首页 > 最新文献

Biophysical journal最新文献

英文 中文
In defense of Huxley. 为赫胥黎辩护
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-15 Epub Date: 2024-09-14 DOI: 10.1016/j.bpj.2024.09.005
Sam Walcott, Sean Sun, Edward P Debold, Walter Herzog
{"title":"In defense of Huxley.","authors":"Sam Walcott, Sean Sun, Edward P Debold, Walter Herzog","doi":"10.1016/j.bpj.2024.09.005","DOIUrl":"10.1016/j.bpj.2024.09.005","url":null,"abstract":"","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning permits imaging of multiple structures with the same fluorophores. 深度学习允许使用相同的荧光团对多个结构进行成像。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-15 Epub Date: 2024-09-03 DOI: 10.1016/j.bpj.2024.09.001
Luhong Jin, Jingfang Liu, Heng Zhang, Yunqi Zhu, Haixu Yang, Jianhang Wang, Luhao Zhang, Cuifang Kuang, Baohua Ji, Ju Zhang, Xu Liu, Yingke Xu

Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.

荧光显微镜是生命科学领域的一种强大工具,它利用荧光标签来标记和观察细胞结构及其动态。然而,由于不同染料之间存在光谱重叠,在活细胞应用中可单独标记和成像的结构数量有限。此外,传统的顺序通道成像程序需要切换不同的激光器或滤光片,因此相当耗时。在这里,我们提出了一种新颖的双结构网络(DBSN),它由多个连接模型组成,能从三幅原始图像中提取出六种不同的亚细胞结构,而且只需两种不同的荧光标记。DBSN 结合了强度平衡模型和结构分离模型,前者用于补偿不同结构的不均匀荧光标签,后者用于提取具有相同荧光标签的多个不同结构。因此,DBSN 打破了现有技术的瓶颈,在细胞生物学领域具有巨大的应用潜力。
{"title":"Deep learning permits imaging of multiple structures with the same fluorophores.","authors":"Luhong Jin, Jingfang Liu, Heng Zhang, Yunqi Zhu, Haixu Yang, Jianhang Wang, Luhao Zhang, Cuifang Kuang, Baohua Ji, Ju Zhang, Xu Liu, Yingke Xu","doi":"10.1016/j.bpj.2024.09.001","DOIUrl":"10.1016/j.bpj.2024.09.001","url":null,"abstract":"<p><p>Fluorescence microscopy, which employs fluorescent tags to label and observe cellular structures and their dynamics, is a powerful tool for life sciences. However, due to the spectral overlap between different dyes, a limited number of structures can be separately labeled and imaged for live-cell applications. In addition, the conventional sequential channel imaging procedure is quite time consuming, as it needs to switch either different lasers or filters. Here, we propose a novel double-structure network (DBSN) that consists of multiple connected models, which can extract six distinct subcellular structures from three raw images with only two separate fluorescent labels. DBSN combines the intensity-balance model to compensate for uneven fluorescent labels for different structures and the structure-separation model to extract multiple different structures with the same fluorescent labels. Therefore, DBSN breaks the bottleneck of the existing technologies and holds immense potential applications in the field of cell biology.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fission of Double-Membrane Tubes under Tension. 双膜管在拉力作用下的裂变
IF 3.4 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-14 DOI: 10.1016/j.bpj.2024.10.009
Russell K W Spencer,Isaac Santos-Perez,Anna V Shnyrova,Marcus Müller
The division of a cellular compartment culminates with the scission of a highly constricted membrane neck. Scission requires lipid rearrangements, topology changes, and transient formation of non-bilayer intermediate structures driven by curvature stress. Often, a side effect of this stress is pore formation that may lead to content leakage and thus breaching of the membrane barrier function. In single membrane systems, leakage is avoided through the formation of a hemifusion (HF) intermediate, whose structure is still a subject of debate. The consequences of curvature stress have not been explored in double-membrane systems, such as the mitochondrion. Here we combine experimental and theoretical approaches to study neck constriction and scission driven by