首页 > 最新文献

Biophysical chemistry最新文献

英文 中文
Enhancing amyloid beta inhibition and disintegration by natural compounds: A study utilizing spectroscopy, microscopy and cell biology 利用天然化合物增强淀粉样蛋白 beta 的抑制和分解作用:利用光谱学、显微镜和细胞生物学进行研究
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1016/j.bpc.2024.107291
Ranit Pariary , Gourav Shome , Tista Dutta , Anuradha Roy , Anup Kumar Misra , Kuladip Jana , Sanjeev Rastogi , Dulal Senapati , Atin Kumar Mandal , Anirban Bhunia

Amyloid proteins and peptides play a pivotal role in the etiology of various neurodegenerative diseases, including Alzheimer's disease (AD). Synthetically designed small molecules/ peptides/ peptidomimetics show promise towards inhibition of various kinds of amyloidosis. However, exploration of compounds isolated from natural extracts having such potential is lacking. Herein, we have investigated the repurposing of a traditional Indian medicine Lasunadya Ghrita (LG) in AD. LG is traditionally used to treat gut dysregulation and mental illnesses. Various extracts of LG were obtained, characterized, and analyzed for inhibition of Aβ aggregation. Biophysical studies show that the water extract of LG (LGWE) is more potent in inhibiting Aβ peptide aggregation and defibrillation of Aβ40/Aβ42 aggregates. NMR studies showed that LGWE binds to the central hydrophobic area and C-terminal residues of Aβ40/Aβ42, thereby modulating the aggregation, and reducing cell membrane damage. Additionally, LGWE rescues Aβ toxicity in neuronal SH-SY5Y cells evident from decreases in ROS generation, membrane leakage, cellular apoptosis, and calcium dyshomeostasis. Notably, LGWE is non-toxic to neuronal cells and mouse models. Our study thus delves into the mechanistic insights of a repurposed drug LGWE with the potential to ameliorate Aβ induced neuroinflammation.

淀粉样蛋白和肽在包括阿尔茨海默病(AD)在内的各种神经退行性疾病的病因中起着关键作用。合成设计的小分子/肽/拟肽化合物有望抑制各种淀粉样变性。然而,对从天然提取物中分离出的具有这种潜力的化合物还缺乏探索。在此,我们研究了印度传统药物Lasunadya Ghrita(LG)在AD中的再利用。LG传统上用于治疗肠道失调和精神疾病。研究人员获得了 LG 的各种提取物,对其进行了表征,并分析了其对 Aβ 聚集的抑制作用。生物物理研究表明,LG 的水提取物(LGWE)在抑制 Aβ 肽聚集和 Aβ40/Aβ42 聚集的去颤方面更有效。核磁共振研究表明,LGWE 可与 Aβ40/Aβ42 的中央疏水区和 C 端残基结合,从而调节聚集,减少细胞膜损伤。此外,LGWE 还能挽救神经元 SH-SY5Y 细胞中的 Aβ 毒性,这体现在 ROS 生成、膜渗漏、细胞凋亡和钙失衡的减少上。值得注意的是,LGWE 对神经细胞和小鼠模型无毒性。因此,我们的研究深入探讨了 LGWE 这种具有改善 Aβ 诱导的神经炎症潜力的再利用药物的机理。
{"title":"Enhancing amyloid beta inhibition and disintegration by natural compounds: A study utilizing spectroscopy, microscopy and cell biology","authors":"Ranit Pariary ,&nbsp;Gourav Shome ,&nbsp;Tista Dutta ,&nbsp;Anuradha Roy ,&nbsp;Anup Kumar Misra ,&nbsp;Kuladip Jana ,&nbsp;Sanjeev Rastogi ,&nbsp;Dulal Senapati ,&nbsp;Atin Kumar Mandal ,&nbsp;Anirban Bhunia","doi":"10.1016/j.bpc.2024.107291","DOIUrl":"10.1016/j.bpc.2024.107291","url":null,"abstract":"<div><p>Amyloid proteins and peptides play a pivotal role in the etiology of various neurodegenerative diseases, including Alzheimer's disease (AD). Synthetically designed small molecules/ peptides/ peptidomimetics show promise towards inhibition of various kinds of amyloidosis. However, exploration of compounds isolated from natural extracts having such potential is lacking. Herein, we have investigated the repurposing of a traditional Indian medicine Lasunadya Ghrita (LG) in AD. LG is traditionally used to treat gut dysregulation and mental illnesses. Various extracts of LG were obtained, characterized, and analyzed for inhibition of Aβ aggregation. Biophysical studies show that the water extract of LG (LG<sub>WE</sub>) is more potent in inhibiting Aβ peptide aggregation and defibrillation of Aβ40/Aβ42 aggregates. NMR studies showed that LG<sub>WE</sub> binds to the central hydrophobic area and C-terminal residues of Aβ40/Aβ42, thereby modulating the aggregation, and reducing cell membrane damage. Additionally, LG<sub>WE</sub> rescues Aβ toxicity in neuronal SH-SY5Y cells evident from decreases in ROS generation, membrane leakage, cellular apoptosis, and calcium dyshomeostasis. Notably, LG<sub>WE</sub> is non-toxic to neuronal cells and mouse models. Our study thus delves into the mechanistic insights of a repurposed drug LG<sub>WE</sub> with the potential to ameliorate Aβ induced neuroinflammation.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"313 ","pages":"Article 107291"},"PeriodicalIF":3.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced applications of Nanodiscs-based platforms for antibodies discovery 基于纳米盘的抗体发现平台的高级应用。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1016/j.bpc.2024.107290
Kristina O. Baskakova , Pavel K. Kuzmichev , Mikhail S. Karbyshev

Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.

膜蛋白(MPs)具有重要的生物学基础,是极具吸引力的药物发现目标,其中细胞表面受体、转运体、离子通道和膜结合酶尤其令人感兴趣。然而,由于面临诸多挑战,这些蛋白质在发现生物治疗药物方面的机会尚未得到充分利用。抗体具有良好的特异性和适应性,是靶向复杂膜蛋白的理想候选物。它们可以靶向特定膜蛋白的特定构象,并可被设计成各种形式。由于多种因素的影响,要产生针对这些蛋白质的特异而有效的抗体并非易事。抗原设计、抗体生成策略、先导优化技术和抗体模式都可以通过改进来应对这些挑战。合理利用最先进的脂质纳米粒子系统来回收膜抗原,简化了基于机制的治疗性抗体发现方法,已获得成功。尽管纳米脂质颗粒的生产面临诸多挑战,本综述仍明确强调了用抗体靶向复杂膜蛋白和设计膜蛋白抗原的优势。本文列举了一些脂质纳米粒子的成功实例,强调了治疗性抗体发现在这方面的潜力。通过进一步的研究和开发,我们可以克服这些挑战,充分释放针对复杂膜蛋白的治疗性抗体的潜力。
{"title":"Advanced applications of Nanodiscs-based platforms for antibodies discovery","authors":"Kristina O. Baskakova ,&nbsp;Pavel K. Kuzmichev ,&nbsp;Mikhail S. Karbyshev","doi":"10.1016/j.bpc.2024.107290","DOIUrl":"10.1016/j.bpc.2024.107290","url":null,"abstract":"<div><p>Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"313 ","pages":"Article 107290"},"PeriodicalIF":3.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Authentic hSAA related with AA amyloidosis: New method of purification, folding and amyloid polymorphism 与 AA 淀粉样变性有关的真品 hSAA:纯化、折叠和淀粉样蛋白多态性的新方法
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-10 DOI: 10.1016/j.bpc.2024.107293
Natalya Katina , Victor Marchenkov , Yulia Lapteva , Vitalii Balobanov , Nelly Ilyina , Natalya Ryabova , Stanislav Evdokimov , Mariya Suvorina , Alexey Surin , Anatoly Glukhov

