Pub Date : 2024-07-10DOI: 10.1088/1758-5090/ad5d19
Abdulrahman Agha, Eiyad Abu-Nada, Anas Alazzam
The integration of acoustic wave micromixing with microfluidic systems holds great potential for applications in biomedicine and lab-on-a-chip technologies. Polymers such as cyclic olefin copolymer (COC) are increasingly utilized in microfluidic applications due to its unique properties, low cost, and versatile fabrication methods, and incorporating them into acoustofluidics significantly expands their potential applications. In this work, for the first time, we demonstrated the integration of polymer microfluidics with acoustic micromixing utilizing oscillating sharp edge structures to homogenize flowing fluids. The sharp edge mixing platform was entirely composed of COC fabricated in a COC-hydrocarbon solvent swelling based microfabrication process. As an electrical signal is applied to a piezoelectric transducer bonded to the micromixer, the sharp edges start to oscillate generating vortices at its tip, mixing the fluids. A 2D numerical model was implemented to determine the optimum microchannel dimensions for experimental mixing assessment. The system was shown to successfully mix fluids at flow rates up to 150µl h-1and has a modest effect even at the highest tested flow rate of 600µl h-1. The utility of the fabricated sharp edge micromixer was demonstrated by the synthesis of nanoscale liposomes.
{"title":"Integration of acoustic micromixing with cyclic olefin copolymer microfluidics for enhanced lab-on-a-chip applications in nanoscale liposome synthesis.","authors":"Abdulrahman Agha, Eiyad Abu-Nada, Anas Alazzam","doi":"10.1088/1758-5090/ad5d19","DOIUrl":"10.1088/1758-5090/ad5d19","url":null,"abstract":"<p><p>The integration of acoustic wave micromixing with microfluidic systems holds great potential for applications in biomedicine and lab-on-a-chip technologies. Polymers such as cyclic olefin copolymer (COC) are increasingly utilized in microfluidic applications due to its unique properties, low cost, and versatile fabrication methods, and incorporating them into acoustofluidics significantly expands their potential applications. In this work, for the first time, we demonstrated the integration of polymer microfluidics with acoustic micromixing utilizing oscillating sharp edge structures to homogenize flowing fluids. The sharp edge mixing platform was entirely composed of COC fabricated in a COC-hydrocarbon solvent swelling based microfabrication process. As an electrical signal is applied to a piezoelectric transducer bonded to the micromixer, the sharp edges start to oscillate generating vortices at its tip, mixing the fluids. A 2D numerical model was implemented to determine the optimum microchannel dimensions for experimental mixing assessment. The system was shown to successfully mix fluids at flow rates up to 150<i>µ</i>l h<sup>-1</sup>and has a modest effect even at the highest tested flow rate of 600<i>µ</i>l h<sup>-1</sup>. The utility of the fabricated sharp edge micromixer was demonstrated by the synthesis of nanoscale liposomes.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1088/1758-5090/ad5ac0
Katharina T Kroll, Kimberly A Homan, Sebastien G M Uzel, Mariana M Mata, Kayla J Wolf, Jonathan E Rubins, Jennifer A Lewis
The ability to controllably perfuse kidney organoids would better recapitulate the native tissue microenvironment for applications ranging from drug testing to therapeutic use. Here, we report a perfusable, vascularized kidney organoid on chip model composed of two individually addressable channels embedded in an extracellular matrix (ECM). The channels are respectively seeded with kidney organoids and human umbilical vein endothelial cells that form a confluent endothelium (macrovessel). During perfusion, endogenous endothelial cells present within the kidney organoids migrate through the ECM towards the macrovessel, where they form lumen-on-lumen anastomoses that are supported by stromal-like cells. Once micro-macrovessel integration is achieved, we introduced fluorescently labeled dextran of varying molecular weight and red blood cells into the macrovessel, which are transported through the microvascular network to the glomerular epithelia within the kidney organoids. Our approach for achieving controlled organoid perfusion opens new avenues for generating other perfused human tissues.
