Bryon P Mahler, Balaji Nagarajan, Nehru Viji Sankaranarayanan, Prem Raj B Joseph, Umesh R Desai, Krishna Rajarathnam
Chemokines play a central role in orchestrating neutrophil recruitment from the bloodstream and determining their effector functions at sites of infection. Chemokine activity is determined by three key properties: reversible monomer-dimer equilibrium, binding to glycosaminoglycans (GAGs), and signaling through the GPCR class of receptors CXCR1 and CXCR2. In this study, we investigated the structural basis of CXCL8 monomer and dimer binding to GAG chondroitin sulfate (CS) using nuclear magnetic resonance (NMR) spectroscopy, docking, and molecular dynamics (MD) measurements. Our studies reveal that both the monomer and dimer use essentially the same set of basic residues for binding, that the interface is extensive, that the dimer is the high-affinity CS ligand, and that the CS-binding residues form a contiguous surface within a monomer. Several of these residues also participate in receptor interactions, suggesting that CS-bound CXCL8 is likely impaired in its ability to bind receptors. Notably, we observe that the same basic residues are involved in binding CS and heparin/heparan sulfate, even though these GAGs differ in backbone structures and sulfation patterns. We conclude that the strategic distribution and topology of basic residues on the CXCL8 scaffold enable engagement with diverse GAG structures, which likely allows fine-tuning receptor signaling to regulate neutrophil trafficking and effector functions.
{"title":"Structural Basis of Chemokine CXCL8 Monomer and Dimer Binding to Chondroitin Sulfate: Insights into Specificity and Plasticity.","authors":"Bryon P Mahler, Balaji Nagarajan, Nehru Viji Sankaranarayanan, Prem Raj B Joseph, Umesh R Desai, Krishna Rajarathnam","doi":"10.3390/biom16010124","DOIUrl":"10.3390/biom16010124","url":null,"abstract":"<p><p>Chemokines play a central role in orchestrating neutrophil recruitment from the bloodstream and determining their effector functions at sites of infection. Chemokine activity is determined by three key properties: reversible monomer-dimer equilibrium, binding to glycosaminoglycans (GAGs), and signaling through the GPCR class of receptors CXCR1 and CXCR2. In this study, we investigated the structural basis of CXCL8 monomer and dimer binding to GAG chondroitin sulfate (CS) using nuclear magnetic resonance (NMR) spectroscopy, docking, and molecular dynamics (MD) measurements. Our studies reveal that both the monomer and dimer use essentially the same set of basic residues for binding, that the interface is extensive, that the dimer is the high-affinity CS ligand, and that the CS-binding residues form a contiguous surface within a monomer. Several of these residues also participate in receptor interactions, suggesting that CS-bound CXCL8 is likely impaired in its ability to bind receptors. Notably, we observe that the same basic residues are involved in binding CS and heparin/heparan sulfate, even though these GAGs differ in backbone structures and sulfation patterns. We conclude that the strategic distribution and topology of basic residues on the CXCL8 scaffold enable engagement with diverse GAG structures, which likely allows fine-tuning receptor signaling to regulate neutrophil trafficking and effector functions.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For decades, researchers have explored the therapeutic potential of the vagus nerve through vagus nerve stimulation (VNS). Initially developed for epilepsy, VNS has since been applied to treat resistant depression, stroke recovery, and inflammatory conditions. Transcutaneous VNS (tVNS) now offers a noninvasive alternative, fueling clinical trials in disorders ranging from rheumatoid arthritis and migraines to long COVID-19. Mechanistic studies suggest that afferent and efferent vagal fibers modulate immune responses, mood regulation, and neurotransmitter systems. The SPARC initiative has accelerated mapping of vagal circuits, enabling more precise approaches to stimulation. Despite progress, the results remain mixed: while some patients experience lasting symptom relief, others respond no better than to placebo. Depression studies, in particular, highlight both the promise and the complexity of VNS, as inflammation, motivation circuits, and gut-brain signaling emerge as key modulators. Next-generation closed-loop devices and circuit-specific targeting may improve efficacy and reduce adverse effects. VNS research thus lies at the intersection of neuromodulation, psychiatry, and immunology-offering hope for hard-to-treat conditions, yet demanding rigorous trials to separate myths from medicine. In this article, we review the current clinical and experimental applications of tVNS, analyze its mixed efficacy across psychiatric, immunological, and neurological disorders, and highlight the mechanistic insights, stimulation parameters, and emerging technologies that may shape next-generation therapies.