The secondary amyloidosis of humans is caused by the formation of hSAA fibrils in different organs and tissues. Until now hSAA was thought to have low amyloidogenicity in vitro and the majority of SAA aggregation experiments were done using murine protein or hSAA non-pathogenic isoforms. In this work a novel purification method for recombinant hSAA was introduced, enabling to obtain monomeric protein capable of amyloid aggregation under physiological conditions. The stability and amyloid aggregation of hSAA have been examined using a wide range of biophysical methods. It was shown that the unfolding of monomeric protein occurs through the formation of molten globule-like intermediate state. Polymorphism of hSAA amyloids was discovered to depend on the solution pH. At pH 8.5, rapid protein aggregation occurs, which leads to the formation of twisted short fibrils. Even a slight decrease of the pH to 7.8 results in delayed aggregation with the formation of long straight amyloids composed of laterally associated protofilaments. Limited proteolysis experiments have shown that full-length hSAA is involved in the formation of intermolecular interactions in both amyloid polymorphs. The results obtained, and the experimental approach used in this study can serve as a basis for further research on the mechanism of authentic hSAA amyloid formation.

人类的继发性淀粉样变性是由 hSAA 纤维在不同器官和组织中的形成引起的。迄今为止,人们一直认为 hSAA 在体外的淀粉样蛋白致性较低,而且大多数 SAA 聚集实验都是使用鼠蛋白或 hSAA 非致病异构体进行的。在这项工作中,引入了一种新的重组 hSAA 纯化方法,从而获得了能够在生理条件下发生淀粉样聚集的单体蛋白。使用多种生物物理方法对 hSAA 的稳定性和淀粉样聚集进行了研究。研究表明,单体蛋白的解折是通过形成熔融球状中间状态来实现的。研究发现,hSAA淀粉样蛋白的多态性取决于溶液的pH值。在 pH 值为 8.5 时,蛋白质迅速聚集,形成扭曲的短纤维。即使 pH 值稍微降低到 7.8,也会导致延迟聚集,形成由横向关联的原丝组成的长直淀粉样。有限的蛋白水解实验表明,全长 hSAA 参与了两种淀粉样多态体中分子间相互作用的形成。本研究中获得的结果和使用的实验方法可作为进一步研究真正的 hSAA 淀粉样蛋白形成机制的基础。
{"title":"Authentic hSAA related with AA amyloidosis: New method of purification, folding and amyloid polymorphism","authors":"Natalya Katina ,&nbsp;Victor Marchenkov ,&nbsp;Yulia Lapteva ,&nbsp;Vitalii Balobanov ,&nbsp;Nelly Ilyina ,&nbsp;Natalya Ryabova ,&nbsp;Stanislav Evdokimov ,&nbsp;Mariya Suvorina ,&nbsp;Alexey Surin ,&nbsp;Anatoly Glukhov","doi":"10.1016/j.bpc.2024.107293","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107293","url":null,"abstract":"<div><p>The secondary amyloidosis of humans is caused by the formation of hSAA fibrils in different organs and tissues. Until now hSAA was thought to have low amyloidogenicity <em>in vitro</em> and the majority of SAA aggregation experiments were done using murine protein or hSAA non-pathogenic isoforms. In this work a novel purification method for recombinant hSAA was introduced, enabling to obtain monomeric protein capable of amyloid aggregation under physiological conditions. The stability and amyloid aggregation of hSAA have been examined using a wide range of biophysical methods. It was shown that the unfolding of monomeric protein occurs through the formation of molten globule-like intermediate state. Polymorphism of hSAA amyloids was discovered to depend on the solution pH. At pH 8.5, rapid protein aggregation occurs, which leads to the formation of twisted short fibrils. Even a slight decrease of the pH to 7.8 results in delayed aggregation with the formation of long straight amyloids composed of laterally associated protofilaments. Limited proteolysis experiments have shown that full-length hSAA is involved in the formation of intermolecular interactions in both amyloid polymorphs. The results obtained, and the experimental approach used in this study can serve as a basis for further research on the mechanism of authentic hSAA amyloid formation.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"313 ","pages":"Article 107293"},"PeriodicalIF":3.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the energy landscape of the lipid interactions of the Serotonin1A receptor 探究血清素 1A 受体脂质相互作用的能量分布。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-03 DOI: 10.1016/j.bpc.2024.107289
Madhura Mohole , Amit Naglekar , Durba Sengupta , Amitabha Chattopadhyay

G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1–4 kT, and timescales of 1–10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.