{"title":"A perfusable, vascularized kidney organoid-on-chip model.","authors":"Katharina T Kroll, Kimberly A Homan, Sebastien G M Uzel, Mariana M Mata, Kayla J Wolf, Jonathan E Rubins, Jennifer A Lewis","doi":"10.1088/1758-5090/ad5ac0","DOIUrl":"10.1088/1758-5090/ad5ac0","url":null,"abstract":"<p><p>The ability to controllably perfuse kidney organoids would better recapitulate the native tissue microenvironment for applications ranging from drug testing to therapeutic use. Here, we report a perfusable, vascularized kidney organoid on chip model composed of two individually addressable channels embedded in an extracellular matrix (ECM). The channels are respectively seeded with kidney organoids and human umbilical vein endothelial cells that form a confluent endothelium (macrovessel). During perfusion, endogenous endothelial cells present within the kidney organoids migrate through the ECM towards the macrovessel, where they form lumen-on-lumen anastomoses that are supported by stromal-like cells. Once micro-macrovessel integration is achieved, we introduced fluorescently labeled dextran of varying molecular weight and red blood cells into the macrovessel, which are transported through the microvascular network to the glomerular epithelia within the kidney organoids. Our approach for achieving controlled organoid perfusion opens new avenues for generating other perfused human tissues.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.
{"title":"Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression.","authors":"Clara Bayona, Magdalena Wrona, Teodora Ranđelović, Cristina Nerín, Jesús Salafranca, Ignacio Ochoa","doi":"10.1088/1758-5090/ad5764","DOIUrl":"10.1088/1758-5090/ad5764","url":null,"abstract":"<p><p>Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate reproduction of human intestinal structure and functionin vitrois of great significance for understanding the development and disease occurrence of the gut. However, mostin vitrostudies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization foundin vivo. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with invivo-likering folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.
{"title":"3D embedded bioprinting of large-scale intestine with complex structural organization and blood capillaries.","authors":"Yuxuan Li, Shengnan Cheng, Haihua Shi, Renshun Yuan, Chen Gao, Yuhan Wang, Zhijun Zhang, Zongwu Deng, Jie Huang","doi":"10.1088/1758-5090/ad5b1b","DOIUrl":"10.1088/1758-5090/ad5b1b","url":null,"abstract":"<p><p>Accurate reproduction of human intestinal structure and function<i>in vitro</i>is of great significance for understanding the development and disease occurrence of the gut. However, most<i>in vitro</i>studies are often confined to 2D models, 2.5D organ chips or 3D organoids, which cannot fully recapitulate the tissue architecture, microenvironment and cell compartmentalization found<i>in vivo</i>. Herein, a centimeter-scale intestine tissue that contains intestinal features, such as hollow tubular structure, capillaries and tightly connected epithelium with in<i>vivo-like</i>ring folds, crypt-villi, and microvilli is constructed by 3D embedding bioprinting. In our strategy, a novel photocurable bioink composed of methacrylated gelatin, methacrylated sodium alginate and poly (ethylene glycol) diacrylate is developed for the fabrication of intestinal model. The Caco-2 cells implanted in the lumen are induced by the topological structures of the model to derive microvilli, crypt-villi, and tight junctions, simulating the intestinal epithelial barrier. The human umbilical vein endothelial cells encapsulated within the model gradually form microvessels, mimicking the dense capillary network in the intestine. This intestine-like tissue, which closely resembles the structure and cell arrangement of the human gut, can act as a platform to predict the therapeutic and toxic side effects of new drugs on the intestine.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1088/1758-5090/ad5766
Laura Cools, Mina Kazemzadeh Dastjerd, Ayla Smout, Vincent Merens, Yuwei Yang, Hendrik Reynaert, Nouredin Messaoudi, Vincent De Smet, Manoj Kumar, Stefaan Verhulst, Catherine Verfaillie, Leo A van Grunsven
The lack of adequate humanin vitromodels that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (CYP3A4, PDGFRβ, CD31andCD68) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosisin vitroas a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.