{"title":"A Possible Role for the Vagus Nerve in Physical and Mental Health.","authors":"Carola Y Förster, Sergey Shityakov","doi":"10.3390/biom16010121","DOIUrl":"10.3390/biom16010121","url":null,"abstract":"<p><p>For decades, researchers have explored the therapeutic potential of the vagus nerve through vagus nerve stimulation (VNS). Initially developed for epilepsy, VNS has since been applied to treat resistant depression, stroke recovery, and inflammatory conditions. Transcutaneous VNS (tVNS) now offers a noninvasive alternative, fueling clinical trials in disorders ranging from rheumatoid arthritis and migraines to long COVID-19. Mechanistic studies suggest that afferent and efferent vagal fibers modulate immune responses, mood regulation, and neurotransmitter systems. The SPARC initiative has accelerated mapping of vagal circuits, enabling more precise approaches to stimulation. Despite progress, the results remain mixed: while some patients experience lasting symptom relief, others respond no better than to placebo. Depression studies, in particular, highlight both the promise and the complexity of VNS, as inflammation, motivation circuits, and gut-brain signaling emerge as key modulators. Next-generation closed-loop devices and circuit-specific targeting may improve efficacy and reduce adverse effects. VNS research thus lies at the intersection of neuromodulation, psychiatry, and immunology-offering hope for hard-to-treat conditions, yet demanding rigorous trials to separate myths from medicine. In this article, we review the current clinical and experimental applications of tVNS, analyze its mixed efficacy across psychiatric, immunological, and neurological disorders, and highlight the mechanistic insights, stimulation parameters, and emerging technologies that may shape next-generation therapies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839095/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Duminuco, Paola De Luca, Gaia Stanzione, Laura Anastasia Caruso, Giulio Lavenia, Salvatore Scarso, Bruno Garibaldi, Fanny Erika Palumbo, Calogero Vetro, Giuseppe Alberto Palumbo
BTK (Bruton's tyrosine kinase) has become a key therapeutic target across several hematologic diseases, beginning with its original use in CLL/SLL. As a central mediator of B-cell receptor signaling and microenvironment interactions, BTK supports survival, proliferation, and trafficking in multiple mature B-cell malignancies (mantle cell lymphoma, marginal zone lymphoma, Waldenström macroglobulinemia, and other indolent/aggressive lymphomas) and in selected immune-mediated conditions such as chronic graft-versus-host disease. Covalent BTK inhibitors (ibrutinib, acalabrutinib, and zanubrutinib) irreversibly bind the C481 residue and have produced high response rates and durable disease control, often replacing chemoimmunotherapy in the relapsed setting and, for some entities, even in the first line. Differences in kinase selectivity lead to different safety profiles: second-generation covalent agents generally maintain efficacy while reducing significant off-target toxicities, especially atrial fibrillation and hypertension. Resistance to covalent BTK inhibitors most commonly develops through BTK C481 substitutions and activating PLCG2 mutations, with other kinase-domain variants increasingly recognized. Non-covalent BTK inhibitors (e.g., pirtobrutinib) bind BTK independently of C481, can overcome classic C481-mediated resistance, and extend BTK pathway targeting into later lines of therapy. Overall, BTK inhibition has evolved into a versatile platform enabling long-term, often chemo-free management strategies.
