首页 > 最新文献

Biophysical chemistry最新文献

英文 中文
Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation 分离的 PADI4 自身瓜氨酸化区域与完整的蛋白质结合,而不会改变其无序构象。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-29 DOI: 10.1016/j.bpc.2024.107288
José L. Neira , Bruno Rizzuti , Olga Abian , Adrian Velazquez-Campoy

PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions – i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D1H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic koff rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.

PADI4 是参与精氨酸向瓜氨酸转化的一组酶的人类同工酶之一。它与几种类型的肿瘤以及牛皮癣、多发性硬化症或类风湿性关节炎等其他免疫性疾病的发生有关。PADI4 在其序列中的几个区域会自动产生瓜氨酸,即 Arg205、Arg212、Arg218 和 Arg383 残基的对应位置。我们希望研究瓜氨酸化分子是否会影响附近区域的构象及其与完整 PADI4 的结合。我们设计了两个系列的合成肽,分别包含这些区域的野生型或相对瓜氨酸化版本,即包含前三个精氨酸的第一系列肽和包含 Arg383 的第二系列肽。我们利用荧光、远紫外圆二色性(CD)和 2D1H NMR 对它们的构象特性进行了单独研究。此外,我们还利用等温滴定量热法(ITC)、荧光和生物层干涉测量法(BLI)以及分子对接模拟,研究了这两个系列中的野生型肽和瓜氨酸化肽与完整的 PADI4 的结合特性。我们观察到,瓜氨酸化并没有改变分离肽的局部构象倾向。然而,对于这两个系列中的所有肽,瓜氨酸化减慢了与 PADI4 结合反应的动力学 koff 速率,这可能是由于静电效应与精氨酸存在时的静电效应不同。在这两个系列中,PADI4 与未修饰肽的亲和力略大于与相应瓜氨酸化肽的亲和力,但它们都在相同的范围内,这表明在结合的热力学中不存在序列效应引起的相关变化。这些结果突显了 PADI4 自身瓜氨酸化的细节,更广泛地说,突显了其他瓜氨酸化酶或被动进行瓜氨酸化的蛋白质在体内可能发生的自身催化机制。
{"title":"Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation","authors":"José L. Neira ,&nbsp;Bruno Rizzuti ,&nbsp;Olga Abian ,&nbsp;Adrian Velazquez-Campoy","doi":"10.1016/j.bpc.2024.107288","DOIUrl":"10.1016/j.bpc.2024.107288","url":null,"abstract":"<div><p>PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions – i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D<img><sup>1</sup>H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic <em>k</em><sub>off</sub> rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224001170/pdfft?md5=23633e3ad4eabeebf56c4c83eddd72bb&pid=1-s2.0-S0301462224001170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycerol-slaved 1H-1H NMR cross-relaxation in quasi-native lysozyme 准原生溶菌酶中的甘油奴役 1H-1H NMR 交叉舒张。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-28 DOI: 10.1016/j.bpc.2024.107286
Kirthi Joshi, Abani K. Bhuyan

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17–0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds ∼ η-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.

在甘油粘度可变的条件下,对溶菌酶进行了 1H-1H 核交叉松弛实验,以研究在 298 K、pH 值为 3.8 的条件下的分子内运动、自扩散和各向同性刚体旋转翻滚。分子内 1H-1H 交叉松弛率的动力学、核间空间距离的增加以及横向和旋转扩散系数都显示出分数粘度依赖性,幂律指数 κ 在 0.17-0.83 范围内。甘油扩散系数 Ds 与体积粘度本身的关系是非斯托克斯式的,与介质粘度有分数粘度依赖关系(Ds ∼ η-κ,κ ≈ 0.71)。甘油扩散的分数粘度依赖性与蛋白质的扩散和分子内交叉松弛率之间的一致性和相似性推断,甘油的松弛会减缓蛋白质的松弛。甘油将原生溶菌酶转化为准原生状态并不影响全局和内部波动都从属于甘油松弛的结论。
{"title":"Glycerol-slaved 1H-1H NMR cross-relaxation in quasi-native lysozyme","authors":"Kirthi Joshi,&nbsp;Abani K. Bhuyan","doi":"10.1016/j.bpc.2024.107286","DOIUrl":"10.1016/j.bpc.2024.107286","url":null,"abstract":"<div><p><sup>1</sup>H-<sup>1</sup>H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular <sup>1</sup>H-<sup>1</sup>H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent <em>κ</em> in the 0.17–0.83 range. The diffusion coefficient of glycerol <em>D</em><sub>s</sub> with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (<em>D</em><sub>s</sub> ∼ <em>η</em><sup>-<em>κ</em></sup>, <em>κ</em> ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering 利用小角 X 射线散射法研究受渗透压影响的纳米级细胞内超微结构。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-27 DOI: 10.1016/j.bpc.2024.107287
Masaru Nakada , Junko Kanda , Hironobu Uchiyama , Kazuaki Matsumura