{"title":"Human iPSC-derived liver co-culture spheroids to model liver fibrosis.","authors":"Laura Cools, Mina Kazemzadeh Dastjerd, Ayla Smout, Vincent Merens, Yuwei Yang, Hendrik Reynaert, Nouredin Messaoudi, Vincent De Smet, Manoj Kumar, Stefaan Verhulst, Catherine Verfaillie, Leo A van Grunsven","doi":"10.1088/1758-5090/ad5766","DOIUrl":"10.1088/1758-5090/ad5766","url":null,"abstract":"<p><p>The lack of adequate human<i>in vitro</i>models that recapitulate the cellular composition and response of the human liver to injury hampers the development of anti-fibrotic drugs. The goal of this study was to develop a human spheroid culture model to study liver fibrosis by using induced pluripotent stem cell (iPSC)-derived liver cells. iPSCs were independently differentiated towards hepatoblasts (iHepatoblasts), hepatic stellate cells (iHSCs), endothelial cells (iECs) and macrophages (iMΦ), before assembly into free floating spheroids by culturing cells in 96-well U-bottom plates and orbital shaking for up to 21 days to allow further maturation. Through transcriptome analysis, we show further maturation of iECs and iMΦ, the differentiation of the iHepatoblasts towards hepatocyte-like cells (iHeps) and the inactivation of the iHSCs by the end of the 3D culture. Moreover, these cultures display a similar expression of cell-specific marker genes (<i>CYP3A4, PDGFRβ, CD31</i>and<i>CD68</i>) and sensitivity to hepatotoxicity as spheroids made using freshly isolated primary human liver cells. Furthermore, we show the functionality of the iHeps and the iHSCs by mimicking liver fibrosis through iHep-induced iHSC activation, using acetaminophen. In conclusion, we have established a reproducible human iPSC-derived liver culture model that can be used to mimic fibrosis<i>in vitro</i>as a replacement of primary human liver derived 3D models. The model can be used to investigate pathways involved in fibrosis development and to identify new targets for chronic liver disease therapy.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1088/1758-5090/ad57f7
Hannes Horder, David Böhringer, Nadine Endrizzi, Laura S Hildebrand, Alessandro Cianciosi, Sabrina Stecher, Franziska Dusi, Sophie Schweinitzer, Martin Watzling, Jürgen Groll, Tomasz Jüngst, Jörg Teßmar, Petra Bauer-Kreisel, Ben Fabry, Torsten Blunk
Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.
{"title":"Cancer cell migration depends on adjacent ASC and adipose spheroids in a 3D bioprinted breast cancer model.","authors":"Hannes Horder, David Böhringer, Nadine Endrizzi, Laura S Hildebrand, Alessandro Cianciosi, Sabrina Stecher, Franziska Dusi, Sophie Schweinitzer, Martin Watzling, Jürgen Groll, Tomasz Jüngst, Jörg Teßmar, Petra Bauer-Kreisel, Ben Fabry, Torsten Blunk","doi":"10.1088/1758-5090/ad57f7","DOIUrl":"https://doi.org/10.1088/1758-5090/ad57f7","url":null,"abstract":"<p><p>Breast cancer develops in close proximity to mammary adipose tissue and interactions with the local adipose environment have been shown to drive tumor progression. The specific role, however, of this complex tumor microenvironment in cancer cell migration still needs to be elucidated. Therefore, in this study, a 3D bioprinted breast cancer model was developed that allows for a comprehensive analysis of individual tumor cell migration parameters in dependence of adjacent adipose stroma. In this co-culture model, a breast cancer compartment with MDA-MB-231 breast cancer cells embedded in collagen is surrounded by an adipose tissue compartment consisting of adipose-derived stromal cell (ASC) or adipose spheroids in a printable bioink based on thiolated hyaluronic acid. Printing parameters were optimized for adipose spheroids to ensure viability and integrity of the fragile lipid-laden cells. Preservation of the adipogenic phenotype after printing was demonstrated by quantification of lipid content, expression of adipogenic marker genes, the presence of a coherent adipo-specific extracellular matrix, and cytokine secretion. The migration of tumor cells as a function of paracrine signaling of the surrounding adipose compartment was then analyzed using live-cell imaging. The presence of ASC or adipose spheroids substantially increased key migration parameters of MDA-MB-231 cells, namely motile fraction, persistence, invasion distance, and speed. These findings shed new light on the role of adipose tissue in cancer cell migration. They highlight the potential of our 3D printed breast cancer-stroma model to elucidate mechanisms of stroma-induced cancer cell migration and to serve as a screening platform for novel anti-cancer drugs targeting cancer cell dissemination.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"16 3","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1088/1758-5090/ad586b
Priyanshu Shukla, Ashis Kumar Bera, Amit Ghosh, Gaddam Kiranmai, Falguni Pati
Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1Met. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.
