首页 > 最新文献

Biophysical chemistry最新文献

英文 中文
Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway 通过磷酸化介导的非经典途径激活 G 蛋白的机制启示
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-05 DOI: 10.1016/j.bpc.2024.107234
Kunal Shewani , Midhun K. Madhu , Rajesh K. Murarka

Activation of heterotrimeric G-proteins (Gαβγ) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of Gα that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce Gα activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the Gαi3, a subtype of Gα-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix αF, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated Gαi3. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.

受体酪氨酸激酶(RTKs)下游的异三聚体 G 蛋白(Gαβγ)的激活是 G 蛋白偶联受体(GPCRs)和 RTKs 介导的信号通路之间一种公认的串扰。GPCR 在 Gα 的典型激活过程中充当鸟嘌呤交换因子(GEF),促进 GDP 与 GTP 的交换,而 RTK 磷酸化诱导 Gα 激活的机制仍不清楚。最近的实验研究发现,表皮生长因子受体(EGFR)是一种著名的 RTK,它能使螺旋结构域酪氨酸残基 Y154 和 Y155 磷酸化,加速 Gα 蛋白亚型 Gαi3 的 GDP 释放。我们利用完善的元动力学和广泛的无偏分子动力学模拟,捕捉了 GDP 释放事件,并通过马尔可夫状态模型确定了结合态和非结合态之间的中间产物。除了减弱结构域界面的盐桥之外,磷酸化还诱导了螺旋 αF 的展开,从而增加了铰链区附近的柔韧性,使磷酸化 Gαi3 的结构域之间的距离更大。虽然磷酸化系统中更大的结构域间距为核苷酸提供了畅通无阻的路径,但 GDP 的加速释放归因于 P 环、开关 1 和开关 2 等几个保守区域波动的增加。总之,这项研究从原子角度揭示了 RTK 磷酸化诱导 G 蛋白活化的过程,并确定了这一过程中涉及的特定结构基团。从这项研究中获得的知识可以为靶向非经典信号通路和开发治疗策略奠定基础,以应对与 G 蛋白信号失调相关的疾病。
{"title":"Mechanistic insights into G-protein activation via phosphorylation mediated non-canonical pathway","authors":"Kunal Shewani ,&nbsp;Midhun K. Madhu ,&nbsp;Rajesh K. Murarka","doi":"10.1016/j.bpc.2024.107234","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107234","url":null,"abstract":"<div><p>Activation of heterotrimeric G-proteins (<span><math><mi>G</mi><mi>αβγ</mi></math></span>) downstream to receptor tyrosine kinases (RTKs) is a well-established crosstalk between the signaling pathways mediated by G-protein coupled receptors (GPCRs) and RTKs. While GPCR serves as a guanine exchange factor (GEF) in the canonical activation of <span><math><mi>G</mi><mi>α</mi></math></span> that facilitates the exchange of GDP for GTP, the mechanism through which RTK phosphorylations induce <span><math><mi>G</mi><mi>α</mi></math></span> activation remains unclear. Recent experimental studies revealed that the epidermal growth factor receptor (EGFR), a well-known RTK, phosphorylates the helical domain tyrosine residues Y154 and Y155 and accelerates the GDP release from the <span><math><mi>G</mi><mi>α</mi><mi>i</mi><mn>3</mn></math></span>, a subtype of <span><math><mi>G</mi><mi>α</mi></math></span>-protein. Using well-tempered metadynamics and extensive unbiased molecular dynamics simulations, we captured the GDP release event and identified the intermediates between bound and unbound states through Markov state models. In addition to weakened salt bridges at the domain interface, phosphorylations induced the unfolding of helix <span><math><mi>α</mi><mi>F</mi></math></span>, which contributed to increased flexibility near the hinge region, facilitating a greater distance between domains in the phosphorylated <span><math><mi>G</mi><mi>α</mi><mi>i</mi><mn>3</mn></math></span>. Although the larger domain separation in the phosphorylated system provided an unobstructed path for the nucleotide, the accelerated release of GDP was attributed to increased fluctuations in several conserved regions like P-loop, switch 1, and switch 2. Overall, this study provides atomistic insights into the activation of G-proteins induced by RTK phosphorylations and identifies the specific structural motifs involved in the process. The knowledge gained from the study could establish a foundation for targeting non-canonical signaling pathways and developing therapeutic strategies against the ailments associated with dysregulated G-protein signaling.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural analysis of ATP bound to the F1-ATPase β-subunit monomer by solid-state NMR- insight into the hydrolysis mechanism in F1 通过固态核磁共振分析与 F1-ATP 酶 β 亚基单体结合的 ATP 结构--深入了解 F1 的水解机制
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-03 DOI: 10.1016/j.bpc.2024.107232
Yasuto Todokoro , Yoshiyuki Miyasaka , Hiromasa Yagi , Masatsune Kainosho , Toshimichi Fujiwara , Hideo Akutsu

