Objective: The aim of this study was twofold: to assess the annual pharmaceutical savings associated with the treatment of cancer patients at Marqués de Valdecilla University Hospital and to estimate the cost of innovative antineoplastic therapies that patients receive as experimental treatment, both during clinical trials throughout 2020.
Material and methods: An observational and financial analysis of the drug cost related to clinical trials was applied. Direct cost savings to the Regional Health System of Cantabria and the cost of innovative therapies used as an experimental treatment in clinical trials were quantified.
Results: This study includes 38 clinical trials with a sample of 101 patients. The clinical trials analyzed provide a total cost savings of €603,350.21 and an average cost saving of €6,630.22 per patient. Furthermore, the total investment amounts to €789,892.67, with an average investment of €15,488.09 per patient.
Conclusions: Clinical trials are essential for the advancement of science. Furthermore, clinical trials can be a significant source of income for both hospitals and Regional Health Systems, contributing to their financial sustainability.
N6-methyladenosine (m6A) is a mRNA modification with important roles in gene expression. In African trypanosomes, this post-transcriptional modification is detected in hundreds of transcripts and it affects the stability of the variant surface glycoprotein (VSG) transcript in the proliferating blood stream form. However, how the m6A landscape varies across the life cycle remains poorly defined. Using full-length, non-fragmented RNA, we immunoprecipitated and sequenced m6A-modified transcripts across three life cycle stages of Trypanosoma brucei - slender (proliferative), stumpy (quiescent), and procyclic forms (proliferative). We found that 1037 transcripts are methylated in at least one of these three life cycle stages. While 21% of methylated transcripts are common in the three stages of the life cycle, globally each stage has a distinct methylome. Interestingly, 47% of methylated transcripts are detected in the quiescent stumpy form only, suggesting a critical role for m6A when parasites exit the cell cycle and prepare for transmission by the Tsetse fly. In this stage, we found that a significant proportion of methylated transcripts encodes for proteins involved in RNA metabolism, which is consistent with their reduced transcription and translation. Moreover, we found that not all major surface proteins are regulated by m6A, as procyclins are not methylated, and that, within the VSG repertoire, not all VSG transcripts are demethylated upon parasite differentiation to procyclic form. This study reveals that the m6A regulatory landscape is specific to each life cycle stage, becoming more pervasive as T. brucei exits the cell cycle.
Extracellular vesicles derived from human umbilical cord-derived mesenchymal stem cells (UCMSC-EVs) have been postulated to have therapeutic potential for various diseases. However, the biodistribution and pharmacokinetics of these vesicles are still unclear. For a better understanding of the in vivo properties of UCMSC-EVs, in the present study, these vesicles were first radiolabeled with Technetium-99m (99mTc-UCMSC-EVs) and evaluated using in vivo single photon emission computed tomography (SPECT) imaging and biodistribution experiments. SPECT images demonstrated that the liver and spleen tissues mainly took up the 99mTc-UCMSC-EVs. The biodistribution study observed slight uptake in the thyroid and stomach, indicating that 99mTc-UCMSC-EVs was stable at 24 h in vivo. The pharmacokinetic analyses of the blood half-life demonstrated the quick distribution phase (0.85 ± 0.28 min) and elimination phase (25.22 ± 20.76 min) in mice. This study provides a convenient and efficient method for 99mTc-UCMSC-EVs preparation without disturbing their properties. In conclusion, the biodistribution, quick elimination, and suitable stability in vivo of 99mTc-UCMSC-EVs were quantified by the noninvasive imaging and pharmacokinetic analyses, which provides useful information for indication selection, dosage protocol design, and toxicity assessment in future applications.
In this issue, a special section is dedicated to the factors affecting senescence. It examines the interplay between immunosenescence and chronic kidney disease, probes into Peto's paradox, and explores how epigenetic switches can potentially mitigate senescence and inflammation. Additionally, insights are offered on understanding a specific Ras mechanism in yeast for potential therapeutic interventions against cancer and for longevity. Furthermore, the remarkable endurance of last year's Nobel Prize winner in Physiology or Medicine is also highlighted. Moreover, the discovery of potential biomarkers for hepatocellular carcinoma, the link between osteoarthritis and the circadian clock, and the multifaceted role of DNAJA3 in B cell lifecycle are discussed. Further, study findings shed light on the influence of extracellular matrix molecules on cleft palate formation, the renal protective effects of combination therapy in diabetic kidney disease, and novel approaches to detect developmental dysplasia of the hip. Finally, a correspondence delves into the role of autonomic regulation in cognitive decline.