Although intracellular ultrastructures have typically been studied using microscopic techniques, it is difficult to observe ultrastructures at the submicron scale of living cells due to spatial resolution (fluorescence microscopy) or high vacuum environment (electron microscopy). We investigate the nanometer scale intracellular ultrastructures of living CHO cells in various osmolality using small-angle X-ray scattering (SAXS), and especially the structures of ribosomes, DNA double helix, and plasma membranes in-cell environment are observed. Ribosomes expand and contract in response to osmotic pressure, and the inter-ribosomal correlation occurs under isotonic and hyperosmolality. The DNA double helix is not dependent on the osmotic pressure. Under high osmotic pressure, the plasma membrane folds into form a multilamellar structure with a periodic length of about 6 nm. We also study the ultrastructural changes caused by formaldehyde fixation, freezing and heating.

尽管细胞内超微结构通常采用显微镜技术进行研究,但由于空间分辨率(荧光显微镜)或高真空环境(电子显微镜)的限制,很难观察到活细胞亚微米尺度的超微结构。我们利用小角 X 射线散射(SAXS)研究了活体 CHO 细胞在不同渗透压下的纳米尺度胞内超微结构,尤其是观察了细胞环境中核糖体、DNA 双螺旋和质膜的结构。核糖体随渗透压的变化而膨胀和收缩,在等渗和高渗条件下,核糖体之间发生关联。DNA 双螺旋不依赖于渗透压。在高渗透压下,质膜折叠成周期性长度约为 6 纳米的多层膜结构。我们还研究了甲醛固定、冷冻和加热引起的超微结构变化。
{"title":"Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering","authors":"Masaru Nakada ,&nbsp;Junko Kanda ,&nbsp;Hironobu Uchiyama ,&nbsp;Kazuaki Matsumura","doi":"10.1016/j.bpc.2024.107287","DOIUrl":"10.1016/j.bpc.2024.107287","url":null,"abstract":"<div><p>Although intracellular ultrastructures have typically been studied using microscopic techniques, it is difficult to observe ultrastructures at the submicron scale of living cells due to spatial resolution (fluorescence microscopy) or high vacuum environment (electron microscopy). We investigate the nanometer scale intracellular ultrastructures of living CHO cells in various osmolality using small-angle X-ray scattering (SAXS), and especially the structures of ribosomes, DNA double helix, and plasma membranes <em>in-cell</em> environment are observed. Ribosomes expand and contract in response to osmotic pressure, and the inter-ribosomal correlation occurs under isotonic and hyperosmolality. The DNA double helix is not dependent on the osmotic pressure. Under high osmotic pressure, the plasma membrane folds into form a multilamellar structure with a periodic length of about 6 nm. We also study the ultrastructural changes caused by formaldehyde fixation, freezing and heating.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry 了解人类胰岛淀粉样多肽的结构动态:离子迁移质谱法的进展与应用。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-25 DOI: 10.1016/j.bpc.2024.107285
Zijie Dai , Aisha Ben-Younis , Anna Vlachaki , Daniel Raleigh , Konstantinos Thalassinos

Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through “spectral fingerprints”. This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.

