Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic and complex autoimmune conditions. Despite the advancements in biologics and small molecules, the therapeutic ceiling persists, posing significant treatment challenges and contributing to the concept of difficult-to-treat IBD. Dual-targeted therapy (DTT), combining two biologic agents or biologics with small molecules, has emerged as a novel approach to address this unmet need by targeting multiple inflammatory pathways simultaneously. Evidence suggests that DTT holds promise in improving clinical and endoscopic outcomes, especially in patients with refractory disease or extraintestinal manifestations. Safety data, while consistent with monotherapy profiles, highlight the importance of vigilant monitoring for infections and other adverse events. Continued research and high-quality trials are crucial to defining optimal DTT regimens and broadening its clinical applicability. This review explores the efficacy and safety of DTT in IBD, reporting data from clinical trials, systematic reviews, and real-world studies.
{"title":"Dual Therapy in Inflammatory Bowel Disease.","authors":"Gabriele Altieri, Alessandra Zilli, Tommaso Lorenzo Parigi, Mariangela Allocca, Federica Furfaro, Gionata Fiorino, Clelia Cicerone, Laurent Peyrin-Biroulet, Silvio Danese, Ferdinando D'Amico","doi":"10.3390/biom15020222","DOIUrl":"10.3390/biom15020222","url":null,"abstract":"<p><p>Inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), are chronic and complex autoimmune conditions. Despite the advancements in biologics and small molecules, the therapeutic ceiling persists, posing significant treatment challenges and contributing to the concept of difficult-to-treat IBD. Dual-targeted therapy (DTT), combining two biologic agents or biologics with small molecules, has emerged as a novel approach to address this unmet need by targeting multiple inflammatory pathways simultaneously. Evidence suggests that DTT holds promise in improving clinical and endoscopic outcomes, especially in patients with refractory disease or extraintestinal manifestations. Safety data, while consistent with monotherapy profiles, highlight the importance of vigilant monitoring for infections and other adverse events. Continued research and high-quality trials are crucial to defining optimal DTT regimens and broadening its clinical applicability. This review explores the efficacy and safety of DTT in IBD, reporting data from clinical trials, systematic reviews, and real-world studies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
{"title":"Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications.","authors":"Henry Politte, Lingaiah Maram, Bahaa Elgendy","doi":"10.3390/biom15020223","DOIUrl":"10.3390/biom15020223","url":null,"abstract":"<p><p>The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang-Qing Lv, Xin Zeng, Guang-Peng Su, Wen-Feng Du, Yi Li, Meng-Liang Wen
Improving identification of drug-target binding sites can significantly aid in drug screening and design, thereby accelerating the drug development process. However, due to challenges such as insufficient fusion of multimodal information from targets and imbalanced datasets, enhancing the performance of drug-target binding sites prediction models remains exceptionally difficult. Leveraging structures of targets, we proposed a novel deep learning framework, RGTsite, which employed a Residual Graph Transformer Network to improve the identification of drug-target binding sites. First, a residual 1D convolutional neural network (1D-CNN) and the pre-trained model ProtT5 were employed to extract the local and global sequence features from the target, respectively. These features were then combined with the physicochemical properties of amino acid residues to serve as the vertex features in graph. Next, the edge features were incorporated, and the residual graph transformer network (GTN) was applied to extract the more comprehensive vertex features. Finally, a fully connected network was used to classify whether the vertex was a binding site. Experimental results showed that RGTsite outperformed the existing state-of-the-art methods in key evaluation metrics, such as F1-score (F1) and Matthews Correlation Coefficient (MCC), across multiple benchmark datasets. Additionally, we conducted interpretability analysis for RGTsite through the real-world cases, and the results confirmed that RGTsite can effectively identify drug-target binding sites in practical applications.