G 蛋白偶联受体(GPCR)是受脂质调控的跨膜蛋白,在细胞信号传导和药理学中发挥着核心作用。虽然膜脂质在 GPCR 功能中的作用已得到公认,但由于 GPCR 与脂质相互作用的复杂性,尚未从热力学角度对这些相互作用进行表征。在这项研究中,我们通过对嵌入复杂膜中的血清素 1A 受体进行粗粒度模拟,估算了脂质结合的能量学和动力学。我们发现,脂质与受体结合的能量为 1-4 kT,时间尺度为 1-10 μs。胆固醇、糖蛋白脂质 GM1、磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)脂质的能量最高,停留时间最长。接触概率的多指数拟合表明了不同的动态机制,分别对应于 ps、ns 和 μs 时间尺度,我们将其与环状、中间和非环状脂质位点相关联。尽管脂质结合的能量相对较弱,但其时间尺度却与高阻抗高度相对应。我们的研究结果突出表明,GPCR-脂质相互作用是由热力学相互作用和脂质结合的动力学特征共同驱动的。
{"title":"Probing the energy landscape of the lipid interactions of the Serotonin1A receptor","authors":"Madhura Mohole ,&nbsp;Amit Naglekar ,&nbsp;Durba Sengupta ,&nbsp;Amitabha Chattopadhyay","doi":"10.1016/j.bpc.2024.107289","DOIUrl":"10.1016/j.bpc.2024.107289","url":null,"abstract":"<div><p>G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin<sub>1A</sub> receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1–4 kT, and timescales of 1–10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"313 ","pages":"Article 107289"},"PeriodicalIF":3.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation 分离的 PADI4 自身瓜氨酸化区域与完整的蛋白质结合,而不会改变其无序构象。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-29 DOI: 10.1016/j.bpc.2024.107288
José L. Neira , Bruno Rizzuti , Olga Abian , Adrian Velazquez-Campoy

PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions – i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D1H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic koff rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.

PADI4 是参与精氨酸向瓜氨酸转化的一组酶的人类同工酶之一。它与几种类型的肿瘤以及牛皮癣、多发性硬化症或类风湿性关节炎等其他免疫性疾病的发生有关。PADI4 在其序列中的几个区域会自动产生瓜氨酸,即 Arg205、Arg212、Arg218 和 Arg383 残基的对应位置。我们希望研究瓜氨酸化分子是否会影响附近区域的构象及其与完整 PADI4 的结合。我们设计了两个系列的合成肽,分别包含这些区域的野生型或相对瓜氨酸化版本,即包含前三个精氨酸的第一系列肽和包含 Arg383 的第二系列肽。我们利用荧光、远紫外圆二色性(CD)和 2D1H NMR 对它们的构象特性进行了单独研究。此外,我们还利用等温滴定量热法(ITC)、荧光和生物层干涉测量法(BLI)以及分子对接模拟,研究了这两个系列中的野生型肽和瓜氨酸化肽与完整的 PADI4 的结合特性。我们观察到,瓜氨酸化并没有改变分离肽的局部构象倾向。然而,对于这两个系列中的所有肽,瓜氨酸化减慢了与 PADI4 结合反应的动力学 koff 速率,这可能是由于静电效应与精氨酸存在时的静电效应不同。在这两个系列中,PADI4 与未修饰肽的亲和力略大于与相应瓜氨酸化肽的亲和力,但它们都在相同的范围内,这表明在结合的热力学中不存在序列效应引起的相关变化。这些结果突显了 PADI4 自身瓜氨酸化的细节,更广泛地说,突显了其他瓜氨酸化酶或被动进行瓜氨酸化的蛋白质在体内可能发生的自身催化机制。
{"title":"Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation","authors":"José L. Neira ,&nbsp;Bruno Rizzuti ,&nbsp;Olga Abian ,&nbsp;Adrian Velazquez-Campoy","doi":"10.1016/j.bpc.2024.107288","DOIUrl":"10.1016/j.bpc.2024.107288","url":null,"abstract":"<div><p>PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions – i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D<img><sup>1</sup>H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic <em>k</em><sub>off</sub> rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"312 ","pages":"Article 107288"},"PeriodicalIF":3.3,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224001170/pdfft?md5=23633e3ad4eabeebf56c4c83eddd72bb&pid=1-s2.0-S0301462224001170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycerol-slaved 1H-1H NMR cross-relaxation in quasi-native lysozyme 准原生溶菌酶中的甘油奴役 1H-1H NMR 交叉舒张。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-28 DOI: 10.1016/j.bpc.2024.107286
Kirthi Joshi, Abani K. Bhuyan