人胰岛淀粉样多肽(hIAPP)会形成淀粉样沉淀,导致胰岛β细胞死亡,被认为是II型糖尿病(T2DM)的标志。有证据表明,hIAPP在聚集过程中形成的早期低聚物是胰岛淀粉样蛋白诱导β细胞死亡的主要病理因素。然而,hIAPP 的自组装机制仍然难以捉摸,这主要是由于传统生物物理技术在探测早期结构动态低聚物的分布或捕捉其详细结构方面存在局限性。离子迁移质谱法(IM-MS)的出现使 hIAPP 早期低聚物在气相中的表征成为可能,为深入了解低聚物的形成机制以及结构信息与低聚物细胞毒性的相关性铺平了道路。IM-MS 提供的灵敏度和快速结构表征也为筛选 hIAPP 抑制剂、通过 "光谱指纹 "对其抑制模式进行分类带来了希望。本综述深入探讨了 IM-MS 在以下方面的应用:剖析 hIAPP 寡聚化的复杂步骤、研究金属离子的抑制影响以及探索不同 hIAPP 变体异质寡聚化的特征。我们强调了 IM-MS 作为高通量筛选 hIAPP 抑制剂的工具以及深入了解其作用模式的潜力。最后,我们讨论了串联 IM-MS 以及气相光谱与 IM-MS 结合的最新进展,这些技术有望为 hIAPP 低聚物提供更灵敏、分辨率更高的结构描述。这些信息可能有助于开创针对 T2DM 胰岛淀粉样变性的靶向治疗策略的新时代。
{"title":"Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry","authors":"Zijie Dai ,&nbsp;Aisha Ben-Younis ,&nbsp;Anna Vlachaki ,&nbsp;Daniel Raleigh ,&nbsp;Konstantinos Thalassinos","doi":"10.1016/j.bpc.2024.107285","DOIUrl":"10.1016/j.bpc.2024.107285","url":null,"abstract":"<div><p>Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through “spectral fingerprints”. This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224001145/pdfft?md5=866ee42ad142b7d7508377247543f8c8&pid=1-s2.0-S0301462224001145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane lateral organization from potential energy disconnectivity graph 从势能断开图看薄膜横向组织。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-21 DOI: 10.1016/j.bpc.2024.107284
Sahithya Sridharan Iyer , Anand Srivastava

Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.

要了解生物分子的热力学和动力学特性,就必须阐明其复杂的能量景观。能量图谱的断开图分析提供了一个框架,可将多维图谱映射到二维图谱上,同时保留能量图谱的关键特征。一些研究表明,断开图的结构或形状与蛋白质和核酸分子的功能直接相关。在这篇综述中,我们将讨论如何将势能面的断开分析扩展到脂质分子,以收集有关膜组织的重要信息。断开图的形状可用于预测多组分脂质双分子层的横向组织。我们希望这篇综述能鼓励膜生物物理学家常规使用断开图来预测脂质的横向组织。
{"title":"Membrane lateral organization from potential energy disconnectivity graph","authors":"Sahithya Sridharan Iyer ,&nbsp;Anand Srivastava","doi":"10.1016/j.bpc.2024.107284","DOIUrl":"10.1016/j.bpc.2024.107284","url":null,"abstract":"<div><p>Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study 外部静态 EF 对 5-HT1A 受体构象转变的影响:分子动力学模拟研究。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.bpc.2024.107283
Lulu Guan , Jingwang Tan , Bote Qi , Yukang Chen , Meng Cao , Qingwen Zhang , Yu Zou

The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.

血清素受体亚型 1A(5-HT1AR)是 G 蛋白偶联受体(GPCR)家族中的一种,与多种神经系统疾病有关。在分子水平上了解 5-HT1AR 的激活和失活机制对于发现治疗多种疾病的新型疗法至关重要。最近,人们越来越认识到外部电场(EF)在影响生物大分子结构和活性方面的作用。在这项研究中,我们利用分子动力学(MD)模拟研究了 5-HT1AR 活性态的构象特征,并探讨了 0.02 V/nm 的外部静态电场对 5-HT1AR 活性态的影响。结果表明,5-HT1AR 的活性状态保持了原生结构,而外加静态外场因子导致了 5-HT1AR 结构的改变,尤其是诱导了跨膜螺旋 6(TM6)的内向移动。此外,它还扰乱了与 CWxP、DRY、PIF 和 NPxxY 动机中的激活相关的构象转换,从而使其倾向于非活性构象。我们还发现,EF 导致了 5-HT1AR 偶极矩的整体增加,包括 TM6 和关键氨基酸。对 TM6 构象特性的分析表明,在 EF 条件下,二级结构发生了变化,溶剂暴露减少。在 EF 条件下,5-HT1AR 与膜脂双层的相互作用也发生了改变。我们的研究结果揭示了外部 EF 诱导 5-HT1AR 构象转变的分子机制,为基于结构的 EF 应用于 GPCRs 的前景提供了潜在的新见解。
{"title":"Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study","authors":"Lulu Guan ,&nbsp;Jingwang Tan ,&nbsp;Bote Qi ,&nbsp;Yukang Chen ,&nbsp;Meng Cao ,&nbsp;Qingwen Zhang ,&nbsp;Yu Zou","doi":"10.1016/j.bpc.2024.107283","DOIUrl":"10.1016/j.bpc.2024.107283","url":null,"abstract":"<div><p>The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The contrasting roles of co-solvents in protein formulations and food products 蛋白质配方和食品中助溶剂的不同作用。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-17 DOI: 10.1016/j.bpc.2024.107282
Tsutomu Arakawa , Yui Tomioka , Teruo Akuta , Kentaro Shiraki

Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.

蛋白质聚集是开发生物制药,尤其是蛋白质配方领域的一大障碍,但在食品中也起着举足轻重的作用。共溶剂用于抑制制药蛋白质中的蛋白质聚集。相反,在食品制作过程中,蛋白质的聚集却会被促进。因此,预计助溶剂在生物制药配方和食品中发挥着截然不同的作用。在此,我们将展示几个利用助溶剂(如盐类、糖类、多元醇和二价阳离子)促进蛋白质-蛋白质相互作用的例子。在蛋白质水溶液中研究了助溶剂对蛋白质聚集和溶解度的影响机制,并根据所获得的科学知识将其应用于药物制剂的开发。相反,助溶剂在食品工业中的应用是基于经验基础。在此,我们将综述可应用于制药和食品行业的共溶剂对蛋白质-蛋白质相互作用的影响机制,并希望将通过研究共溶剂在蛋白质水溶液和配方中的相互作用所获得的知识传达给食品科学相关人员,并为蛋白质溶液研究相关人员提供有关食品蛋白质聚集行为的观察结果。
{"title":"The contrasting roles of co-solvents in protein formulations and food products","authors":"Tsutomu Arakawa ,&nbsp;Yui Tomioka ,&nbsp;Teruo Akuta ,&nbsp;Kentaro Shiraki","doi":"10.1016/j.bpc.2024.107282","DOIUrl":"10.1016/j.bpc.2024.107282","url":null,"abstract":"<div><p>Protein aggregation is a major hurdle in developing biopharmaceuticals, in particular protein formulation area, but plays a pivotal role in food products. Co-solvents are used to suppress protein aggregation in pharmaceutical proteins. On the contrary, aggregation is encouraged in the process of food product making. Thus, it is expected that co-solvents play a contrasting role in biopharmaceutical formulation and food products. Here, we show several examples that utilize co-solvents, e.g., salting-out salts, sugars, polyols and divalent cations in promoting protein-protein interactions. The mechanisms of co-solvent effects on protein aggregation and solubility have been studied on aqueous protein solution and applied to develop pharmaceutical formulation based on the acquired scientific knowledge. On the contrary, co-solvents have been used in food industries based on empirical basis. Here, we will review the mechanisms of co-solvent effects on protein-protein interactions that can be applied to both pharmaceutical and food industries and hope to convey knowledge acquired through research on co-solvent interactions in aqueous protein solution and formulation to those involved in food science and provide those involved in protein solution research with the observations on aggregation behavior of food proteins.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation 描述 RNA 聚合酶 I 单核苷酸掺入的全局动力学机制揭示了 UMP 的快速掺入
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-08 DOI: 10.1016/j.bpc.2024.107281
Kaila B. Fuller , Ruth Q. Jacobs , Zachariah I. Carter , Zachary G. Cuny , David A. Schneider , Aaron L. Lucius

RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3′ end was fastest when the 3′ terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.