tension in biomimetic lipid systems, namely single- and double-membrane nanotubes (sNTs and dNTs), respectively. In sNTs, constriction by high tension gives rise to a metastable HF intermediate (seen as stalk or worm-like micelle), whereas poration is universally slower in a simple neck. In dNTs, high membrane tension causes sequential rupture of each membrane. In contrast, low tension leads to the hemifusion of both membranes, which may lead to a leaky fusion pathway, or may progress to further fusion of the two membranes along a number of transformation pathways. These findings provide a new mechanistic basis for fundamental cellular processes.
细胞区室的分裂以高度收缩的膜颈的裂开而告终。分裂需要脂质重新排列、拓扑结构变化,以及在曲率应力驱动下瞬时形成非膜层中间结构。这种应力的副作用往往是形成孔隙,可能导致内容物泄漏,从而破坏膜的屏障功能。在单层膜系统中,可通过形成半融合(HF)中间体来避免渗漏,但其结构仍存在争议。在线粒体等双膜系统中,还没有人探索过曲率应力的后果。在这里,我们结合实验和理论方法,研究了生物仿脂系统(即单双膜纳米管(sNTs 和 dNTs))中由张力驱动的颈部收缩和断裂。在 sNTs 中,高张力收缩会产生可转移的高频中间体(表现为柄或蠕虫状胶束),而在简单管颈中,孔化速度普遍较慢。在 dNT 中,高膜张力会导致每层膜相继破裂。相反,低张力会导致两层膜的半融合,这可能会导致泄漏融合途径,也可能导致两层膜沿着多种转化途径进一步融合。这些发现为基本细胞过程提供了新的机理基础。
{"title":"Fission of Double-Membrane Tubes under Tension.","authors":"Russell K W Spencer,Isaac Santos-Perez,Anna V Shnyrova,Marcus Müller","doi":"10.1016/j.bpj.2024.10.009","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.009","url":null,"abstract":"The division of a cellular compartment culminates with the scission of a highly constricted membrane neck. Scission requires lipid rearrangements, topology changes, and transient formation of non-bilayer intermediate structures driven by curvature stress. Often, a side effect of this stress is pore formation that may lead to content leakage and thus breaching of the membrane barrier function. In single membrane systems, leakage is avoided through the formation of a hemifusion (HF) intermediate, whose structure is still a subject of debate. The consequences of curvature stress have not been explored in double-membrane systems, such as the mitochondrion. Here we combine experimental and theoretical approaches to study neck constriction and scission driven by tension in biomimetic lipid systems, namely single- and double-membrane nanotubes (sNTs and dNTs), respectively. In sNTs, constriction by high tension gives rise to a metastable HF intermediate (seen as stalk or worm-like micelle), whereas poration is universally slower in a simple neck. In dNTs, high membrane tension causes sequential rupture of each membrane. In contrast, low tension leads to the hemifusion of both membranes, which may lead to a leaky fusion pathway, or may progress to further fusion of the two membranes along a number of transformation pathways. These findings provide a new mechanistic basis for fundamental cellular processes.","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-protein Interactions as a Driver of Phase Separation, Biology, and Disease. 水与蛋白质的相互作用是相分离、生物学和疾病的驱动力。
IF 3.4 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-14 DOI: 10.1016/j.bpj.2024.10.010
Ethan A Perets,Ty Santiago,Jens Neu,Elsa C Y Yan
{"title":"Water-protein Interactions as a Driver of Phase Separation, Biology, and Disease.","authors":"Ethan A Perets,Ty Santiago,Jens Neu,Elsa C Y Yan","doi":"10.1016/j.bpj.2024.10.010","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.010","url":null,"abstract":"","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142439455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes. 胆固醇和磷脂在平衡模型膜中的意外不对称分布。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-09 DOI: 10.1016/j.bpj.2024.10.004
Yuli Zhu, Lionel Porcar, Thirupathi Ravula, Krishna C Batchu, Tera Lavoie, Ying Liu, Ursula Perez-Salas