三维癌症建模技术的最新进展大大提高了我们深入研究错综复杂的致癌过程的能力。尽管制药业在药物筛选和开发管道上投入了大量资金和时间,但一个令人担忧的趋势依然存在:在传统癌症模型上筛选的候选药物在临床试验中的成功率很低。造成这种差异的一个关键因素是,在临床前阶段没有在病理生理学仿生三维癌症模型上进行药物测试。遗憾的是,目前的手动三维癌症建模方法(如球形和有机体)在可重复性和可扩展性方面存在局限性。在我们的研究中,我们利用无洗涤剂脱细胞法获得的基于脂肪组织的脱细胞水凝胶,精心开发了三维生物打印乳腺癌模型。我们的创新打印技术可在 96 孔板格式下快速、高通量地制作三维癌症模型,具有无与伦比的可扩展性和可重复性。此外,我们还进行了广泛的验证,通过涉及两种强效抗癌药物--5-氟尿嘧啶和 PRIMA-1Met 的药物筛选试验,展示了我们平台的功效。值得注意的是,我们的平台便于轻松进行成像和基因表达分析,从而简化了评估过程。为了增强癌症模型的相关性,我们在基于 DAT 的生物墨水中引入了异质细胞群。通过细致的优化和表征,我们成功开发出了一种生物仿真免疫能力乳腺癌模型,其中包含微环境线索和多样化的细胞群。这一突破为快速多重药物筛选和个性化癌症模型的开发铺平了道路,标志着癌症研究和药物开发的范式转变。
{"title":"Assessment and process optimization of high throughput biofabrication of immunocompetent breast cancer model for drug screening applications.","authors":"Priyanshu Shukla, Ashis Kumar Bera, Amit Ghosh, Gaddam Kiranmai, Falguni Pati","doi":"10.1088/1758-5090/ad586b","DOIUrl":"10.1088/1758-5090/ad586b","url":null,"abstract":"<p><p>Recent advancements in 3D cancer modeling have significantly enhanced our ability to delve into the intricacies of carcinogenesis. Despite the pharmaceutical industry's substantial investment of both capital and time in the drug screening and development pipeline, a concerning trend persists: drug candidates screened on conventional cancer models exhibit a dismal success rate in clinical trials. One pivotal factor contributing to this discrepancy is the absence of drug testing on pathophysiologically biomimetic 3D cancer models during pre-clinical stages. Unfortunately, current manual methods of 3D cancer modeling, such as spheroids and organoids, suffer from limitations in reproducibility and scalability. In our study, we have meticulously developed 3D bioprinted breast cancer model utilizing decellularized adipose tissue-based hydrogel obtained via a detergent-free decellularization method. Our innovative printing techniques allows for rapid, high-throughput fabrication of 3D cancer models in a 96-well plate format, demonstrating unmatched scalability and reproducibility. Moreover, we have conducted extensive validation, showcasing the efficacy of our platform through drug screening assays involving two potent anti-cancer drugs, 5-Fluorouracil and PRIMA-1<sup>Met</sup>. Notably, our platform facilitates effortless imaging and gene expression analysis, streamlining the evaluation process. In a bid to enhance the relevance of our cancer model, we have introduced a heterogeneous cell population into the DAT-based bioink. Through meticulous optimization and characterization, we have successfully developed a biomimetic immunocompetent breast cancer model, complete with microenvironmental cues and diverse cell populations. This breakthrough paves the way for rapid multiplex drug screening and the development of personalized cancer models, marking a paradigm shift in cancer research and pharmaceutical development.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1088/1758-5090/ad504b
Mari Nagasawa, Mai Onuki, Natsuki Imoto, Kazuomi Tanaka, Ryo Tanaka, Moeka Kawada, Keiichi Imato, Kenta Iitani, Yuji Tsuchido, Naoya Takeda
Fabrication of engineered intestinal tissues with the structures and functions as humans is crucial and promising as the tools for developing drugs and functional foods. The aim of this study is to fabricate an engineered intestinal tissue from Caco-2 cells by air-liquid interface culture using a paper-based dual-layer scaffold and analyze its structure and functions. Just by simply placing on a folded paper soaked in the medium, the electrospun gelatin microfiber mesh as the upper cell adhesion layer of the dual-layer scaffold was exposed to the air, while the lower paper layer worked to preserve and supply the cell culture medium to achieve stable culture over several weeks. Unlike the flat tissue produced using the conventional commercial cultureware, Transwell, the engineered intestinal tissue fabricated in this study formed three-dimensional villous architectures. Microvilli and tight junction structures characteristic of epithelial tissue were also formed at the apical side. Furthermore, compared to the tissue prepared by Transwell, mucus production was significantly larger, and the enzymatic activities of drug metabolism and digestion were almost equivalent. In conclusion, the air-liquid interface culture using the paper-based dual-layer scaffold developed in this study was simple but effective in fabricating the engineered intestinal tissue with superior structures and functions.