ATP-hydrolysis-associated conformational change of the β-subunit during the rotation of F1-ATPase (F1) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F1β-subunit monomer (β) was analyzed by solid-state NMR. The adenosine conformation of ATP-β was similar to that of ATP analog in F1 crystal structures. 31P chemical shift analysis showed that the Pα and Pβ conformations of ATP-β are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-β than in ATP analog in F1 crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-β conformation is known to be more closed than the closed form in F1 crystal structures. In view of the cryo-EM results, ATP-β would be a model of the most closed β-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F1 rotation.

利用低温电子显微镜(cryo-EM)讨论了F1-ATP酶(F1)旋转过程中β亚基与ATP水解相关的构象变化。由于值得通过另一种方法进一步研究 ATP 在催化亚基上的构象,因此采用固态核磁共振分析了与 F1β 亚基单体(β)结合的 ATP 结构。ATP-β 的腺苷构象与 F1 晶体结构中的 ATP 类似物相似。31P 化学位移分析表明,ATP-β 的 Pα 和 Pβ 构象分别为高-反式和反-反式。与 F1 晶体中的 ATP 类似物相比,ATP-β 中的三磷酸链延伸得更长。这似乎是 ATP 水解前的状态。此外,已知 ATP-β 的构象比 F1 晶体结构中的封闭形式更为封闭。鉴于低温电子显微镜的结果,ATP-β 将是最封闭的 β 亚基模型,在 F1 旋转的水解行程中,ATP 已准备好进行水解。
{"title":"Structural analysis of ATP bound to the F1-ATPase β-subunit monomer by solid-state NMR- insight into the hydrolysis mechanism in F1","authors":"Yasuto Todokoro ,&nbsp;Yoshiyuki Miyasaka ,&nbsp;Hiromasa Yagi ,&nbsp;Masatsune Kainosho ,&nbsp;Toshimichi Fujiwara ,&nbsp;Hideo Akutsu","doi":"10.1016/j.bpc.2024.107232","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107232","url":null,"abstract":"<div><p>ATP-hydrolysis-associated conformational change of the <em>β</em>-subunit during the rotation of F<sub>1</sub>-ATPase (F<sub>1</sub>) has been discussed using cryo-electron microscopy (cryo-EM). Since it is worthwhile to further investigate the conformation of ATP at the catalytic subunit through an alternative approach, the structure of ATP bound to the F<sub>1</sub><em>β</em>-subunit monomer (<em>β</em>) was analyzed by solid-state NMR. The adenosine conformation of ATP-<em>β</em> was similar to that of ATP analog in F<sub>1</sub> crystal structures. <sup>31</sup>P chemical shift analysis showed that the P<sup>α</sup> and P<sup>β</sup> conformations of ATP-<em>β</em> are gauche-trans and trans-trans, respectively. The triphosphate chain is more extended in ATP-<em>β</em> than in ATP analog in F<sub>1</sub> crystals. This appears to be in the state just before ATP hydrolysis. Furthermore, the ATP-<em>β</em> conformation is known to be more closed than the closed form in F<sub>1</sub> crystal structures. In view of the cryo-EM results, ATP-<em>β</em> would be a model of the most closed <em>β</em>-subunit with ATP ready for hydrolysis in the hydrolysis stroke of the F<sub>1</sub> rotation.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into the interaction of emodin with lipid membranes 大黄素与脂膜相互作用的新发现
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-04-02 DOI: 10.1016/j.bpc.2024.107233
Antonio R. da Cunha , Evandro L. Duarte , Gabriel S. Vignoli Muniz , Kaline Coutinho , M. Teresa Lamy

Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM have a high affinity for DMPC: the binding of EM to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, Kp = (1.4 ± 0.3)x103. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, Kp = (3.2 ± 0.3)x103. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM, present on different microregions of an organism, as local pH values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.