{"title":"Improving Identification of Drug-Target Binding Sites Based on Structures of Targets Using Residual Graph Transformer Network.","authors":"Shuang-Qing Lv, Xin Zeng, Guang-Peng Su, Wen-Feng Du, Yi Li, Meng-Liang Wen","doi":"10.3390/biom15020221","DOIUrl":"10.3390/biom15020221","url":null,"abstract":"<p><p>Improving identification of drug-target binding sites can significantly aid in drug screening and design, thereby accelerating the drug development process. However, due to challenges such as insufficient fusion of multimodal information from targets and imbalanced datasets, enhancing the performance of drug-target binding sites prediction models remains exceptionally difficult. Leveraging structures of targets, we proposed a novel deep learning framework, RGTsite, which employed a Residual Graph Transformer Network to improve the identification of drug-target binding sites. First, a residual 1D convolutional neural network (1D-CNN) and the pre-trained model ProtT5 were employed to extract the local and global sequence features from the target, respectively. These features were then combined with the physicochemical properties of amino acid residues to serve as the vertex features in graph. Next, the edge features were incorporated, and the residual graph transformer network (GTN) was applied to extract the more comprehensive vertex features. Finally, a fully connected network was used to classify whether the vertex was a binding site. Experimental results showed that RGTsite outperformed the existing state-of-the-art methods in key evaluation metrics, such as F1-score (F1) and Matthews Correlation Coefficient (MCC), across multiple benchmark datasets. Additionally, we conducted interpretability analysis for RGTsite through the real-world cases, and the results confirmed that RGTsite can effectively identify drug-target binding sites in practical applications.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cardiometabolic diseases represent an escalating global health crisis, slowing or even reversing earlier declines in cardiovascular disease (CVD) mortality. Traditionally, conditions such as obesity, type 2 diabetes mellitus (T2DM), atherosclerotic CVD, heart failure (HF), chronic kidney disease (CKD), and metabolic dysfunction-associated steatotic liver disease (MASLD) were managed in isolation. However, emerging evidence reveals that these disorders share overlapping pathophysiological mechanisms and treatment strategies. In 2023, the American Heart Association proposed the Cardiovascular-Kidney-Metabolic (CKM) syndrome, recognizing the interconnected roles of the heart, kidneys, and metabolic system. Yet, this model omits the liver-a critical organ impacted by metabolic dysfunction. MASLD, which can progress to metabolic dysfunction-associated steatohepatitis (MASH), is closely tied to insulin resistance and obesity, contributing directly to cardiovascular and renal impairment. Notably, MASLD is bidirectionally associated with the development and progression of CKM syndrome. As a result, we introduce an expanded framework-the Cardiovascular-Renal-Hepatic-Metabolic (CRHM) syndrome-to more comprehensively capture the broader inter-organ dynamics. We provide guidance for an integrated diagnostic approach aimed at halting progression to advanced stages and preventing further organ damage. In addition, we highlight advances in medical management that target shared pathophysiological pathways, offering benefits across multiple organ systems. Viewing these conditions as an integrated whole, rather than as discrete entities, and incorporating the liver into this framework fosters a more holistic management strategy and offers a promising path to addressing the cardiometabolic pandemic.
{"title":"From Cardiovascular-Kidney-Metabolic Syndrome to Cardiovascular-Renal-Hepatic-Metabolic Syndrome: Proposing an Expanded Framework.","authors":"Nikolaos Theodorakis, Maria Nikolaou","doi":"10.3390/biom15020213","DOIUrl":"10.3390/biom15020213","url":null,"abstract":"<p><p>Cardiometabolic diseases represent an escalating global health crisis, slowing or even reversing earlier declines in cardiovascular disease (CVD) mortality. Traditionally, conditions such as obesity, type 2 diabetes mellitus (T2DM), atherosclerotic CVD, heart failure (HF), chronic kidney disease (CKD), and metabolic dysfunction-associated steatotic liver disease (MASLD) were managed in isolation. However, emerging evidence reveals that these disorders share overlapping pathophysiological mechanisms and treatment strategies. In 2023, the American Heart Association proposed the Cardiovascular-Kidney-Metabolic (CKM) syndrome, recognizing the interconnected roles of the heart, kidneys, and metabolic system. Yet, this model omits the liver-a critical organ impacted by metabolic dysfunction. MASLD, which can progress to metabolic dysfunction-associated steatohepatitis (MASH), is closely tied to insulin resistance and obesity, contributing directly to cardiovascular and renal impairment. Notably, MASLD is bidirectionally associated with the development and progression of CKM syndrome. As a result, we introduce an expanded framework-the Cardiovascular-Renal-Hepatic-Metabolic (CRHM) syndrome-to more comprehensively capture the broader inter-organ dynamics. We provide guidance for an integrated diagnostic approach aimed at halting progression to advanced stages and preventing further organ damage. In addition, we highlight advances in medical management that target shared pathophysiological pathways, offering benefits across multiple organ systems. Viewing these conditions as an integrated whole, rather than as discrete entities, and incorporating the liver into this framework fosters a more holistic management strategy and offers a promising path to addressing the cardiometabolic pandemic.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853431/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Wang, Xin Qiao, Ruidi Zhu, Linxuan Zhou, Quan Zhang, Shaoyong Lu, Zongtao Chai
Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) is a key regulator in cellular signaling pathways because its dysregulation has been implicated in various pathological conditions, including cancers and developmental disorders. Despite its importance, the molecular basis of SHP2's regulatory mechanism remains poorly understood, hindering the development of effective targeted therapies. In this study, we utilized the high-specificity monobody Mb11 to investigate its interaction with the SHP2 phosphatase domain (PTP) using multiple replica molecular dynamics simulations. Our analyses elucidate the precise mechanisms through which Mb11 achieves selective recognition and stabilization of the SHP2-PTP domain, identifying key residues and interaction networks essential for its high binding specificity and regulatory dynamics. Furthermore, the study highlights the pivotal role of residue C459 in preserving the structural integrity and functional coherence of the complex, acting as a central node within the interaction network and underpinning its stability and efficiency. These findings have significantly advanced the understanding of the mechanisms underlying SHP2's involvement in disease-related signaling and pathology while simultaneously paving the way for the rational design of targeted inhibitors, offering significant implications for therapeutic strategies in SHP2-associated diseases and contributing to the broader scope of precision medicine.
{"title":"Computational Elucidation of a Monobody Targeting the Phosphatase Domain of SHP2.","authors":"Yang Wang, Xin Qiao, Ruidi Zhu, Linxuan Zhou, Quan Zhang, Shaoyong Lu, Zongtao Chai","doi":"10.3390/biom15020217","DOIUrl":"10.3390/biom15020217","url":null,"abstract":"<p><p>Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) is a key regulator in cellular signaling pathways because its dysregulation has been implicated in various pathological conditions, including cancers and developmental disorders. Despite its importance, the molecular basis of SHP2's regulatory mechanism remains poorly understood, hindering the development of effective targeted therapies. In this study, we utilized the high-specificity monobody Mb11 to investigate its interaction with the SHP2 phosphatase domain (PTP) using multiple replica molecular dynamics simulations. Our analyses elucidate the precise mechanisms through which Mb11 achieves selective recognition and stabilization of the SHP2-PTP domain, identifying key residues and interaction networks essential for its high binding specificity and regulatory dynamics. Furthermore, the study highlights the pivotal role of residue C459 in preserving the structural integrity and functional coherence of the complex, acting as a central node within the interaction network and underpinning its stability and efficiency. These findings have significantly advanced the understanding of the mechanisms underlying SHP2's involvement in disease-related signaling and pathology while simultaneously paving the way for the rational design of targeted inhibitors, offering significant implications for therapeutic strategies in SHP2-associated diseases and contributing to the broader scope of precision medicine.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariateresa Volpicella, Maria Noemi Sgobba, Luna Laera, Anna Lucia Francavilla, Danila Imperia De Luca, Lorenzo Guerra, Ciro Leonardo Pierri, Anna De Grassi
Carnitine O-acetyltransferase (CRAT) is a key mitochondrial enzyme involved in maintaining metabolic homeostasis by mediating the reversible transfer of acetyl groups between acetyl-CoA and carnitine. This enzymatic activity ensures the optimal functioning of mitochondrial carbon flux by preventing acetyl-CoA accumulation, buffering metabolic flexibility, and regulating the balance between fatty acid and glucose oxidation. CRAT's interplay with the mitochondrial carnitine shuttle, involving carnitine palmitoyltransferases (CPT1 and CPT2) and the carnitine carrier (SLC25A20), underscores its critical role in energy metabolism. Emerging evidence highlights the structural and functional diversity of CRAT and structurally related acetyltransferases across cellular compartments, illustrating their coordinated role in lipid metabolism, amino acid catabolism, and mitochondrial bioenergetics. Moreover, the structural insights into CRAT have paved the way for understanding its regulation and identifying potential modulators with therapeutic applications for diseases such as diabetes, mitochondrial disorders, and cancer. This review examines CRAT's structural and functional aspects, its relationships with carnitine shuttle members and other carnitine acyltransferases, and its broader role in metabolic health and disease. The potential for targeting CRAT and its associated pathways offers promising avenues for therapeutic interventions aimed at restoring metabolic equilibrium and addressing metabolic dysfunction in disease states.