{"title":"BTK Inhibition in Hematology: From CLL/SLL to Emerging Applications Across B-Cell and Immune Disorders.","authors":"Andrea Duminuco, Paola De Luca, Gaia Stanzione, Laura Anastasia Caruso, Giulio Lavenia, Salvatore Scarso, Bruno Garibaldi, Fanny Erika Palumbo, Calogero Vetro, Giuseppe Alberto Palumbo","doi":"10.3390/biom16010123","DOIUrl":"10.3390/biom16010123","url":null,"abstract":"<p><p>BTK (Bruton's tyrosine kinase) has become a key therapeutic target across several hematologic diseases, beginning with its original use in CLL/SLL. As a central mediator of B-cell receptor signaling and microenvironment interactions, BTK supports survival, proliferation, and trafficking in multiple mature B-cell malignancies (mantle cell lymphoma, marginal zone lymphoma, Waldenström macroglobulinemia, and other indolent/aggressive lymphomas) and in selected immune-mediated conditions such as chronic graft-versus-host disease. Covalent BTK inhibitors (ibrutinib, acalabrutinib, and zanubrutinib) irreversibly bind the C481 residue and have produced high response rates and durable disease control, often replacing chemoimmunotherapy in the relapsed setting and, for some entities, even in the first line. Differences in kinase selectivity lead to different safety profiles: second-generation covalent agents generally maintain efficacy while reducing significant off-target toxicities, especially atrial fibrillation and hypertension. Resistance to covalent BTK inhibitors most commonly develops through BTK C481 substitutions and activating PLCG2 mutations, with other kinase-domain variants increasingly recognized. Non-covalent BTK inhibitors (e.g., pirtobrutinib) bind BTK independently of C481, can overcome classic C481-mediated resistance, and extend BTK pathway targeting into later lines of therapy. Overall, BTK inhibition has evolved into a versatile platform enabling long-term, often chemo-free management strategies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838564/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takeshi Yamauchi, Yuchun Luo, Dinoop Ravindran Menon, Kasey Couts, Sana Khan, Aanchal Goel, Charles A Dinarello, Zili Zhai, Mayumi Fujita
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor with potent anti-inflammatory and immunomodulatory properties, but its role in cancer is context-dependent across tumor types. We integrated transcriptomic analyses of human melanoma cohorts, in vivo studies using AAT-transgenic (hAAT-TG) mice, and in vitro assays in murine and human melanoma cells to define the biological functions of AAT in melanoma. SERPINA1 expression increased progressively from normal skin to nevi and metastatic melanoma, yet higher intratumoral levels correlated with improved overall survival in metastatic disease. In hAAT-TG mice, melanoma growth was markedly inhibited compared with wild-type controls, and the inhibitory effect required CD8+ T cells and was enhanced by CD4+ T-cell depletion, demonstrating that AAT promotes cytotoxic T-cell activity while attenuating regulatory T-cell suppression. Histologic analysis showed heavily pigmented tumors in hAAT-TG mice. In vitro, hAAT upregulated melanocytic differentiation markers (MITF, TYR, PMEL, MART-1) and increased melanin production in murine and human melanoma lines, suggesting enhanced tumor immunogenicity. In conclusion, hAAT exerts antitumor effects in melanoma indirectly by reprogramming the tumor microenvironment toward differentiation and immune activation. These findings highlight a previously unrecognized role for AAT as a dual immunoregulatory and differentiation-promoting factor and support AAT as a potential immunoregulatory adjuvant in melanoma.