RNA 聚合酶 I(Pol I)负责合成核糖体 RNA,这是核糖体生物发生过程中的限速步骤。在本研究中,我们试图确定碱基特性是否会影响 Pol I 催化的核苷酸加成的限速步骤。为此,我们报告了 Pol I 催化的 AMP、CMP、GMP 和 UMP 加成的瞬态动力学分析。但是,我们发现 UMP 的加入速度快于 AMP、CMP 和 GMP 的加入速度。此外,我们还发现,当 3′末端碱基是 UMP 时,从 3′末端去除二聚体的核酸内切速度最快。以前的研究表明,下游和上游模板序列的同一性都会影响核苷酸添加的动力学。本文报告的结果表明,输入碱基的特征也会影响观察到的速率限制步骤的大小。
{"title":"Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation","authors":"Kaila B. Fuller ,&nbsp;Ruth Q. Jacobs ,&nbsp;Zachariah I. Carter ,&nbsp;Zachary G. Cuny ,&nbsp;David A. Schneider ,&nbsp;Aaron L. Lucius","doi":"10.1016/j.bpc.2024.107281","DOIUrl":"10.1016/j.bpc.2024.107281","url":null,"abstract":"<div><p>RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3′ end was fastest when the 3′ terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible RNA aptamers as inhibitors of Bacillus anthracis ribosomal protein S8: Insights from molecular dynamics simulations 作为炭疽杆菌核糖体蛋白 S8 抑制剂的柔性 RNA 合体:分子动力学模拟的启示
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-03 DOI: 10.1016/j.bpc.2024.107273
Pradeep Pant

Bacillus anthracis, the causative agent of anthrax, poses a substantial threat to public health and national security, and is recognized as a potential bioweapon due to its capacity to form resilient spores with enduring viability. Inhalation or ingestion of even minute quantities of aerosolized spores can lead to widespread illness and fatalities, underscoring the formidable lethality of the bacterium. With an untreated mortality rate of 100%, Bacillus anthracis is a disconcerting candidate for bioterrorism. In response to this critical scenario, we employed state-of-the-art computational tools to conceive and characterize flexible RNA aptamer therapeutics tailored for anthrax. The foundational structure of the flexible RNA aptamers was designed by removing the C2’-C3’ in each nucleotide unit. Leveraging the crystal structure of Bacillus anthracis ribosomal protein S8 complexed with an RNA aptamer, we explored the structural, dynamic, and energetic aspects of the modified RNA aptamer – S8 protein complexes through extensive all-atom explicit-solvent molecular dynamics simulations (400 ns, 3 replicas each), followed by drawing comparisons to the control system. Our findings demonstrate the enhanced binding competencies of the flexible RNA aptamers to the S8 protein via better shape complementarity and improved H-bond network compared to the control RNA aptamer. This research offers valuable insights into the development of RNA aptamer therapeutics targeting Bacillus anthracis, paving the way for innovative strategies to mitigate the impact of this formidable pathogen.