Lipid compositional asymmetry across the leaflets of the plasma membrane is a ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly - taking many hours or days. However, a lipid like cholesterol - which is the most abundant lipid in the plasma membrane of animal cells - has been harder to pin-point in terms of its favored side. In the present work we show that when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid - dipalmitoylphosphatidylcholine (DPPC) or sphingomyelin (SM) - segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using Magic Angle Spinning (MAS) NMR in combination with Small Angle Neutron Scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10ms.

质膜各小叶之间脂质成分的不对称是真核细胞中一个普遍存在的特征。这种不对称是如何维持的,据认为主要是由小叶间脂质的主动运输控制的。长尾磷脂和鞘磷脂在脂质双分子层中的扩散速度很慢,需要数小时或数天的时间,这为这种策略提供了便利。然而,像胆固醇这样的脂质--动物细胞质膜中含量最高的脂质--却很难确定其偏好的一面。在本研究中,我们发现当饱和脂质被添加到不饱和脂质棕榈酰-油酰基-磷脂酰胆碱(POPC)和胆固醇的混合物中时,胆固醇和长尾磷脂会自然地在膜的小叶上不对称地组织起来。在这些挤出的单层脂质囊泡中,大部分胆固醇以及饱和脂质--二棕榈酰磷脂酰胆碱(DPPC)或鞘磷脂(SM)--被分离到内层小叶,而 POPC 则优先定位于外层小叶。这种不对称排列产生了轻微的磷脂数量不平衡,有利于外侧小叶,因此与胆固醇和饱和脂质优先分配的位置相反。这些结果是利用魔角旋转核磁共振(MAS)结合小角度中子散射(SANS)得出的,使用同位素标记来区分脂质种类。我们认为,膜的侧向性可能是由热力学过程驱动的。此外,我们的 MAS NMR 结果表明,胆固醇在 45°C 时的翻转半衰期下限为 10 毫秒,比目前的 MD 模拟预测至少慢两个数量级。这一结果与之前的研究形成了鲜明的对比,之前的研究认为胆固醇在 37°C 时的翻转半衰期上限为 10 毫秒。
{"title":"Unexpected asymmetric distribution of cholesterol and phospholipids in equilibrium model membranes.","authors":"Yuli Zhu, Lionel Porcar, Thirupathi Ravula, Krishna C Batchu, Tera Lavoie, Ying Liu, Ursula Perez-Salas","doi":"10.1016/j.bpj.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.004","url":null,"abstract":"<p><p>Lipid compositional asymmetry across the leaflets of the plasma membrane is a ubiquitous feature in eukaryotic cells. How this asymmetry is maintained is thought to be primarily controlled by active transport of lipids between leaflets. This strategy is facilitated by the fact that long tail phospholipids and sphingolipids diffuse through the lipid bilayer slowly - taking many hours or days. However, a lipid like cholesterol - which is the most abundant lipid in the plasma membrane of animal cells - has been harder to pin-point in terms of its favored side. In the present work we show that when a saturated lipid is added to a mix of the unsaturated lipid palmitoyl-oleoyl-phosphatidylcholine (POPC) and cholesterol, both cholesterol and the long tail phospholipids organize asymmetrically across the membrane's leaflets naturally. In these extruded unilamellar vesicles, most cholesterol as well as the saturated lipid - dipalmitoylphosphatidylcholine (DPPC) or sphingomyelin (SM) - segregated to the inner leaflet while POPC preferentially localized in the outer leaflet. This asymmetric arrangement generated a slight phospholipid number imbalance favoring the outer leaflet and thus opposite to where cholesterol and the saturated lipids preferentially partitioned. These results were obtained using Magic Angle Spinning (MAS) NMR in combination with Small Angle Neutron Scattering (SANS) using isotope labeling to differentiate lipid species. We suggest that sidedness in membranes can be driven by thermodynamic processes. In addition, our MAS NMR results show that the lower bound for cholesterol's flip-flop half-time at 45°C is 10ms, which is at least two orders of magnitude slower than current MD simulations predict. This result stands in stark contrast to previous work that suggested that cholesterol's flip-flop half-time at 37°C has an upper bound of 10ms.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High fidelity predictions of diffusion in the brain microenvironment. 高保真预测大脑微环境中的扩散。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-09 DOI: 10.1016/j.bpj.2024.10.005
Nels Schimek, Thomas R Wood, David A C Beck, Michael McKenna, Ali Toghani, Elizabeth Nance