大黄素是一种存在于自然界的天然蒽醌衍生物,作为一种中药材广为人知。在此,我们采用不同的技术对大黄素与 1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱(DMPC)脂膜的分隔、位置和相互作用进行了实验研究。我们的研究考虑了大黄素的中性形式(EMH)及其阴离子/去质子化形式(EM-),以及它们分别在凝胶相和流体相与密度较高和较低的脂膜 DMPC 的相互作用。尽管 DSC 结果表明,EMH 和 EM- 这两种物质同样会破坏 DMPC 双层的堆积,但自旋标签清楚地表明,EMH 在凝胶和流体 DMPC 中都会造成更强的双层破坏。 荧光光谱显示,EMH 和 EM- 对 DMPC 都有很高的亲和力:发现 EM- 与凝胶和流体 DMPC 双层的结合非常相似,与 EMH 与凝胶 DMPC 的结合相似,Kp = (1.4 ± 0.3)x103 。然而,EMH 与流体 DMPC 双层膜的结合力要强两倍,Kp = (3.2 ± 0.3)x103。自旋标签和光学吸收光谱表明,大黄素位于脂质双分子层表面附近,并表明 EM- 比 EMH 更接近脂质/水界面,正如预期的那样。由于局部 pH 值会发生显著变化,本研究为目前了解 EMH 和 EM- 这两种大黄素对生物体不同微区的影响做出了相关贡献,它们会在中性脂膜上造成或多或少的包装,分别像凝胶和流体 DMPC,并可扩展到生物膜的脂质域。
{"title":"New insights into the interaction of emodin with lipid membranes","authors":"Antonio R. da Cunha ,&nbsp;Evandro L. Duarte ,&nbsp;Gabriel S. Vignoli Muniz ,&nbsp;Kaline Coutinho ,&nbsp;M. Teresa Lamy","doi":"10.1016/j.bpc.2024.107233","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107233","url":null,"abstract":"<div><p>Emodin is a natural anthraquinone derivative found in nature, widely known as an herbal medicine. Here, the partition, location, and interaction of emodin with lipid membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are experimentally investigated with different techniques. Our studies have considered the neutral form of emodin (EMH) and its anionic/deprotonated form (EM<sup>−</sup>), and their interaction with a more and less packed lipid membrane, DMPC at the gel and fluid phases, respectively. Though DSC results indicate that the two species, EMH and EM<sup>−</sup>, similarly disrupt the packing of DMPC bilayers, spin labels clearly show that EMH causes a stronger bilayer disruption, both in gel and fluid DMPC. Fluorescence spectroscopy shows that both EMH and EM<sup>−</sup> have a high affinity for DMPC: the binding of EM<sup>−</sup> to both gel and fluid DMPC bilayers was found to be quite similar, and similar to that of EMH to gel DMPC, <em>K</em><sub>p</sub> = (1.4 ± 0.3)<em>x</em>10<sup>3</sup>. However, EMH was found to bind twice more strongly to fluid DMPC bilayers, <em>K</em><sub>p</sub> = (3.2 ± 0.3)<em>x</em>10<sup>3</sup>. Spin labels and optical absorption spectroscopy indicate that emodin is located close to the lipid bilayer surface, and suggest that EM<sup>−</sup> is closer to the lipid/water interface than EMH, as expected. The present studies present a relevant contribution to the current understanding of the effect the two species of emodin, EMH and EM<sup>−</sup>, present on different microregions of an organism, as local <em>pH</em> values can vary significantly, can cause in a neutral lipid membrane, either more or less packed, liked gel and fluid DMPC, respectively, and could be extended to lipid domains of biological membranes.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140347563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches 用计算方法揭示脂质纳米盘的结构、自组装和动力学特性
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-29 DOI: 10.1016/j.bpc.2024.107231
Beibei Wang , D. Peter Tieleman

Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.

