to assess heavy metal accumulation in their gill, liver, and muscle tissues. After biometry, the studied tissues of each fish were isolated to measure the concentration of heavy metals (cadmium (Cd), zinc (Zn), chromium (Cr), lead (Pb), copper (Cu), and nickel (Ni)). The tissue concentration of the studied metals was obtained by measuring in the inductively coupled plasma optical emission spectroscopy (ICP-OES) device after chemical digestion. Based on the results of this study, muscle and liver tissues had the lowest and highest accumulation of heavy metals, respectively, with zinc concentration in the liver of C. saadii reaching 118.557 mg/kg, which exceeds the permissible limit of 75 mg/kg. Also, there was no significant correlation between the amount of absorption of heavy elements and the biometric indicators of body weight and length. Although C. saadii accumulated higher levels of Zn, Cu, Cd, and Cr than C. trutta, statistical analysis (ANOVA and PCA) revealed no significant differences in heavy metal accumulation between the two species (P > 0.05). Comparisons with international standards indicated that chromium (2.10-9.97 mg/kg) and zinc concentrations (41.72-118.557 mg/kg) exceeded permissible limits, while Ni, Cu, Pb, and Cr levels remained below the allowable thresholds. These findings underscore the need for strategic planning, management, and continuous environmental monitoring to mitigate heavy metal pollution in aquatic ecosystems and safeguard the health of fish populations in the Khorramroud River.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-28DOI: 10.1007/s12011-025-04527-y
Karim N Jallad
Infants are particularly vulnerable to exposure to toxic trace elements due to their developmental stage and behaviors such as mouthing and chewing on toys. Chemical exposure to heavy metals in infants' toys is a significant concern as it poses a threat to their health and well-being. Therefore, quality control measures are essential to prevent infants' exposure to potentially harmful metals. This study aimed to assess the presence of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in infants' teethers and evaluate potential health risks associated with their use. Eighteen teethers were analyzed for heavy metal content using inductively coupled plasma mass spectrometry (ICPMS). Results showed varying concentrations of As, Cd, Pb, and Hg in the teethers, with none exceeding the safety limits for these heavy metals set by regulatory bodies such as ASTM F-963 and EN 71. Furthermore, calculated exposure levels, including Chronic Daily Intake (CDI) and Lifetime Average Daily Dose (LADD), as well as risk assessments covering Hazard Quotient (HQ), Hazard Index (HI), Margin of Exposure (MOE), and Incremental Lifetime Cancer Risk (ILCR), indicated that the overall health risks associated with teethers' use were non-existent. These findings highlight the importance of stringent regulations and ongoing monitoring of heavy metal levels in infants' products to ensure their safety.
{"title":"Infants' Exposure to Toxic Trace Elements in Teethers.","authors":"Karim N Jallad","doi":"10.1007/s12011-025-04527-y","DOIUrl":"https://doi.org/10.1007/s12011-025-04527-y","url":null,"abstract":"<p><p>Infants are particularly vulnerable to exposure to toxic trace elements due to their developmental stage and behaviors such as mouthing and chewing on toys. Chemical exposure to heavy metals in infants' toys is a significant concern as it poses a threat to their health and well-being. Therefore, quality control measures are essential to prevent infants' exposure to potentially harmful metals. This study aimed to assess the presence of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in infants' teethers and evaluate potential health risks associated with their use. Eighteen teethers were analyzed for heavy metal content using inductively coupled plasma mass spectrometry (ICPMS). Results showed varying concentrations of As, Cd, Pb, and Hg in the teethers, with none exceeding the safety limits for these heavy metals set by regulatory bodies such as ASTM F-963 and EN 71. Furthermore, calculated exposure levels, including Chronic Daily Intake (CDI) and Lifetime Average Daily Dose (LADD), as well as risk assessments covering Hazard Quotient (HQ), Hazard Index (HI), Margin of Exposure (MOE), and Incremental Lifetime Cancer Risk (ILCR), indicated that the overall health risks associated with teethers' use were non-existent. These findings highlight the importance of stringent regulations and ongoing monitoring of heavy metal levels in infants' products to ensure their safety.