Multiple particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thousands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments, including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT datasets to predict the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such age biological age. In this study, we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised classification and feature importance calculations. We first validate the pipeline on three related but distinct MPT datasets from the living brain ECS - age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with 86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare features between healthy control conditions and injury induced by two different oxygen glucose deprivation [1] exposure times. We then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy control, 0.5-hour OGD treatment, and 1.5-hour OGD treatment with 59% accuracy in the cortex and 66% in the striatum and identifies nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically relevant features of nanoparticle diffusion.

多粒子跟踪(MPT)是一种显微镜技术,能够同时跟踪生物样本中成百上千的纳米粒子,已被广泛用于描述生物微环境的特征,包括脑细胞外空间(ECS)。机器学习技术已被应用于 MPT 数据集,以预测纳米粒子轨迹的扩散模式以及更复杂的生物变量,如生物年龄。在本研究中,我们开发了一个机器学习管道,利用监督分类和特征重要性计算来预测和研究大脑 ECS 因损伤而发生的变化。我们首先在来自活体脑 ECS 的三个相关但不同的 MPT 数据集上验证了该管道--年龄差异、区域差异和 ECS 结构的酶降解。我们预测三个年龄的准确率为 86%,预测三个区域的准确率为 90%,预测健康组织与酶处理组织的准确率为 69%。由于不同组间的损伤通常采用传统的统计方法进行比较,因此我们首先使用线性混合效应模型来比较健康对照条件与两种不同的氧葡萄糖剥夺[1]暴露时间诱发的损伤之间的特征。然后,我们利用机器学习,使用 MPT 特征来预测损伤状态。我们的研究表明,该管道能预测健康对照组、0.5 小时氧葡萄糖剥夺处理组和 1.5 小时氧葡萄糖剥夺处理组之间的损伤状态,在大脑皮层的准确率为 59%,在纹状体的准确率为 66%,并能识别轨迹特征之间的非线性关系,而这些关系在传统的线性模型中并不明显。我们的工作表明,将机器学习应用于 MPT 数据在多种实验条件下都是有效的,而且可以发现纳米粒子扩散的独特生物相关特征。
{"title":"High fidelity predictions of diffusion in the brain microenvironment.","authors":"Nels Schimek, Thomas R Wood, David A C Beck, Michael McKenna, Ali Toghani, Elizabeth Nance","doi":"10.1016/j.bpj.2024.10.005","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.005","url":null,"abstract":"<p><p>Multiple particle tracking (MPT) is a microscopy technique capable of simultaneously tracking hundreds to thousands of nanoparticles in a biological sample and has been used extensively to characterize biological microenvironments, including the brain extracellular space (ECS). Machine learning techniques have been applied to MPT datasets to predict the diffusion mode of nanoparticle trajectories as well as more complex biological variables, such age biological age. In this study, we develop a machine learning pipeline to predict and investigate changes to the brain ECS due to injury using supervised classification and feature importance calculations. We first validate the pipeline on three related but distinct MPT datasets from the living brain ECS - age differences, region differences, and enzymatic degradation of ECS structure. We predict three ages with 86% accuracy, three regions with 90% accuracy, and healthy versus enzyme-treated tissue with 69% accuracy. Since injury across groups is normally compared with traditional statistical approaches, we first used linear mixed effects models to compare features between healthy control conditions and injury induced by two different oxygen glucose deprivation [1] exposure times. We then used machine learning to predict injury state using MPT features. We show that the pipeline predicts between the healthy control, 0.5-hour OGD treatment, and 1.5-hour OGD treatment with 59% accuracy in the cortex and 66% in the striatum and identifies nonlinear relationships between trajectory features that were not evident from traditional linear models. Our work demonstrates that machine learning applied to MPT data is effective across multiple experimental conditions and can find unique biologically relevant features of nanoparticle diffusion.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro. 皮肤屏障脂质的结构和功能:体外补水和天然保湿剂的影响。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-09 DOI: 10.1016/j.bpj.2024.10.006
Irene Sagrafena, Maxim Morin, Georgios Paraskevopoulos, Emelie J Nilsson, Iva Hrdinová, Andrej Kováčik, Sebastian Björklund, Kateřina Vávrová

Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol%) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, X-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss, significantly higher model drug permeability, and kinetically faster changes in electrical properties upon contact with aqueous solution compared to control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.

脂质膜可根据水合作用调整自身特性,在调节人体水分平衡方面发挥着至关重要的作用。皮肤最外层角质层(SC)的细胞间脂质基质是人体抵御环境因素的主要屏障。包括尿囊酸(UCA)和甘油在内的渗透溶解物是天然保湿因子的关键成分,可帮助角质层抵御干燥环境带来的渗透压力。本研究探讨了 UCA 和甘油(各为 5 摩尔%)对分离的人体 SC 脂质的影响。为此,我们采用了不同的技术,包括湿度扫描石英晶体微天平(带耗散监测)、红外光谱、X 射线衍射、电阻抗光谱以及失水和渗透性研究,从而为系统的多尺度特性提供互补信息。我们的研究结果表明,UCA 增加了水的吸附性,并使脂膜在高相对湿度下更像液体,而不会明显改变脂质的层状结构、链序或正交链堆积。与对照组脂质相比,含有 UCA 的脂质膜在与水溶液接触时会表现出更高的失水率、更高的模型药物渗透性和更快的电特性变化。这些观察结果表明,UCA 降低了酰基链丰富的小叶以外区域的脂质内聚力,这可能会影响 SC 脱膜。相比之下,甘油并不影响 SC 脂质基质的水合作用或渗透性。然而,甘油在高湿度条件下增加了正交菱形结构域的比例,并减缓了水合过程的动力学速度,这从脂膜介电性质的缓慢变化可以看出。这些研究结果表明,甘油能增强脂质的内聚力,而不是增加吸水性,后者通常是保湿剂的预期功能。因此,UCA 和甘油在维持表皮平衡方面似乎具有不同的作用。
{"title":"Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro.","authors":"Irene Sagrafena, Maxim Morin, Georgios Paraskevopoulos, Emelie J Nilsson, Iva Hrdinová, Andrej Kováčik, Sebastian Björklund, Kateřina Vávrová","doi":"10.1016/j.bpj.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.006","url":null,"abstract":"<p><p>Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol%) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, X-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss, significantly higher model drug permeability, and kinetically faster changes in electrical properties upon contact with aqueous solution compared to control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing Whole Embryo Strain Maps During Gastrulation. 在胚胎发育过程中计算整个胚胎株系图
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-08 DOI: 10.1016/j.bpj.2024.10.003
David Denberg, Xiaoxuan Zhang, Tomer Stern, Eric Wieschaus, Krishna Garikipati, Stanislav Y Shvartsman

Gastrulation is a critical process during embryonic development that transforms a single-layered blastula into a multi-layered embryo with distinct germ layers, which eventually give rise to all the tissues and organs of the organism. Studies across species have uncovered the mechanisms underlying the building blocks of gastrulation movements, such as localized in-plane and out-of-plane epithelial deformations. The next challenge is to understand dynamics on the scale of the embryo: this requires quantifying strain tensors, which rigorously describe the differences between the deformed configurations taken on by local clusters of cells at time instants of observation and their reference configuration at an initial time. We present a systematic strategy for computing such tensors from the local dynamics of cell clusters, which are chosen across the embryo from several regions whose morphogenetic fate is central to viable gastrulation. As an application of our approach, we demonstrate a strategy of identifying distinct Drosophila morphological domains using strain tensors.