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17–0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds ∼ η-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.

在甘油粘度可变的条件下,对溶菌酶进行了 1H-1H 核交叉松弛实验,以研究在 298 K、pH 值为 3.8 的条件下的分子内运动、自扩散和各向同性刚体旋转翻滚。分子内 1H-1H 交叉松弛率的动力学、核间空间距离的增加以及横向和旋转扩散系数都显示出分数粘度依赖性,幂律指数 κ 在 0.17-0.83 范围内。甘油扩散系数 Ds 与体积粘度本身的关系是非斯托克斯式的,与介质粘度有分数粘度依赖关系(Ds ∼ η-κ,κ ≈ 0.71)。甘油扩散的分数粘度依赖性与蛋白质的扩散和分子内交叉松弛率之间的一致性和相似性推断,甘油的松弛会减缓蛋白质的松弛。甘油将原生溶菌酶转化为准原生状态并不影响全局和内部波动都从属于甘油松弛的结论。
{"title":"Glycerol-slaved 1H-1H NMR cross-relaxation in quasi-native lysozyme","authors":"Kirthi Joshi,&nbsp;Abani K. Bhuyan","doi":"10.1016/j.bpc.2024.107286","DOIUrl":"10.1016/j.bpc.2024.107286","url":null,"abstract":"<div><p><sup>1</sup>H-<sup>1</sup>H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular <sup>1</sup>H-<sup>1</sup>H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent <em>κ</em> in the 0.17–0.83 range. The diffusion coefficient of glycerol <em>D</em><sub>s</sub> with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (<em>D</em><sub>s</sub> ∼ <em>η</em><sup>-<em>κ</em></sup>, <em>κ</em> ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"312 ","pages":"Article 107286"},"PeriodicalIF":3.3,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141533541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering 利用小角 X 射线散射法研究受渗透压影响的纳米级细胞内超微结构。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-27 DOI: 10.1016/j.bpc.2024.107287
Masaru Nakada , Junko Kanda , Hironobu Uchiyama , Kazuaki Matsumura

Although intracellular ultrastructures have typically been studied using microscopic techniques, it is difficult to observe ultrastructures at the submicron scale of living cells due to spatial resolution (fluorescence microscopy) or high vacuum environment (electron microscopy). We investigate the nanometer scale intracellular ultrastructures of living CHO cells in various osmolality using small-angle X-ray scattering (SAXS), and especially the structures of ribosomes, DNA double helix, and plasma membranes in-cell environment are observed. Ribosomes expand and contract in response to osmotic pressure, and the inter-ribosomal correlation occurs under isotonic and hyperosmolality. The DNA double helix is not dependent on the osmotic pressure. Under high osmotic pressure, the plasma membrane folds into form a multilamellar structure with a periodic length of about 6 nm. We also study the ultrastructural changes caused by formaldehyde fixation, freezing and heating.