炭疽杆菌(Bacillus anthracis)是炭疽病的致病菌,对公共卫生和国家安全构成严重威胁,由于它能够形成具有持久生命力的弹性孢子,因此被认为是一种潜在的生物武器。即使是吸入或摄入微量的气溶胶孢子,也会导致大范围的疾病和死亡,这凸显了该细菌的强大杀伤力。炭疽杆菌未经治疗的死亡率高达 100%,是一种令人不安的生物恐怖主义候选菌。为了应对这一危急情况,我们采用了最先进的计算工具来构思和表征专为炭疽病定制的柔性 RNA 合剂疗法。通过移除每个核苷酸单元中的 C2'-C3' ,我们设计出了柔性 RNA 类似物的基础结构。利用炭疽杆菌核糖体蛋白 S8 与 RNA 合体复合物的晶体结构,我们通过广泛的全原子显式溶剂分子动力学模拟(400 ns,每个模拟 3 次),探索了修饰后的 RNA 合体-S8 蛋白复合物的结构、动态和能量方面,然后与对照系统进行了比较。我们的研究结果表明,与对照 RNA 合体相比,灵活的 RNA 合体通过更好的形状互补性和改进的 H 键网络增强了与 S8 蛋白的结合能力。这项研究为开发针对炭疽杆菌的 RNA 合道体疗法提供了宝贵的见解,为采取创新策略减轻这种可怕病原体的影响铺平了道路。
{"title":"Flexible RNA aptamers as inhibitors of Bacillus anthracis ribosomal protein S8: Insights from molecular dynamics simulations","authors":"Pradeep Pant","doi":"10.1016/j.bpc.2024.107273","DOIUrl":"10.1016/j.bpc.2024.107273","url":null,"abstract":"<div><p><em>Bacillus anthracis</em>, the causative agent of anthrax, poses a substantial threat to public health and national security, and is recognized as a potential bioweapon due to its capacity to form resilient spores with enduring viability. Inhalation or ingestion of even minute quantities of aerosolized spores can lead to widespread illness and fatalities, underscoring the formidable lethality of the bacterium. With an untreated mortality rate of 100%, <em>Bacillus anthracis</em> is a disconcerting candidate for bioterrorism. In response to this critical scenario, we employed state-of-the-art computational tools to conceive and characterize flexible RNA aptamer therapeutics tailored for anthrax. The foundational structure of the flexible RNA aptamers was designed by removing the C2’-C3’ in each nucleotide unit. Leveraging the crystal structure of <em>Bacillus anthracis</em> ribosomal protein S8 complexed with an RNA aptamer, we explored the structural, dynamic, and energetic aspects of the modified RNA aptamer – S8 protein complexes through extensive all-atom explicit-solvent molecular dynamics simulations (400 ns, 3 replicas each), followed by drawing comparisons to the control system. Our findings demonstrate the enhanced binding competencies of the flexible RNA aptamers to the S8 protein via better shape complementarity and improved H-bond network compared to the control RNA aptamer. This research offers valuable insights into the development of RNA aptamer therapeutics targeting <em>Bacillus anthracis</em>, paving the way for innovative strategies to mitigate the impact of this formidable pathogen.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the solubility and intermolecular interactions of biologically significant amino acids l-serine and L-cysteine in binary mixtures of H2O + DMF, H2O + DMSO and H2O + ACN in temperature range from T = 288.15 K to 308.15 K 在温度范围为 T = 288.15 K 至 308.15 K 的 H2O + DMF、H2O + DMSO 和 H2O + ACN 的二元混合物中,探索具有重要生物意义的氨基酸 l-丝氨酸和 L-半胱氨酸的溶解度和分子间相互作用。
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-27 DOI: 10.1016/j.bpc.2024.107272
Jit Chakraborty , Kalachand Mahali , A.M.A. Henaish , Jahangeer Ahmed , Saad M. Alshehri , Aslam Hossain , Sanjay Roy

In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent–solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.

本文研究了 l-丝氨酸和 L-半胱氨酸在 H2O + 二甲基甲酰胺(DMF)、H2O + 二甲基亚砜(DMSO)和 H2O + 乙腈(ACN)的二元混合物中的溶解度和分子间相互作用,温度范围为 T = 288.15 K 至 308.15 K。通过标准吉布斯能计算对溶解过程进行了评估,结果表明溶解稳定性顺序为:l-丝氨酸为水-ACN > 水-DMSO > 水-DMF,L-半胱氨酸为水-DMF > 水-DMSO > 水-ACN。这项研究还探讨了这些氨基酸对溶剂-溶剂相互作用的影响,揭示了二元溶剂混合物中化学熵和自结合模式的变化。
{"title":"Exploring the solubility and intermolecular interactions of biologically significant amino acids l-serine and L-cysteine in binary mixtures of H2O + DMF, H2O + DMSO and H2O + ACN in temperature range from T = 288.15 K to 308.15 K","authors":"Jit Chakraborty ,&nbsp;Kalachand Mahali ,&nbsp;A.M.A. Henaish ,&nbsp;Jahangeer Ahmed ,&nbsp;Saad M. Alshehri ,&nbsp;Aslam Hossain ,&nbsp;Sanjay Roy","doi":"10.1016/j.bpc.2024.107272","DOIUrl":"10.1016/j.bpc.2024.107272","url":null,"abstract":"<div><p>In the presented work, a study on the solubility and intermolecular interactions of <span>l</span>-serine and L-cysteine was carried out in binary mixtures of H<sub>2</sub>O + dimethylformamide (DMF), H<sub>2</sub>O + dimethylsulfoxide (DMSO), and H<sub>2</sub>O + acetonitrile (ACN) in the temperature range of <em>T</em> = 288.15 K to 308.15 K. <span>l</span>-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN &gt; water-DMSO &gt; water-DMF for <span>l</span>-serine, and water-DMF &gt; water-DMSO &gt; water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent–solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1