胚层形成是胚胎发育过程中的一个关键过程,它将单层胚泡转化为具有不同胚层的多层胚胎,最终形成机体的所有组织和器官。跨物种研究揭示了胃形成运动的基本机制,如局部平面内和平面外上皮变形。下一个挑战是了解胚胎尺度上的动力学:这需要量化应变张量,严格描述局部细胞簇在观察时间瞬间的变形构型与初始时间的参考构型之间的差异。我们提出了一种从细胞群局部动态计算此类张量的系统性策略,这些细胞群是从胚胎的几个区域中挑选出来的,其形态发生命运对成活的胚胎发育至关重要。作为我们方法的一个应用,我们展示了一种利用应变张量识别果蝇不同形态域的策略。
{"title":"Computing Whole Embryo Strain Maps During Gastrulation.","authors":"David Denberg, Xiaoxuan Zhang, Tomer Stern, Eric Wieschaus, Krishna Garikipati, Stanislav Y Shvartsman","doi":"10.1016/j.bpj.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.10.003","url":null,"abstract":"<p><p>Gastrulation is a critical process during embryonic development that transforms a single-layered blastula into a multi-layered embryo with distinct germ layers, which eventually give rise to all the tissues and organs of the organism. Studies across species have uncovered the mechanisms underlying the building blocks of gastrulation movements, such as localized in-plane and out-of-plane epithelial deformations. The next challenge is to understand dynamics on the scale of the embryo: this requires quantifying strain tensors, which rigorously describe the differences between the deformed configurations taken on by local clusters of cells at time instants of observation and their reference configuration at an initial time. We present a systematic strategy for computing such tensors from the local dynamics of cell clusters, which are chosen across the embryo from several regions whose morphogenetic fate is central to viable gastrulation. As an application of our approach, we demonstrate a strategy of identifying distinct Drosophila morphological domains using strain tensors.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa. DEAD-box 螺旋酶 Vasa 核苷酸结合态的长程构象变化。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-04 DOI: 10.1016/j.bpj.2024.10.001
Luca Codutti, John P Kirkpatrick, Susanne Zur Lage, Teresa Carlomagno

DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact ("open" form of the enzyme). In the presence of both RNA and ATP the two domains come together ("closed" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.