{"title":"Fabrication of 3D engineered intestinal tissue producing abundant mucus by air-liquid interface culture using paper-based dual-layer scaffold.","authors":"Mari Nagasawa, Mai Onuki, Natsuki Imoto, Kazuomi Tanaka, Ryo Tanaka, Moeka Kawada, Keiichi Imato, Kenta Iitani, Yuji Tsuchido, Naoya Takeda","doi":"10.1088/1758-5090/ad504b","DOIUrl":"10.1088/1758-5090/ad504b","url":null,"abstract":"<p><p>Fabrication of engineered intestinal tissues with the structures and functions as humans is crucial and promising as the tools for developing drugs and functional foods. The aim of this study is to fabricate an engineered intestinal tissue from Caco-2 cells by air-liquid interface culture using a paper-based dual-layer scaffold and analyze its structure and functions. Just by simply placing on a folded paper soaked in the medium, the electrospun gelatin microfiber mesh as the upper cell adhesion layer of the dual-layer scaffold was exposed to the air, while the lower paper layer worked to preserve and supply the cell culture medium to achieve stable culture over several weeks. Unlike the flat tissue produced using the conventional commercial cultureware, Transwell, the engineered intestinal tissue fabricated in this study formed three-dimensional villous architectures. Microvilli and tight junction structures characteristic of epithelial tissue were also formed at the apical side. Furthermore, compared to the tissue prepared by Transwell, mucus production was significantly larger, and the enzymatic activities of drug metabolism and digestion were almost equivalent. In conclusion, the air-liquid interface culture using the paper-based dual-layer scaffold developed in this study was simple but effective in fabricating the engineered intestinal tissue with superior structures and functions.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13DOI: 10.1088/1758-5090/ad51a5
Mattis Wachendörfer, Alena Lisa Palkowitz, Horst Fischer
Systemic stem cell therapies hold promise for treating severe diseases, but their efficiency is hampered by limited migration of injected stem cells across vascular endothelium towards diseased tissues. Understanding transendothelial migration is crucial for improving therapy outcomes. We propose a novel 3Din vitrovessel model that aids to unravel these mechanisms and thereby facilitates stem cell therapy development. Our model simulates inflammation through cytokine diffusion from the tissue site into the vessel. It consists of a biofabricated vessel embedded in a fibrin hydrogel, mimicking arterial wall composition with smooth muscle cells and fibroblasts. The perfusable channel is lined with a functional endothelium which expresses vascular endothelial cadherin, provides an active barrier function, aligns with flow direction and is reconstructed byin situtwo-photon-microscopy. Inflammatory cytokine release (tumor necrosis factorα, stromal-derived factor (1) is demonstrated in both a transwell assay and the 3D model. In proof-of-principle experiments, mesoangioblasts, known as a promising candidate for a stem cell therapy against muscular dystrophies, are injected into the vessel model, showing shear-resistant endothelial adhesion under capillary-like flow conditions. Our 3Din vitromodel offers significant potential to study transendothelial migration mechanisms of stem cells, facilitating the development of improved stem cell therapies.
{"title":"Development of a biofabricated 3D<i>in vitro</i>vessel model for investigating transendothelial migration in stem cell therapy.","authors":"Mattis Wachendörfer, Alena Lisa Palkowitz, Horst Fischer","doi":"10.1088/1758-5090/ad51a5","DOIUrl":"10.1088/1758-5090/ad51a5","url":null,"abstract":"<p><p>Systemic stem cell therapies hold promise for treating severe diseases, but their efficiency is hampered by limited migration of injected stem cells across vascular endothelium towards diseased tissues. Understanding transendothelial migration is crucial for improving therapy outcomes. We propose a novel 3D<i>in vitro</i>vessel model that aids to unravel these mechanisms and thereby facilitates stem cell therapy development. Our model simulates inflammation through cytokine diffusion from the tissue site into the vessel. It consists of a biofabricated vessel embedded in a fibrin hydrogel, mimicking arterial wall composition with smooth muscle cells and fibroblasts. The perfusable channel is lined with a functional endothelium which expresses vascular endothelial cadherin, provides an active barrier function, aligns with flow direction and is reconstructed by<i>in situ</i>two-photon-microscopy. Inflammatory cytokine release (tumor necrosis factor<i>α</i>, stromal-derived factor (1) is demonstrated in both a transwell assay and the 3D model. In proof-of-principle experiments, mesoangioblasts, known as a promising candidate for a stem cell therapy against muscular dystrophies, are injected into the vessel model, showing shear-resistant endothelial adhesion under capillary-like flow conditions. Our 3D<i>in vitro</i>model offers significant potential to study transendothelial migration mechanisms of stem cells, facilitating the development of improved stem cell therapies.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1088/1758-5090/ad52f1
Alperen Abaci, Murat Guvendiren
Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.
{"title":"3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity.","authors":"Alperen Abaci, Murat Guvendiren","doi":"10.1088/1758-5090/ad52f1","DOIUrl":"10.1088/1758-5090/ad52f1","url":null,"abstract":"<p><p>Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141183945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}