{"title":"Carnitine O-Acetyltransferase as a Central Player in Lipid and Branched-Chain Amino Acid Metabolism, Epigenetics, Cell Plasticity, and Organelle Function.","authors":"Mariateresa Volpicella, Maria Noemi Sgobba, Luna Laera, Anna Lucia Francavilla, Danila Imperia De Luca, Lorenzo Guerra, Ciro Leonardo Pierri, Anna De Grassi","doi":"10.3390/biom15020216","DOIUrl":"10.3390/biom15020216","url":null,"abstract":"<p><p>Carnitine O-acetyltransferase (CRAT) is a key mitochondrial enzyme involved in maintaining metabolic homeostasis by mediating the reversible transfer of acetyl groups between acetyl-CoA and carnitine. This enzymatic activity ensures the optimal functioning of mitochondrial carbon flux by preventing acetyl-CoA accumulation, buffering metabolic flexibility, and regulating the balance between fatty acid and glucose oxidation. CRAT's interplay with the mitochondrial carnitine shuttle, involving carnitine palmitoyltransferases (CPT1 and CPT2) and the carnitine carrier (SLC25A20), underscores its critical role in energy metabolism. Emerging evidence highlights the structural and functional diversity of CRAT and structurally related acetyltransferases across cellular compartments, illustrating their coordinated role in lipid metabolism, amino acid catabolism, and mitochondrial bioenergetics. Moreover, the structural insights into CRAT have paved the way for understanding its regulation and identifying potential modulators with therapeutic applications for diseases such as diabetes, mitochondrial disorders, and cancer. This review examines CRAT's structural and functional aspects, its relationships with carnitine shuttle members and other carnitine acyltransferases, and its broader role in metabolic health and disease. The potential for targeting CRAT and its associated pathways offers promising avenues for therapeutic interventions aimed at restoring metabolic equilibrium and addressing metabolic dysfunction in disease states.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohd Adnan Kausar, Sadaf Anwar, Yusuf Saleem Khan, Ayman A Saleh, Mai Ali Abdelfattah Ahmed, Simran Kaur, Naveed Iqbal, Waseem Ahmad Siddiqui, Mohammad Zeeshan Najm
Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy.
{"title":"Autophagy and Cancer: Insights into Molecular Mechanisms and Therapeutic Approaches for Chronic Myeloid Leukemia.","authors":"Mohd Adnan Kausar, Sadaf Anwar, Yusuf Saleem Khan, Ayman A Saleh, Mai Ali Abdelfattah Ahmed, Simran Kaur, Naveed Iqbal, Waseem Ahmad Siddiqui, Mohammad Zeeshan Najm","doi":"10.3390/biom15020215","DOIUrl":"10.3390/biom15020215","url":null,"abstract":"<p><p>Autophagy is a critical cellular process that maintains homeostasis by recycling damaged or aberrant components. This process is orchestrated by a network of proteins that form autophagosomes, which engulf and degrade intracellular material. In cancer, autophagy plays a dual role: it suppresses tumor initiation in the early stages but supports tumor growth and survival in advanced stages. Chronic myeloid leukemia (CML), a hematological malignancy, is characterized by the Philadelphia chromosome, a chromosomal abnormality resulting from a translocation between chromosomes 9 and 22. Autophagy has emerged as a key factor in CML pathogenesis, promoting cancer cell survival and contributing to resistance against tyrosine kinase inhibitors (TKIs), the primary treatment for CML. Targeting autophagic pathways is being actively explored as a therapeutic approach to overcome drug resistance and enhance cancer cell death. Recent research highlights the intricate interplay between autophagy and CML progression, underscoring its role in disease biology and treatment outcomes. This review aims to provide a comprehensive analysis of the molecular and cellular mechanisms underlying CML, with a focus on the therapeutic potential of targeting autophagy.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
α-Synuclein (α-Syn) is implicated in the pathophysiology of Parkinson's disease (PD) and plays a significant role in neuronal degeneration. Iron response proteins (IRPs) bind to iron response elements (IREs) found in the 5'-untranslated regions (5'-UTRs) of the messenger RNA that encode the α-Syn gene. This study used multi-spectroscopic approach techniques to investigate the impact of iron on α-Syn IRE RNA binding to IRP1. The formation of a stable complex between α-Syn RNA and IRP1 was suggested by fluorescence quenching results. Fluorescence measurements showed that α-Syn RNA and IRP1 had a strong interaction, with a binding constant (Ka) of 21.0 × 106 M-1 and 1:1 binding stoichiometry. About one binding site per IRP1 molecule was suggested by the α-Syn RNA binding. The Ka for α-Syn RNA•IRP1 with added