{"title":"Human Alpha-1 Antitrypsin Suppresses Melanoma Growth by Promoting Tumor Differentiation and CD8<sup>+</sup> T-Cell-Mediated Immunity.","authors":"Takeshi Yamauchi, Yuchun Luo, Dinoop Ravindran Menon, Kasey Couts, Sana Khan, Aanchal Goel, Charles A Dinarello, Zili Zhai, Mayumi Fujita","doi":"10.3390/biom16010122","DOIUrl":"10.3390/biom16010122","url":null,"abstract":"<p><p>Alpha-1 antitrypsin (AAT) is a serine protease inhibitor with potent anti-inflammatory and immunomodulatory properties, but its role in cancer is context-dependent across tumor types. We integrated transcriptomic analyses of human melanoma cohorts, in vivo studies using AAT-transgenic (hAAT-TG) mice, and in vitro assays in murine and human melanoma cells to define the biological functions of AAT in melanoma. <i>SERPINA1</i> expression increased progressively from normal skin to nevi and metastatic melanoma, yet higher intratumoral levels correlated with improved overall survival in metastatic disease. In hAAT-TG mice, melanoma growth was markedly inhibited compared with wild-type controls, and the inhibitory effect required CD8<sup>+</sup> T cells and was enhanced by CD4<sup>+</sup> T-cell depletion, demonstrating that AAT promotes cytotoxic T-cell activity while attenuating regulatory T-cell suppression. Histologic analysis showed heavily pigmented tumors in hAAT-TG mice. In vitro, hAAT upregulated melanocytic differentiation markers (MITF, TYR, PMEL, MART-1) and increased melanin production in murine and human melanoma lines, suggesting enhanced tumor immunogenicity. In conclusion, hAAT exerts antitumor effects in melanoma indirectly by reprogramming the tumor microenvironment toward differentiation and immune activation. These findings highlight a previously unrecognized role for AAT as a dual immunoregulatory and differentiation-promoting factor and support AAT as a potential immunoregulatory adjuvant in melanoma.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838898/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Hyung Park, Thi Nhi Nguyen, Hye Min Shim, Gyeong Im Yu, Junho Kang, Eun Yeong Ha, Hochan Cho
Background: Diabetic peripheral neuropathy (DPN) is a major complication of type 2 diabetes mellitus (T2D) that reduces quality of life and increases the risk of foot ulcers and amputations. Early detection is essential, and blood-based biomarkers may support improved screening and timely intervention. This study aimed to identify novel circulating biomarkers for the identification of DPN in patients with T2D.
Methods: In the screening phase, plasma samples from 43 participants (10 healthy volunteers [HV], 20 T2D without complications, and 13 T2D with DPN) were analyzed using an antibody array targeting 310 proteins. Thirteen differentially expressed proteins were identified, and six hub proteins were selected through bioinformatic analysis. In the validation phase, plasma concentrations of the six proteins were measured by ELISA in 252 subjects (100 HV, 97 T2D without complications, and 55 T2D with DPN). Mucin-1 expression in sciatic nerves was further evaluated in db/db mice.
Results: Of the six hub proteins (TGFB1, MUC1, PF4, IL2RA, SELL, B2M), only mucin-1 showed a significant increase in the DPN group. Plasma mucin-1 positively correlated with MNSI scores and negatively with motor and sensory nerve conduction velocities. In db/db mice, sciatic nerve mucin-1 expression was elevated, while CD31 expression was reduced.
Conclusions: Plasma mucin-1 is strongly associated with DPN in both humans and animals and may serve as a promising biomarker for the screening and early identification of DPN.