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction: Ortho-silicic Acid Plays a Protective Role in Glucocorticoid-Induced Osteoporosis via the Akt/Bad Signal Pathway In Vitro and In Vivo.","authors":"Guanghui Gu, Dehui Hou, Guangjun Jiao, Wenliang Wu, Hongming Zhou, Hongliang Wang, Yunzhen Chen","doi":"10.1007/s12011-025-04520-5","DOIUrl":"https://doi.org/10.1007/s12011-025-04520-5","url":null,"abstract":"","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1007/s12011-025-04522-3
Sharmin Akter Beauty, Jakir Hossain, Sharon Jahan Sarder, Nesar Uddin, Osman Goni, Faysal Abedin, Kamrun Nahar Rossi, Rajoana Karim Rimi, Seiichiro Himeno, Khaled Hossain, Zahangir Alam Saud
Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated. Thus, this study was designed to assess the combined effect of As and BPA on locomotor activity and neurotoxicity through a mouse model. The neurobehavioral changes in experimental mice were evaluated using the different maze tests. Mice exposed to As or BPA exhibited higher anxiety-like behavior, decreased locomotor activity, and impaired learning and memory including social interaction compared with control mice. However, As + BPA-exposed mice showed a significantly reduced anxiety-like behavior, improved learning and memory including locomotor activity, and social interaction compared to individual As-exposed mice. Furthermore, mice exposed to As or BPA showed lower levels of antioxidant and cholinesterase enzymes activity, nuclear factor erythroid-2-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1), and interleukin-10 (IL-10) in the brain and higher levels of interleukin-6 (IL-6) in the brain and lactate dehydrogenase (LDH) in the serum compared to control mice. However, combined exposure augmented antioxidant and cholinesterase enzymes activity, Nrf2, HO-1, IL-10 levels in the brain and reduced serum LDH activity and IL-6 in the brain compared to As exposure. Therefore, this study suggests that As and BPA may have antagonistic effects, and BPA could attenuate the As-induced neurobehavioral and biochemical changes in co-exposed mice.
{"title":"Combined Effects of Arsenic and Bisphenol-A on Locomotor Activity and Oxidative Stress Mediated Neurotoxicity in Mice.","authors":"Sharmin Akter Beauty, Jakir Hossain, Sharon Jahan Sarder, Nesar Uddin, Osman Goni, Faysal Abedin, Kamrun Nahar Rossi, Rajoana Karim Rimi, Seiichiro Himeno, Khaled Hossain, Zahangir Alam Saud","doi":"10.1007/s12011-025-04522-3","DOIUrl":"https://doi.org/10.1007/s12011-025-04522-3","url":null,"abstract":"<p><p>Bisphenol A (BPA) is a monomer of plastic that can leach into water from scratched containers when used for an extended period. Arsenic (As) is an environmental toxicant, and people are exposed to both arsenic and BPA through drinking water and through scratched plastic containers used in contaminated areas. However, the combined effects of As and BPA on locomotor performance and neurobehavioral changes are yet to be investigated. Thus, this study was designed to assess the combined effect of As and BPA on locomotor activity and neurotoxicity through a mouse model. The neurobehavioral changes in experimental mice were evaluated using the different maze tests. Mice exposed to As or BPA exhibited higher anxiety-like behavior, decreased locomotor activity, and impaired learning and memory including social interaction compared with control mice. However, As + BPA-exposed mice showed a significantly reduced anxiety-like behavior, improved learning and memory including locomotor activity, and social interaction compared to individual As-exposed mice. Furthermore, mice exposed to As or BPA showed lower levels of antioxidant and cholinesterase enzymes activity, nuclear factor erythroid-2-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1), and interleukin-10 (IL-10) in the brain and higher levels of interleukin-6 (IL-6) in the brain and lactate dehydrogenase (LDH) in the serum compared to control mice. However, combined exposure augmented antioxidant and cholinesterase enzymes activity, Nrf2, HO-1, IL-10 levels in the brain and reduced serum LDH activity and IL-6 in the brain compared to As exposure. Therefore, this study suggests that As and BPA may have antagonistic effects, and BPA could attenuate the As-induced neurobehavioral and biochemical changes in co-exposed mice.