Fe2+ (50 μM) was 6.4 μM-1. When Fe2+ was added, the Ka of α-Syn RNA•IRP1 was reduced by 3.3 times. These acquired Ka values were used to further understand the thermodynamic characteristics of α-Syn RNA•IRP1 interactions. The thermodynamic properties clearly suggested that α-Syn RNA binding to IRP1 was an entropy-favored and enthalpy-driven event, with significant negative ΔH and small positive ΔS. For α-Syn RNA•IRP1, the Gibbs free energy (ΔG) was -43.7 ± 2.7 kJ/mol, but in the presence of Fe2+, it was -36.3 ± 2.1 kJ/mol. These thermodynamic calculations indicated that hydrogen bonding as well as van der Waals interactions might help to stabilize the complex formation. Additionally, far-UV CD spectra verified α-Syn RNA•IRP1 complex formation, and α-Syn RNA and Fe2+ induce secondary structural alteration of IRP1. According to our findings, iron alters the hydrogen bonding in α-Syn RNA•IRP1 complexes and induces a structural change in IRP1. This suggests that iron selectively affects the thermodynamics of these RNA-protein interactions.
{"title":"α-Synuclein Iron-Responsive-Element RNA and Iron Regulatory Protein Affinity Is Specifically Reduced by Iron in Parkinson's Disease.","authors":"Mateen A Khan","doi":"10.3390/biom15020214","DOIUrl":"10.3390/biom15020214","url":null,"abstract":"<p><p>α-Synuclein (α-Syn) is implicated in the pathophysiology of Parkinson's disease (PD) and plays a significant role in neuronal degeneration. Iron response proteins (IRPs) bind to iron response elements (IREs) found in the 5'-untranslated regions (5'-UTRs) of the messenger RNA that encode the α-Syn gene. This study used multi-spectroscopic approach techniques to investigate the impact of iron on α-Syn IRE RNA binding to IRP1. The formation of a stable complex between α-Syn RNA and IRP1 was suggested by fluorescence quenching results. Fluorescence measurements showed that α-Syn RNA and IRP1 had a strong interaction, with a binding constant (<i>K</i><sub>a</sub>) of 21.0 × 10<sup>6</sup> M<sup>-1</sup> and 1:1 binding stoichiometry. About one binding site per IRP1 molecule was suggested by the α-Syn RNA binding. The <i>K</i><sub>a</sub> for α-Syn RNA•IRP1 with added Fe<sup>2+</sup> (50 μM) was 6.4 μM<sup>-1</sup>. When Fe<sup>2+</sup> was added, the <i>K</i><sub>a</sub> of α-Syn RNA•IRP1 was reduced by 3.3 times. These acquired <i>K</i><sub>a</sub> values were used to further understand the thermodynamic characteristics of α-Syn RNA•IRP1 interactions. The thermodynamic properties clearly suggested that α-Syn RNA binding to IRP1 was an entropy-favored and enthalpy-driven event, with significant negative ΔH and small positive ΔS. For α-Syn RNA•IRP1, the Gibbs free energy (ΔG) was -43.7 ± 2.7 kJ/mol, but in the presence of Fe<sup>2+</sup>, it was -36.3 ± 2.1 kJ/mol. These thermodynamic calculations indicated that hydrogen bonding as well as van der Waals interactions might help to stabilize the complex formation. Additionally, far-UV CD spectra verified α-Syn RNA•IRP1 complex formation, and α-Syn RNA and Fe<sup>2+</sup> induce secondary structural alteration of IRP1. According to our findings, iron alters the hydrogen bonding in α-Syn RNA•IRP1 complexes and induces a structural change in IRP1. This suggests that iron selectively affects the thermodynamics of these RNA-protein interactions.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Group 16 elements of the periodic table have a characteristic valence shell configuration instrumental to their chemical properties and reactivities. The electrostatic potentials of these so-called chalcogens have been exploited in the design of materials that require the efficient passage of electrons including supermagnets, photocatalytic dyes, and solar panels. Likewise, the incorporation of the heavy chalcogen selenium into organic frameworks has been shown to increase the reactivities of double bonds and heterocyclic rings, while its interactions with aromatic side chains in the hydrophobic core of proteins via selenomethionine impart a stabilizing effect. Typically present in the active site, the hypervalence of selenocysteine enables it to further stabilize the folded protein and mediate electron transfer. Selenium's native occurrence in bacterial tRNA maintains base pair fidelity, most notably during oxidative stress, through its electronic and steric effects. Such native modifications at the positions 2 and 5 of uridine render these sites relevant in the design of RNA-based therapeutics. Innocuous selenium substitution for oxygen in the former and the standard methods of selenium-derivatized oligonucleotide synthesis and detection have led to the establishment of a novel class of therapeutics. In this review, we summarize some progress in this area.