DEAD-box 螺旋酶利用 ATP 解旋短双链 RNA(dsRNA)。螺旋酶核心由两个不同的结构域组成,分别称为 RecA_N 和 RecA_C。核苷酸结合位点位于 RecA_N,而 RecA_N 和 RecA_C 都参与 RNA 识别和 ATP 水解。在没有核苷酸或 RNA 的情况下,RecA_N 和 RecA_C 不发生相互作用(酶的 "开放 "形式)。在有 RNA 和 ATP 的情况下,这两个结构域会结合在一起("封闭 "形式),形成复合 RNA 结合位点并促进 ATP 的水解。由于 ADP 结合态和 ATP 结合态在催化循环中的作用和热力学性质不同,因此假定 DEAD-box 螺旋酶与 ATP 和 ADP 复合物的构象也不同。然而,现有的晶体结构并没有再现这些假定的差异,而是显示了 DEAD-box 螺旋酶的相同构象,与结合核苷酸的身份无关。在这里,我们利用核磁共振技术证明了与 ATP 和 ADP 结合的 DEAD-box 螺旋酶 Vasa 的构象确实不同,这与 X 射线晶体学的结果相反。这些差异与开放型和封闭型的群体无关,而是 RecA_N 结构域的固有差异。核磁共振化学位移分析揭示了 RecA_N 中 Vasa-ADP 和 Vasa-ATP 平均构象差异最大的区域,并表明这些差异可能有助于调节这两种核苷酸结合复合物对 RNA 底物的亲和力。
{"title":"Long-range conformational changes in the nucleotide-bound states of the DEAD-box helicase Vasa.","authors":"Luca Codutti, John P Kirkpatrick, Susanne Zur Lage, Teresa Carlomagno","doi":"10.1016/j.bpj.2024.10.001","DOIUrl":"10.1016/j.bpj.2024.10.001","url":null,"abstract":"<p><p>DEAD-box helicases use ATP to unwind short double-stranded RNA (dsRNA). The helicase core consists of two discrete domains, termed RecA_N and RecA_C. The nucleotide binding site is harbored in RecA_N, while both RecA_N and RecA_C are involved in RNA recognition and ATP hydrolysis. In the absence of nucleotides or RNA, RecA_N and RecA_C do not interact (\"open\" form of the enzyme). In the presence of both RNA and ATP the two domains come together (\"closed\" form), building the composite RNA binding site and stimulating ATP hydrolysis. Because of the different roles and thermodynamic properties of the ADP-bound and ATP-bound states in the catalytic cycle, the conformations of DEAD-box helicases in complex with ATP and ADP are assumed to be different. However, the available crystal structures do not recapitulate these supposed differences and show identical conformations of DEAD-box helicases independent of the identity of the bound nucleotide. Here, we use NMR to demonstrate that the conformations of the ATP- and ADP-bound forms of the DEAD-box helicase Vasa are indeed different, contrary to the results from x-ray crystallography. These differences do not relate to the populations of the open and closed forms, but are intrinsic to the RecA_N domain. NMR chemical shift analysis reveals the regions of RecA_N where the average conformations of Vasa-ADP and Vasa-ATP are most different and indicates that these differences may contribute to modulating the affinity of the two nucleotide-bound complexes for RNA substrates.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrophysical cardiac remodeling at the molecular level: insights into Ryanodine Receptor activation and calcium-induced calcium release from a stochastic explicit-particle model. 分子水平上的电物理心脏重塑:从随机显式粒子模型深入了解瑞诺丁受体激活和钙诱导的钙释放。
IF 3.2 3区 生物学 Q2 BIOPHYSICS Pub Date : 2024-10-04 DOI: 10.1016/j.bpj.2024.09.029
Sophia P Hirakis, Thomas M Bartol, Ludovic Autin, Rommie E Amaro, Terrence J Sejnowski

We present the first-ever, fully-discrete, stochastic model of triggered cardiac calcium dynamics. Using anatomically accurate subcellular cardiac myocyte geometries, we simulate the molecular players involved in calcium handling using high-resolution stochastic and explicit-particle methods at the level of an individual cardiac dyadic junction. Integrating data from multiple experimental sources, the model not only replicates the findings of traditional in silico studies and complements in vitro experimental data, but also reveals new insights into the molecular mechanisms driving cardiac dysfunction under stress and disease conditions. We improve upon older, non-discrete models using the same realistic geometry by incorporating molecular mechanisms for spontaneous, as well as triggered Calcium-Induced Calcium Release (CICR). Action potentials are used to activate L-type calcium channels (LTCCs), triggering CICR through Ryanodine receptors (RyR) on the surface of the sarcoplasmic reticulum. These improvements allow for the specific focus on the couplon: the structure-function relationship between LTCC and RyR. We investigate the electrophysical effects of normal and diseased action potentials on CICR and interrogate the effects of dyadic junction deformation through detubulation and orphaning of RyR. Our work demonstrates the importance of the electrophysical integrity of the CRU on CICR fidelity, giving insights into the molecular basis of heart disease. Finally, we provide a unique, detailed, molecular view of the CICR process using advanced rendering techniques. This easy-to-use model comes complete with tutorials and all necessary software for use and analysis so as to maximize usability and reproducibility. Our work focuses on quantifying, qualifying, and visualizing the behavior of the molecular species that underlie the function and dysfunction of subcellular cardiomyocyte systems.