纳米盘技术正越来越多地用于膜蛋白的结构、生物化学和生物物理研究。计算方法揭示了纳米盘组装、结构和动力学的许多重要特征。因此,我们回顾了计算方法,特别是分子建模和分子动力学(MD)模拟在表征纳米圆盘方面的应用,包括纳米圆盘的结构模型、组装和分解、建模协议、结构特性和动力学以及蛋白质-脂质在纳米圆盘中的相互作用。我们期待着在未来开展更多有关纳米盘的令人惊叹的计算研究。
{"title":"The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches","authors":"Beibei Wang ,&nbsp;D. Peter Tieleman","doi":"10.1016/j.bpc.2024.107231","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107231","url":null,"abstract":"<div><p>Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting the effect of ALS mutation S375G on the conformational properties and aggregation dynamics of TDP-43370-375 fragment 剖析 ALS 突变 S375G 对 TDP-43370-375 片段构象特性和聚集动力学的影响
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-29 DOI: 10.1016/j.bpc.2024.107230
Zhengdong Xu , Jianxin Zhang , Jiaxing Tang , Yehong Gong , Yu Zou , Qingwen Zhang

The aggregation of transactive response deoxyribonucleic acid (DNA) binding protein of 43 kDa (TDP-43) into ubiquitin-positive inclusions is closely associated with amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and chronic traumatic encephalopathy. The 370–375 fragment of TDP-43 (370GNNSYS375, TDP-43370-375), the amyloidogenic hexapeptides, can be prone to forming pathogenic amyloid fibrils with the characteristic of steric zippers. Previous experiments reported the ALS-associated mutation, serine 375 substituted by glycine (S375G) is linked to early onset disease and protein aggregation of TDP-43. Based on this, it is necessary to explore the underlying molecular mechanisms. By utilizing all-atom molecular dynamics (MD) simulations of 102 μs in total, we investigated the impact of S375G mutation on the conformational ensembles and oligomerization dynamics of TDP-43370-375 peptides. Our replica exchange MD simulations show that S375G mutation could promote the unstructured conformation formation and induce peptides to form a loose packed oligomer, thus inhibiting the aggregation of TDP-43370-375. Further analyses suggest that S375G mutation displays a reduction effect on the number of total hydrogen bonds and contacts among TDP-43370-375 peptides. Hydrogen bonding and polar interactions among TDP-43370-375 peptides, as well as Y374-Y374 π-π stacking interaction, are attenuated by S375G mutation. Additional microsecond MD simulations demonstrate that S375G mutation could prohibit the conformational conversion to β-structure-rich aggregates and possess an inhibitory effect on the oligomerization dynamics of TDP-43370-375. This study offers for the first time of molecular insights into the S375G mutation affecting the aggregation of TDP-43370-375 at the atomic level, and may open new avenues in the development of future site-specific mutation therapeutics.