尽管细胞内超微结构通常采用显微镜技术进行研究,但由于空间分辨率(荧光显微镜)或高真空环境(电子显微镜)的限制,很难观察到活细胞亚微米尺度的超微结构。我们利用小角 X 射线散射(SAXS)研究了活体 CHO 细胞在不同渗透压下的纳米尺度胞内超微结构,尤其是观察了细胞环境中核糖体、DNA 双螺旋和质膜的结构。核糖体随渗透压的变化而膨胀和收缩,在等渗和高渗条件下,核糖体之间发生关联。DNA 双螺旋不依赖于渗透压。在高渗透压下,质膜折叠成周期性长度约为 6 纳米的多层膜结构。我们还研究了甲醛固定、冷冻和加热引起的超微结构变化。
{"title":"Nanoscale intracellular ultrastructures affected by osmotic pressure using small-angle X-ray scattering","authors":"Masaru Nakada ,&nbsp;Junko Kanda ,&nbsp;Hironobu Uchiyama ,&nbsp;Kazuaki Matsumura","doi":"10.1016/j.bpc.2024.107287","DOIUrl":"10.1016/j.bpc.2024.107287","url":null,"abstract":"<div><p>Although intracellular ultrastructures have typically been studied using microscopic techniques, it is difficult to observe ultrastructures at the submicron scale of living cells due to spatial resolution (fluorescence microscopy) or high vacuum environment (electron microscopy). We investigate the nanometer scale intracellular ultrastructures of living CHO cells in various osmolality using small-angle X-ray scattering (SAXS), and especially the structures of ribosomes, DNA double helix, and plasma membranes <em>in-cell</em> environment are observed. Ribosomes expand and contract in response to osmotic pressure, and the inter-ribosomal correlation occurs under isotonic and hyperosmolality. The DNA double helix is not dependent on the osmotic pressure. Under high osmotic pressure, the plasma membrane folds into form a multilamellar structure with a periodic length of about 6 nm. We also study the ultrastructural changes caused by formaldehyde fixation, freezing and heating.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"312 ","pages":"Article 107287"},"PeriodicalIF":3.3,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry 了解人类胰岛淀粉样多肽的结构动态:离子迁移质谱法的进展与应用。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-25 DOI: 10.1016/j.bpc.2024.107285
Zijie Dai , Aisha Ben-Younis , Anna Vlachaki , Daniel Raleigh , Konstantinos Thalassinos

Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through “spectral fingerprints”. This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.

人胰岛淀粉样多肽(hIAPP)会形成淀粉样沉淀,导致胰岛β细胞死亡,被认为是II型糖尿病(T2DM)的标志。有证据表明,hIAPP在聚集过程中形成的早期低聚物是胰岛淀粉样蛋白诱导β细胞死亡的主要病理因素。然而,hIAPP 的自组装机制仍然难以捉摸,这主要是由于传统生物物理技术在探测早期结构动态低聚物的分布或捕捉其详细结构方面存在局限性。离子迁移质谱法(IM-MS)的出现使 hIAPP 早期低聚物在气相中的表征成为可能,为深入了解低聚物的形成机制以及结构信息与低聚物细胞毒性的相关性铺平了道路。IM-MS 提供的灵敏度和快速结构表征也为筛选 hIAPP 抑制剂、通过 "光谱指纹 "对其抑制模式进行分类带来了希望。本综述深入探讨了 IM-MS 在以下方面的应用:剖析 hIAPP 寡聚化的复杂步骤、研究金属离子的抑制影响以及探索不同 hIAPP 变体异质寡聚化的特征。我们强调了 IM-MS 作为高通量筛选 hIAPP 抑制剂的工具以及深入了解其作用模式的潜力。最后,我们讨论了串联 IM-MS 以及气相光谱与 IM-MS 结合的最新进展,这些技术有望为 hIAPP 低聚物提供更灵敏、分辨率更高的结构描述。这些信息可能有助于开创针对 T2DM 胰岛淀粉样变性的靶向治疗策略的新时代。
{"title":"Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry","authors":"Zijie Dai ,&nbsp;Aisha Ben-Younis ,&nbsp;Anna Vlachaki ,&nbsp;Daniel Raleigh ,&nbsp;Konstantinos Thalassinos","doi":"10.1016/j.bpc.2024.107285","DOIUrl":"10.1016/j.bpc.2024.107285","url":null,"abstract":"<div><p>Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through “spectral fingerprints”. This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"312 ","pages":"Article 107285"},"PeriodicalIF":3.3,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224001145/pdfft?md5=866ee42ad142b7d7508377247543f8c8&pid=1-s2.0-S0301462224001145-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane lateral organization from potential energy disconnectivity graph 从势能断开图看薄膜横向组织。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-21 DOI: 10.1016/j.bpc.2024.107284
Sahithya Sridharan Iyer , Anand Srivastava

Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.