我们首次提出了完全离散的触发式心脏钙动力学随机模型。利用解剖学上精确的亚细胞心肌细胞几何图形,我们在单个心脏二联体交界处的水平上使用高分辨率随机和显式粒子方法模拟了参与钙处理的分子角色。该模型整合了多个实验来源的数据,不仅复制了传统硅学研究的结果,补充了体外实验数据,还揭示了压力和疾病条件下驱动心脏功能障碍的分子机制的新见解。我们采用同样逼真的几何结构,结合自发和触发钙诱导钙释放(CICR)的分子机制,改进了旧的非离散模型。动作电位用于激活 L 型钙通道 (LTCC),通过肌质网表面的瑞诺丁受体 (RyR) 触发 CICR。这些改进使得我们能够特别关注耦合子:LTCC 和 RyR 之间的结构-功能关系。我们研究了正常和病态动作电位对 CICR 的电物理效应,并通过 RyR 的脱管和孤岛化研究了二元结变形的效应。我们的工作证明了 CRU 的电物理完整性对 CICR 保真度的重要性,从而揭示了心脏病的分子基础。最后,我们利用先进的渲染技术提供了一个独特、详细的 CICR 过程分子视图。这种易于使用的模型配有完整的教程和所有必要的使用和分析软件,以最大限度地提高可用性和可重复性。我们的工作重点是量化、鉴定和可视化分子物种的行为,这些分子物种是亚细胞心肌细胞系统功能和功能障碍的基础。
{"title":"Electrophysical cardiac remodeling at the molecular level: insights into Ryanodine Receptor activation and calcium-induced calcium release from a stochastic explicit-particle model.","authors":"Sophia P Hirakis, Thomas M Bartol, Ludovic Autin, Rommie E Amaro, Terrence J Sejnowski","doi":"10.1016/j.bpj.2024.09.029","DOIUrl":"https://doi.org/10.1016/j.bpj.2024.09.029","url":null,"abstract":"<p><p>We present the first-ever, fully-discrete, stochastic model of triggered cardiac calcium dynamics. Using anatomically accurate subcellular cardiac myocyte geometries, we simulate the molecular players involved in calcium handling using high-resolution stochastic and explicit-particle methods at the level of an individual cardiac dyadic junction. Integrating data from multiple experimental sources, the model not only replicates the findings of traditional in silico studies and complements in vitro experimental data, but also reveals new insights into the molecular mechanisms driving cardiac dysfunction under stress and disease conditions. We improve upon older, non-discrete models using the same realistic geometry by incorporating molecular mechanisms for spontaneous, as well as triggered Calcium-Induced Calcium Release (CICR). Action potentials are used to activate L-type calcium channels (LTCCs), triggering CICR through Ryanodine receptors (RyR) on the surface of the sarcoplasmic reticulum. These improvements allow for the specific focus on the couplon: the structure-function relationship between LTCC and RyR. We investigate the electrophysical effects of normal and diseased action potentials on CICR and interrogate the effects of dyadic junction deformation through detubulation and orphaning of RyR. Our work demonstrates the importance of the electrophysical integrity of the CRU on CICR fidelity, giving insights into the molecular basis of heart disease. Finally, we provide a unique, detailed, molecular view of the CICR process using advanced rendering techniques. This easy-to-use model comes complete with tutorials and all necessary software for use and analysis so as to maximize usability and reproducibility. Our work focuses on quantifying, qualifying, and visualizing the behavior of the molecular species that underlie the function and dysfunction of subcellular cardiomyocyte systems.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142378995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1