转录反应脱氧核糖核酸(DNA)结合蛋白 43 kDa(TDP-43)聚集成泛素阳性包涵体与肌萎缩侧索硬化症(ALS)、额颞叶变性和慢性创伤性脑病密切相关。TDP-43的370-375片段(370GNNSYS375,TDP-43370-375)是致淀粉样蛋白的六肽,容易形成具有立体拉链特征的致病性淀粉样纤维。之前的实验报告显示,ALS 相关突变(丝氨酸 375 被甘氨酸取代(S375G))与 TDP-43 的早发疾病和蛋白聚集有关。在此基础上,有必要探索其潜在的分子机制。通过总计 102 μs 的全原子分子动力学(MD)模拟,我们研究了 S375G 突变对 TDP-43370-375 多肽构象组合和寡聚动力学的影响。我们的复制交换 MD 模拟结果表明,S375G 突变能促进非结构化构象的形成,诱导多肽形成松散的低聚物,从而抑制 TDP-43370-375 的聚集。进一步分析表明,S375G 突变对 TDP-43370-375 肽间的氢键和接触总数有减少作用。S375G 突变削弱了 TDP-43370-375 肽间的氢键和极性相互作用以及 Y374-Y374 π-π 堆积相互作用。其他微秒级 MD 模拟证明,S375G 突变可阻止构象转化为富含 β 结构的聚集体,并对 TDP-43370-375 的低聚物动力学产生抑制作用。这项研究首次在原子水平上揭示了影响 TDP-43370-375 聚集的 S375G 突变的分子机制,为未来开发特定位点突变疗法开辟了新途径。
{"title":"Dissecting the effect of ALS mutation S375G on the conformational properties and aggregation dynamics of TDP-43370-375 fragment","authors":"Zhengdong Xu ,&nbsp;Jianxin Zhang ,&nbsp;Jiaxing Tang ,&nbsp;Yehong Gong ,&nbsp;Yu Zou ,&nbsp;Qingwen Zhang","doi":"10.1016/j.bpc.2024.107230","DOIUrl":"10.1016/j.bpc.2024.107230","url":null,"abstract":"<div><p>The aggregation of transactive response deoxyribonucleic acid (DNA) binding protein of 43 kDa (TDP-43) into ubiquitin-positive inclusions is closely associated with amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration, and chronic traumatic encephalopathy. The 370–375 fragment of TDP-43 (<sup>370</sup>GNNSYS<sup>375</sup>, TDP-43<sub>370-375</sub>), the amyloidogenic hexapeptides, can be prone to forming pathogenic amyloid fibrils with the characteristic of steric zippers. Previous experiments reported the ALS-associated mutation, serine 375 substituted by glycine (S375G) is linked to early onset disease and protein aggregation of TDP-43. Based on this, it is necessary to explore the underlying molecular mechanisms. By utilizing all-atom molecular dynamics (MD) simulations of 102 μs in total, we investigated the impact of S375G mutation on the conformational ensembles and oligomerization dynamics of TDP-43<sub>370-375</sub> peptides. Our replica exchange MD simulations show that S375G mutation could promote the unstructured conformation formation and induce peptides to form a loose packed oligomer, thus inhibiting the aggregation of TDP-43<sub>370-375</sub>. Further analyses suggest that S375G mutation displays a reduction effect on the number of total hydrogen bonds and contacts among TDP-43<sub>370-375</sub> peptides. Hydrogen bonding and polar interactions among TDP-43<sub>370-375</sub> peptides, as well as Y374-Y374 π-π stacking interaction, are attenuated by S375G mutation. Additional microsecond MD simulations demonstrate that S375G mutation could prohibit the conformational conversion to β-structure-rich aggregates and possess an inhibitory effect on the oligomerization dynamics of TDP-43<sub>370-375</sub>. This study offers for the first time of molecular insights into the S375G mutation affecting the aggregation of TDP-43<sub>370-375</sub> at the atomic level, and may open new avenues in the development of future site-specific mutation therapeutics.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140403921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing pharmaceutically important amino acids L-isoleucine and L-tyrosine Solubilities: Unraveling the solvation thermodynamics in diverse mixed solvent systems 探索具有重要药用价值的氨基酸 L-异亮氨酸和 L-酪氨酸的溶解度:揭示不同混合溶剂体系中的溶解热力学
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-27 DOI: 10.1016/j.bpc.2024.107229
Jit Chakraborty , Kalachand Mahali , A.M.A. Henaish , Jahangeer Ahmed , Saad M. Alshehri , Sanjay Roy

The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.