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Auto-mechanics who often work without safety measures are vulnerable to the harmful effects of toxic metals like lead (Pb) and cadmium (Cd). These toxic metals exert their deleterious effect by interacting with the micronutrients at their primary site of action. This study aimed to investigate the effects of toxic metal exposure on serum micronutrient levels of auto-mechanics in Nigeria. This case-control study involves 60 participants aged 18 to 45 years. The control group consists of 30 healthy male staff of University College Hospital Ibadan, Nigeria. The test group consists of 30 male auto-mechanics recruited from their workshops in the Bodija and Olodo areas of Ibadan, Nigeria. Blood lead (Pb), cadmium (Cd), plasma iron (Fe), zinc (Zn), selenium (Se), manganese (Mn), magnesium (Mg), and calcium (Ca) were quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES) method. Results show that systolic and diastolic blood pressure (SBP and DBP) and plasma levels of Pb and Cd were significantly higher in the auto-mechanic group when compared with control, while there were significantly lower levels of micronutrients: Fe, Zn, Mn, and Se when compared with control (p < 0.05). The plasma levels of Ca and Mg were not statistically different in the two groups. Also, there was a significant negative relationship between Cd and Zn (r = - 0.38, p = 0.001), a weak positive relationship (r = 0.46, p = 0.001) between Pb and SBP, and a weak non-significant negative relationship between Pb and Se (r = 0.4, p = 0.11) in the auto-mechanics. The chronic exposure to Pb and Cd in auto-mechanics is associated with elevated blood pressure and reduced micronutrients levels which can impact negatively on their health.
{"title":"Interactions Between Toxic Metals and Serum Micronutrient Level in Auto-mechanics in Ibadan Metropolis, Nigeria: a Pilot study.","authors":"Oyebola Oluwagbemiga Sonuga, Ayobola Abimbola Sonuga, Bose Etaniamhe Orimadegun, John Ibhagbemien Anetor","doi":"10.1007/s12011-024-04508-7","DOIUrl":"https://doi.org/10.1007/s12011-024-04508-7","url":null,"abstract":"<p><p>Auto-mechanics who often work without safety measures are vulnerable to the harmful effects of toxic metals like lead (Pb) and cadmium (Cd). These toxic metals exert their deleterious effect by interacting with the micronutrients at their primary site of action. This study aimed to investigate the effects of toxic metal exposure on serum micronutrient levels of auto-mechanics in Nigeria. This case-control study involves 60 participants aged 18 to 45 years. The control group consists of 30 healthy male staff of University College Hospital Ibadan, Nigeria. The test group consists of 30 male auto-mechanics recruited from their workshops in the Bodija and Olodo areas of Ibadan, Nigeria. Blood lead (Pb), cadmium (Cd), plasma iron (Fe), zinc (Zn), selenium (Se), manganese (Mn), magnesium (Mg), and calcium (Ca) were quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES) method. Results show that systolic and diastolic blood pressure (SBP and DBP) and plasma levels of Pb and Cd were significantly higher in the auto-mechanic group when compared with control, while there were significantly lower levels of micronutrients: Fe, Zn, Mn, and Se when compared with control (p < 0.05). The plasma levels of Ca and Mg were not statistically different in the two groups. Also, there was a significant negative relationship between Cd and Zn (r = - 0.38, p = 0.001), a weak positive relationship (r = 0.46, p = 0.001) between Pb and SBP, and a weak non-significant negative relationship between Pb and Se (r = 0.4, p = 0.11) in the auto-mechanics. The chronic exposure to Pb and Cd in auto-mechanics is associated with elevated blood pressure and reduced micronutrients levels which can impact negatively on their health.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143027778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1007/s12011-025-04517-0