{"title":"Plasma Mucin-1 as a Potential Biomarker for Diabetic Peripheral Neuropathy in Type 2 Diabetes.","authors":"Jae-Hyung Park, Thi Nhi Nguyen, Hye Min Shim, Gyeong Im Yu, Junho Kang, Eun Yeong Ha, Hochan Cho","doi":"10.3390/biom16010128","DOIUrl":"10.3390/biom16010128","url":null,"abstract":"<p><strong>Background: </strong>Diabetic peripheral neuropathy (DPN) is a major complication of type 2 diabetes mellitus (T2D) that reduces quality of life and increases the risk of foot ulcers and amputations. Early detection is essential, and blood-based biomarkers may support improved screening and timely intervention. This study aimed to identify novel circulating biomarkers for the identification of DPN in patients with T2D.</p><p><strong>Methods: </strong>In the screening phase, plasma samples from 43 participants (10 healthy volunteers [HV], 20 T2D without complications, and 13 T2D with DPN) were analyzed using an antibody array targeting 310 proteins. Thirteen differentially expressed proteins were identified, and six hub proteins were selected through bioinformatic analysis. In the validation phase, plasma concentrations of the six proteins were measured by ELISA in 252 subjects (100 HV, 97 T2D without complications, and 55 T2D with DPN). Mucin-1 expression in sciatic nerves was further evaluated in db/db mice.</p><p><strong>Results: </strong>Of the six hub proteins (TGFB1, MUC1, PF4, IL2RA, SELL, B2M), only mucin-1 showed a significant increase in the DPN group. Plasma mucin-1 positively correlated with MNSI scores and negatively with motor and sensory nerve conduction velocities. In db/db mice, sciatic nerve mucin-1 expression was elevated, while CD31 expression was reduced.</p><p><strong>Conclusions: </strong>Plasma mucin-1 is strongly associated with DPN in both humans and animals and may serve as a promising biomarker for the screening and early identification of DPN.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates the protective effects of CBS on retinal pigment epithelium (ARPE-19) and photoreceptor-like (661W) cells exposed to oxidative stress. Cells were cultured in media supplemented with fetal bovine serum (FBS) or CBS with either high (CBS-H) or low (CBS-L) BDNF content. Oxidative stress was induced using hydrogen peroxide (H2O2), and cell viability was measured via an MTS assay. ZO-1 expression was analyzed in ARPE-19 cells to assess tight junction integrity, while mitochondrial function in 661W cells was examined using MitoRed staining. TrkB receptor involvement was investigated using the inhibitor K252a and Western blot analysis. CBS significantly improved cell viability under oxidative conditions. CBS-H increased ZO-1 expression in ARPE-19 cells, indicating preserved epithelial integrity. In 661W cells, CBS maintained mitochondrial integrity and enhanced TrkB phosphorylation, while TrkB inhibition reduced its protective effect. These findings indicate that CBS confers neuroprotection through BDNF-TrkB signaling together with other trophic factors, supporting its potential as a multifactorial therapeutic strategy for retinal degeneration that deserves further exploration.
{"title":"Protective Effects of Cord Blood Serum (CBS) on Retinal Pigment Epithelium (ARPE-19) and Retinal Photoreceptor-like (661W) Cell Line Viability Under In Vitro Oxidative Stress.","authors":"Ilenia Motta, Francesca Corsi, Ilaria Piano, Silvia Bisti, Elisa Bergantin, Marina Buzzi, Maria Claudia Gargini, Piera Versura","doi":"10.3390/biom16010131","DOIUrl":"10.3390/biom16010131","url":null,"abstract":"<p><p>Neuroprotection represents a promising approach for mitigating retinal degeneration. Cord blood serum (CBS), rich in trophic factors such as the brain-derived neurotrophic factor (BDNF), has shown therapeutic potential for ocular surface diseases; however, its role in retinal neuroprotection remains underexplored. This study evaluates the protective effects of CBS on retinal pigment epithelium (ARPE-19) and photoreceptor-like (661W) cells exposed to oxidative stress. Cells were cultured in media supplemented with fetal bovine serum (FBS) or CBS with either high (CBS-H) or low (CBS-L) BDNF content. Oxidative stress was induced using hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and cell viability was measured via an MTS assay. ZO-1 expression was analyzed in ARPE-19 cells to assess tight junction integrity, while mitochondrial function in 661W cells was examined using MitoRed staining. TrkB receptor involvement was investigated using the inhibitor K252a and Western blot analysis. CBS significantly improved cell viability under oxidative conditions. CBS-H increased ZO-1 expression in ARPE-19 cells, indicating preserved epithelial integrity. In 661W cells, CBS maintained mitochondrial integrity and enhanced TrkB phosphorylation, while TrkB inhibition reduced its protective effect. These findings indicate that CBS confers neuroprotection through BDNF-TrkB signaling together with other trophic factors, supporting its potential as a multifactorial therapeutic strategy for retinal degeneration that deserves further exploration.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zaroon Zaroon, Carlotta D'Ambrosio, Filomena de Nigris