要了解生物分子的热力学和动力学特性,就必须阐明其复杂的能量景观。能量图谱的断开图分析提供了一个框架,可将多维图谱映射到二维图谱上,同时保留能量图谱的关键特征。一些研究表明,断开图的结构或形状与蛋白质和核酸分子的功能直接相关。在这篇综述中,我们将讨论如何将势能面的断开分析扩展到脂质分子,以收集有关膜组织的重要信息。断开图的形状可用于预测多组分脂质双分子层的横向组织。我们希望这篇综述能鼓励膜生物物理学家常规使用断开图来预测脂质的横向组织。
{"title":"Membrane lateral organization from potential energy disconnectivity graph","authors":"Sahithya Sridharan Iyer ,&nbsp;Anand Srivastava","doi":"10.1016/j.bpc.2024.107284","DOIUrl":"10.1016/j.bpc.2024.107284","url":null,"abstract":"<div><p>Understanding the thermodynamic and kinetic properties of biomolecules requires elucidation of their complex energy landscape. A disconnectivity graph analysis of the energy landscape provides a framework for mapping the multi-dimensional landscape onto a two-dimensional representation while preserving the key features of the energy landscape. Several studies show that the structure or shape of the disconnectity graph is directly associated with the function of protein and nucleic acid molecules. In this review, we discuss how disconnectivity analysis of the potential energy surface can be extended to lipid molecules to glean important information about membrane organization. The shape of the disconnectivity graphs can be used to predict the lateral organization of multi-component lipid bilayer. We hope that this review encourages the use of disconnectivity graphs routinely by membrane biophysicists to predict the lateral organization of lipids.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"313 ","pages":"Article 107284"},"PeriodicalIF":3.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study 外部静态 EF 对 5-HT1A 受体构象转变的影响:分子动力学模拟研究。
IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.bpc.2024.107283
Lulu Guan , Jingwang Tan , Bote Qi , Yukang Chen , Meng Cao , Qingwen Zhang , Yu Zou

The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.

血清素受体亚型 1A(5-HT1AR)是 G 蛋白偶联受体(GPCR)家族中的一种,与多种神经系统疾病有关。在分子水平上了解 5-HT1AR 的激活和失活机制对于发现治疗多种疾病的新型疗法至关重要。最近,人们越来越认识到外部电场(EF)在影响生物大分子结构和活性方面的作用。在这项研究中,我们利用分子动力学(MD)模拟研究了 5-HT1AR 活性态的构象特征,并探讨了 0.02 V/nm 的外部静态电场对 5-HT1AR 活性态的影响。结果表明,5-HT1AR 的活性状态保持了原生结构,而外加静态外场因子导致了 5-HT1AR 结构的改变,尤其是诱导了跨膜螺旋 6(TM6)的内向移动。此外,它还扰乱了与 CWxP、DRY、PIF 和 NPxxY 动机中的激活相关的构象转换,从而使其倾向于非活性构象。我们还发现,EF 导致了 5-HT1AR 偶极矩的整体增加,包括 TM6 和关键氨基酸。对 TM6 构象特性的分析表明,在 EF 条件下,二级结构发生了变化,溶剂暴露减少。在 EF 条件下,5-HT1AR 与膜脂双层的相互作用也发生了改变。我们的研究结果揭示了外部 EF 诱导 5-HT1AR 构象转变的分子机制,为基于结构的 EF 应用于 GPCRs 的前景提供了潜在的新见解。
{"title":"Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study","authors":"Lulu Guan ,&nbsp;Jingwang Tan ,&nbsp;Bote Qi ,&nbsp;Yukang Chen ,&nbsp;Meng Cao ,&nbsp;Qingwen Zhang ,&nbsp;Yu Zou","doi":"10.1016/j.bpc.2024.107283","DOIUrl":"10.1016/j.bpc.2024.107283","url":null,"abstract":"<div><p>The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"312 ","pages":"Article 107283"},"PeriodicalIF":3.3,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1