Ruijie Ba, Bin Liu, Zichen Feng, Guoqing Wang, Shu Niu, Yan Wang, Xuecheng Jiao, Cuiping Wu, Fangfang Yu, Guoyu Zhou, Yue Ba
This study aims to investigate the role of cuprotosis in fluorosis and identify potential targeted drugs for its treatment. The GSE70719 and GSE195920 datasets were merged using the inSilicoMerging package. DEGs between the exposure and control groups were found using R software. Overlapping genes of DEG and cuprotosis-related genes (CRGs) were obtained by Venn diagram and were enriched by GO and KEGG. Hub genes were identified using PPI networks and enriched by GSEA. ROC curves, the xCell algorithm, and consensus cluster analysis were utilized to evaluate diagnostic efficacy, examine immune cell infiltration, and identify cuproptosis subtypes, respectively. The GSE53937 dataset was used for external validation. The DSigDB database was used to predict small molecule drugs. Molecular docking was used to validate the relationship between small molecule drugs and hub genes. A total of 1522 DEGs (743 upregulated genes and 779 downregulated genes) and 33 overlapping genes of DEGs and CRGs were obtained. The 33 overlapping genes were enriched in ribosomal biogenesis and oxidative phosphorylation pathways. The hub genes DNTTIP2, GTPBP4, IMP4, MRPL12, MRPL13, MRPL2, MRPS2, MRPS22, NOP2, RSL1D1, and SURF6 were identified, demonstrating great diagnostic ability with AUC > 0.8. These hub genes were associated with immune response and inflammation. Two cuproptosis patterns were established based on 33 CRGs. Mepacrine was screened as a potential drug and demonstrated stability in docking with IMP4. In summary, the current study identified several CRGs that may serve as potential biomarkers for diagnosing fluorosis and are involved in fluoride-induced immune responses. Additionally, mepacrine was screened as a potential treatment for fluorosis by targeting CRGs.
{"title":"Comprehensive Analysis of Immune Characteristics of Fluorosis and Cuprotosis-Related Genes in Fluorosis Targeted Drugs.","authors":"Ruijie Ba, Bin Liu, Zichen Feng, Guoqing Wang, Shu Niu, Yan Wang, Xuecheng Jiao, Cuiping Wu, Fangfang Yu, Guoyu Zhou, Yue Ba","doi":"10.1007/s12011-025-04517-0","DOIUrl":"https://doi.org/10.1007/s12011-025-04517-0","url":null,"abstract":"<p><p>This study aims to investigate the role of cuprotosis in fluorosis and identify potential targeted drugs for its treatment. The GSE70719 and GSE195920 datasets were merged using the inSilicoMerging package. DEGs between the exposure and control groups were found using R software. Overlapping genes of DEG and cuprotosis-related genes (CRGs) were obtained by Venn diagram and were enriched by GO and KEGG. Hub genes were identified using PPI networks and enriched by GSEA. ROC curves, the xCell algorithm, and consensus cluster analysis were utilized to evaluate diagnostic efficacy, examine immune cell infiltration, and identify cuproptosis subtypes, respectively. The GSE53937 dataset was used for external validation. The DSigDB database was used to predict small molecule drugs. Molecular docking was used to validate the relationship between small molecule drugs and hub genes. A total of 1522 DEGs (743 upregulated genes and 779 downregulated genes) and 33 overlapping genes of DEGs and CRGs were obtained. The 33 overlapping genes were enriched in ribosomal biogenesis and oxidative phosphorylation pathways. The hub genes DNTTIP2, GTPBP4, IMP4, MRPL12, MRPL13, MRPL2, MRPS2, MRPS22, NOP2, RSL1D1, and SURF6 were identified, demonstrating great diagnostic ability with AUC > 0.8. These hub genes were associated with immune response and inflammation. Two cuproptosis patterns were established based on 33 CRGs. Mepacrine was screened as a potential drug and demonstrated stability in docking with IMP4. In summary, the current study identified several CRGs that may serve as potential biomarkers for diagnosing fluorosis and are involved in fluoride-induced immune responses. Additionally, mepacrine was screened as a potential treatment for fluorosis by targeting CRGs.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142999386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}