Acute kidney injury (AKI) remains a major clinical challenge, with high morbidity and limited therapeutic options. In recent years, mitochondria have gained considerable attention as key regulators of the metabolic and immune responses during renal injury. Beyond their classical role in ATP production, mitochondria participate directly in inflammatory signaling, releasing mitochondrial DNA and other DAMPs that activate pathways such as TLR9, cGAS-STING, and the NLRP3 inflammasome. At the same time, immune cells recruited to the kidney undergo significant metabolic shifts that influence whether injury progresses or resolves. Increasing evidence also shows that immune-modulating therapies, including immune checkpoint inhibitors and innovative cell-based immunotherapies, can influence mitochondrial integrity, thereby altering renal susceptibility to injury. This review first summarizes the established knowledge on mitochondrial dysfunction in AKI, with emphasis on distinct mechanistic pathways activated by chemotherapy and immunotherapy. It then discusses emerging mitochondrial-targeted therapeutic strategies, logically integrating preclinical insights with data from ongoing and proposed clinical trials to present a coherent translational outlook.
{"title":"Mitochondrial Dysfunction in Acute Kidney Injury: Intersections Between Chemotherapy and Novel Cancer Immunotherapies.","authors":"Zaroon Zaroon, Carlotta D'Ambrosio, Filomena de Nigris","doi":"10.3390/biom16010120","DOIUrl":"10.3390/biom16010120","url":null,"abstract":"<p><p>Acute kidney injury (AKI) remains a major clinical challenge, with high morbidity and limited therapeutic options. In recent years, mitochondria have gained considerable attention as key regulators of the metabolic and immune responses during renal injury. Beyond their classical role in ATP production, mitochondria participate directly in inflammatory signaling, releasing mitochondrial DNA and other DAMPs that activate pathways such as TLR9, cGAS-STING, and the NLRP3 inflammasome. At the same time, immune cells recruited to the kidney undergo significant metabolic shifts that influence whether injury progresses or resolves. Increasing evidence also shows that immune-modulating therapies, including immune checkpoint inhibitors and innovative cell-based immunotherapies, can influence mitochondrial integrity, thereby altering renal susceptibility to injury. This review first summarizes the established knowledge on mitochondrial dysfunction in AKI, with emphasis on distinct mechanistic pathways activated by chemotherapy and immunotherapy. It then discusses emerging mitochondrial-targeted therapeutic strategies, logically integrating preclinical insights with data from ongoing and proposed clinical trials to present a coherent translational outlook.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Transforming Growth Factor-β (TGF-β) superfamily comprises highly conserved cytokines that orchestrate key cellular functions, including proliferation, differentiation, and apoptosis. Within the ovary, TGF-β family members serve as pivotal regulators of folliculogenesis, exerting stage-specific actions from embryonic germ cell development to advanced follicular maturation. During fetal development, activins and SMAD-dependent signaling pathways are essential for primordial germ cell proliferation, survival, and the breakdown of germ cell cysts, enabling the establishment of the primordial follicle pool. Throughout folliculogenesis, TGF-β supports follicle activation, promotes the transition from dormant to growing follicles, stimulates granulosa cell proliferation, sustains follicular viability, and modulates steroidogenesis through theca cell regulation. Notably, anti-müllerian hormone, a TGF-β family member, plays a central role in inhibiting premature follicle recruitment and serves as a key biomarker of ovarian reserve. Dysregulation of TGF-β signaling contributes to various ovarian disorders, including polycystic ovary syndrome and premature ovarian insufficiency. A deeper understanding of these complex signaling networks is critical for identifying novel therapeutic targets and advancing clinical interventions in female reproductive pathologies. This review provides an integrated overview of the roles of the TGF-β superfamily in ovarian physiology and its contributions to disease development.