{"title":"Heavy Chalcogen Properties of Sulfur and Selenium Enhance Nucleic Acid-Based Therapeutics.","authors":"Stephen J Dansereau, Jia Sheng","doi":"10.3390/biom15020218","DOIUrl":"10.3390/biom15020218","url":null,"abstract":"<p><p>The Group 16 elements of the periodic table have a characteristic valence shell configuration instrumental to their chemical properties and reactivities. The electrostatic potentials of these so-called chalcogens have been exploited in the design of materials that require the efficient passage of electrons including supermagnets, photocatalytic dyes, and solar panels. Likewise, the incorporation of the heavy chalcogen selenium into organic frameworks has been shown to increase the reactivities of double bonds and heterocyclic rings, while its interactions with aromatic side chains in the hydrophobic core of proteins via selenomethionine impart a stabilizing effect. Typically present in the active site, the hypervalence of selenocysteine enables it to further stabilize the folded protein and mediate electron transfer. Selenium's native occurrence in bacterial tRNA maintains base pair fidelity, most notably during oxidative stress, through its electronic and steric effects. Such native modifications at the positions 2 and 5 of uridine render these sites relevant in the design of RNA-based therapeutics. Innocuous selenium substitution for oxygen in the former and the standard methods of selenium-derivatized oligonucleotide synthesis and detection have led to the establishment of a novel class of therapeutics. In this review, we summarize some progress in this area.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serena Rosignoli, Sara Giordani, Maddalena Pacelli, Giulia Guarguaglini, Alessandro Paiardini
PROteolysis TArgeting Chimeras (PROTACs) offer a therapeutic modality for protein target engagement, exploiting the ubiquitin-proteasome system to achieve precise degradation of a protein of interest. Recent advancements in understanding the structural biology of the CRL4A E3 ligase complex, particularly its recruitment of neo-substrates through the G-loop motif, have provided valuable insights into the optimization of PROTAC efficacy. This perspective delves into the molecular determinants governing PROTAC selectivity and degradation efficiency, with a specific focus on kinases showing distinct G-loop conformations. By employing computational approaches to predict ternary complexes, along with the identification of binding patterns, it is possible to address limitations posed by structural data scarcity, thereby enhancing rational design strategies.
{"title":"Unraveling the Engagement of Kinases to CRBN Through a Shared Structural Motif to Optimize PROTACs Efficacy.","authors":"Serena Rosignoli, Sara Giordani, Maddalena Pacelli, Giulia Guarguaglini, Alessandro Paiardini","doi":"10.3390/biom15020206","DOIUrl":"10.3390/biom15020206","url":null,"abstract":"<p><p>PROteolysis TArgeting Chimeras (PROTACs) offer a therapeutic modality for protein target engagement, exploiting the ubiquitin-proteasome system to achieve precise degradation of a protein of interest. Recent advancements in understanding the structural biology of the CRL4A E3 ligase complex, particularly its recruitment of neo-substrates through the G-loop motif, have provided valuable insights into the optimization of PROTAC efficacy. This perspective delves into the molecular determinants governing PROTAC selectivity and degradation efficiency, with a specific focus on kinases showing distinct G-loop conformations. By employing computational approaches to predict ternary complexes, along with the identification of binding patterns, it is possible to address limitations posed by structural data scarcity, thereby enhancing rational design strategies.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 2","pages":""},"PeriodicalIF":4.8,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852972/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143498771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}