{"title":"TGF-β Signaling in the Pathophysiology of the Ovary: A Double-Edged Regulator.","authors":"Nicole Bertani, Alessandra Alteri, Luciana Cacciottola, Giorgia D'Addato, Gina La Sala, Biliana Lozanoska-Ochser, Micol Massimiani, Edoardo Parrella, Alessio Reggio, Eleonora Russo, Federica Campolo, Francesca Gioia Klinger","doi":"10.3390/biom16010130","DOIUrl":"10.3390/biom16010130","url":null,"abstract":"<p><p>The Transforming Growth Factor-β (TGF-β) superfamily comprises highly conserved cytokines that orchestrate key cellular functions, including proliferation, differentiation, and apoptosis. Within the ovary, TGF-β family members serve as pivotal regulators of folliculogenesis, exerting stage-specific actions from embryonic germ cell development to advanced follicular maturation. During fetal development, activins and SMAD-dependent signaling pathways are essential for primordial germ cell proliferation, survival, and the breakdown of germ cell cysts, enabling the establishment of the primordial follicle pool. Throughout folliculogenesis, TGF-β supports follicle activation, promotes the transition from dormant to growing follicles, stimulates granulosa cell proliferation, sustains follicular viability, and modulates steroidogenesis through theca cell regulation. Notably, anti-müllerian hormone, a TGF-β family member, plays a central role in inhibiting premature follicle recruitment and serves as a key biomarker of ovarian reserve. Dysregulation of TGF-β signaling contributes to various ovarian disorders, including polycystic ovary syndrome and premature ovarian insufficiency. A deeper understanding of these complex signaling networks is critical for identifying novel therapeutic targets and advancing clinical interventions in female reproductive pathologies. This review provides an integrated overview of the roles of the TGF-β superfamily in ovarian physiology and its contributions to disease development.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838595/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Lanza, Ester Zito, Giorgia Dinoi, Antonio Vittorio Buono, Annamaria De Luca, Paola Imbrici, Antonella Liantonio, Elena Conte
Selenoprotein N (SelN or SELENON) is a selenium-containing protein of the endoplasmic/sarcoplasmic reticulum (ER/SR), encoded by the SEPN1 gene. In skeletal muscle, SelN is particularly important for regulating SR calcium homeostasis. It acts as a calcium sensor, modulating the activity of the sarcoplasmic reticulum calcium pump (SERCA) through a redox-dependent mechanism. Loss-of-function mutations in the SEPN1 gene give rise to a spectrum of skeletal muscle disorders collectively referred to as SEPN1-related myopathies (SEPN1-RM). Histopathologically, SEPN1-RM is characterized by the presence of minicores, which are localized regions within muscle fibers exhibiting mitochondrial depletion (i.e., cores) and sarcomeric disarray. As no effective therapy is currently available for SEPN1-RM, understanding SelN biology through loss-of-function models remains essential for elucidating disease mechanisms and identifying potential therapeutic targets. This review examines the current knowledge on SelN function and the pathological mechanisms underlying SEPN1 loss-of-function, with a particular focus on the connection between calcium handling, oxidative/ER stress, and muscle dysfunction. It also highlights emerging strategies aimed at restoring SelN activity or mitigating downstream defects, outlining potential therapeutic avenues for SEPN1-RM.
{"title":"Selenoprotein N and SEPN1-Related Myopathies: Mechanisms, Models, and Therapeutic Perspectives.","authors":"Martina Lanza, Ester Zito, Giorgia Dinoi, Antonio Vittorio Buono, Annamaria De Luca, Paola Imbrici, Antonella Liantonio, Elena Conte","doi":"10.3390/biom16010125","DOIUrl":"10.3390/biom16010125","url":null,"abstract":"<p><p>Selenoprotein N (SelN or SELENON) is a selenium-containing protein of the endoplasmic/sarcoplasmic reticulum (ER/SR), encoded by the <i>SEPN1</i> gene. In skeletal muscle, SelN is particularly important for regulating SR calcium homeostasis. It acts as a calcium sensor, modulating the activity of the sarcoplasmic reticulum calcium pump (SERCA) through a redox-dependent mechanism. Loss-of-function mutations in the <i>SEPN1</i> gene give rise to a spectrum of skeletal muscle disorders collectively referred to as SEPN1-related myopathies (SEPN1-RM). Histopathologically, SEPN1-RM is characterized by the presence of minicores, which are localized regions within muscle fibers exhibiting mitochondrial depletion (i.e., cores) and sarcomeric disarray. As no effective therapy is currently available for SEPN1-RM, understanding SelN biology through loss-of-function models remains essential for elucidating disease mechanisms and identifying potential therapeutic targets. This review examines the current knowledge on SelN function and the pathological mechanisms underlying <i>SEPN1</i> loss-of-function, with a particular focus on the connection between calcium handling, oxidative/ER stress, and muscle dysfunction. It also highlights emerging strategies aimed at restoring SelN activity or mitigating downstream defects, outlining potential therapeutic avenues for SEPN1-RM.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12839072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions also persist regarding its physiological concentration, chain-length distributions, and the mechanisms that regulate its behavior in specific cellular compartments. Progress is limited by the absence of a known mammalian polyphosphate-synthesizing enzyme. Despite this, recent studies have broadened the scope of polyphosphate biology, suggesting roles in protein phase separation, ATP-independent chaperone activity, metabolic regulation, and intracellular signaling. Polyphosphate modulates the mitochondrial permeability transition pore through calcium-dependent regulation and activates factor XII in coagulation. Findings have also introduced potential connections between polyphosphate and processes such as neurodegeneration, cancer, and tissue regeneration. Despite this expanding landscape, many biological effects remain difficult to interpret due to incomplete mapping of protein targets and longstanding technical limitations in detecting and quantifying polyP. This review integrates molecular protein-interaction mechanisms with compartment-specific functions and disease physiology, providing a clearer mechanistic framework while identifying key conceptual and methodological gaps and outlining priorities for advancing polyphosphate research in mammalian systems.
{"title":"Inorganic Polyphosphate in Mammals: Mechanisms, Maladies, and Moving Forward.","authors":"Heala Mendelsohn Aviv, Zhiyun Yang, Zongchao Jia","doi":"10.3390/biom16010127","DOIUrl":"10.3390/biom16010127","url":null,"abstract":"<p><p>Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions also persist regarding its physiological concentration, chain-length distributions, and the mechanisms that regulate its behavior in specific cellular compartments. Progress is limited by the absence of a known mammalian polyphosphate-synthesizing enzyme. Despite this, recent studies have broadened the scope of polyphosphate biology, suggesting roles in protein phase separation, ATP-independent chaperone activity, metabolic regulation, and intracellular signaling. Polyphosphate modulates the mitochondrial permeability transition pore through calcium-dependent regulation and activates factor XII in coagulation. Findings have also introduced potential connections between polyphosphate and processes such as neurodegeneration, cancer, and tissue regeneration. Despite this expanding landscape, many biological effects remain difficult to interpret due to incomplete mapping of protein targets and longstanding technical limitations in detecting and quantifying polyP. This review integrates molecular protein-interaction mechanisms with compartment-specific functions and disease physiology, providing a clearer mechanistic framework while identifying key conceptual and methodological gaps and outlining priorities for advancing polyphosphate research in mammalian systems.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"16 1","pages":""},"PeriodicalIF":4.8,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12838722/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146059456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}