该研究特别考察了 L-异亮氨酸和 L-酪氨酸在水混合溶剂系统(DMF、DMSO 和 ACN)中的溶解度,探索氨基酸在复杂环境中的行为。实验方法优先考虑细致的溶剂纯化,以确保结果可靠。这项研究探索了溶解度数据,揭示了所选混合溶剂体系中影响溶解度的温度依赖性趋势和错综复杂的相互作用。研究强调了热力学特性、溶剂-溶剂相互作用以及氨基酸结构对溶解度模式的影响。研究的广泛意义突出表明,了解氨基酸在不同溶剂环境中的行为与化妆品和制药行业的潜在应用息息相关。不同的溶解度模式有助于深入了解 L- 异亮氨酸和 L- 酪氨酸在不同溶剂体系中的溶液稳定性和相互作用。总之,研究结果表明,通过深入了解 L-异亮氨酸和 L-酪氨酸在混合溶剂体系中的溶解度,可以提高它们在各行各业中的利用率。这项研究拓展了我们对氨基酸行为的认识,为依赖蛋白质产品和技术的行业的进步铺平了道路。
{"title":"Probing pharmaceutically important amino acids L-isoleucine and L-tyrosine Solubilities: Unraveling the solvation thermodynamics in diverse mixed solvent systems","authors":"Jit Chakraborty ,&nbsp;Kalachand Mahali ,&nbsp;A.M.A. Henaish ,&nbsp;Jahangeer Ahmed ,&nbsp;Saad M. Alshehri ,&nbsp;Sanjay Roy","doi":"10.1016/j.bpc.2024.107229","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107229","url":null,"abstract":"<div><p>The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance 金属β-内酰胺酶抑制剂:对抗抗生素耐药性的持续挑战
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-25 DOI: 10.1016/j.bpc.2024.107228
Su-Jin Kang , Do-Hee Kim , Bong-Jin Lee

β-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of β-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the β-lactam ring, is the major mechanism for bacterial resistance to β-lactams. In particular, among class A, B, C and D β-lactamases, metallo-β-lactamases (MBLs, class B β-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat β-lactamase-mediated resistance, great efforts have been made to develop β-lactamase inhibitors that restore the activity of β-lactams. Some β-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-β-lactamases (SBLs, class A, C, and D β-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of β-lactamase and mechanisms by which β-lactam antibiotics are inactivated, but also the research finding on β-lactamase inhibitors targeting these enzymes. These detailed information on β-lactamases and their inhibitors could give valuable information for novel β-lactamase inhibitors design.

β-内酰胺类抗生素是最成功、最常用的抗菌药物,但这些药物耐药性的出现已成为全球健康的威胁。病原体产生的β-内酰胺酶能水解β-内酰胺环的酰胺键,这种酶的表达是细菌对β-内酰胺类药物产生耐药性的主要机制。特别是在 A、B、C 和 D 类 β-内酰胺酶中,金属-β-内酰胺酶(MBLs,B 类 β-内酰胺酶)被认为是导致革兰氏阴性细菌产生耐药性的关键因素。为了消除β-内酰胺酶介导的耐药性,人们一直在努力开发能恢复β-内酰胺活性的β-内酰胺酶抑制剂。一些β-内酰胺酶抑制剂,如二氮杂双环辛烷(DBO)和硼酸衍生物,也已获得美国食品及药物管理局的批准。临床上使用的抑制剂主要能灭活丝氨酸-β-内酰胺酶(SBLs,A、C 和 D 类 β-内酰胺酶),但迄今为止还不能有效抑制 MBLs。为了开发特别针对 MBLs 的新抑制剂,人们进行了各种尝试。根据对 MBL 酶的结构和机理研究,近年来推出了几种 MBL 候选抑制剂,包括处于第三阶段的替尼巴坦和处于第一阶段的 Xeruborbactam。然而,设计出对所有亚类 MBL 都有效的强效抑制剂仍然极具挑战性。本综述不仅总结了β-内酰胺酶的类型和β-内酰胺类抗生素失活的机制,还介绍了针对这些酶的β-内酰胺酶抑制剂的研究成果。这些有关β-内酰胺酶及其抑制剂的详细信息可为新型β-内酰胺酶抑制剂的设计提供宝贵信息。
{"title":"Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance","authors":"Su-Jin Kang ,&nbsp;Do-Hee Kim ,&nbsp;Bong-Jin Lee","doi":"10.1016/j.bpc.2024.107228","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107228","url":null,"abstract":"<div><p>β-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of β-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the β-lactam ring, is the major mechanism for bacterial resistance to β-lactams. In particular, among class A, B, C and D β-lactamases, metallo-β-lactamases (MBLs, class B β-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat β-lactamase-mediated resistance, great efforts have been made to develop β-lactamase inhibitors that restore the activity of β-lactams. Some β-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-β-lactamases (SBLs, class A, C, and D β-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of β-lactamase and mechanisms by which β-lactam antibiotics are inactivated, but also the research finding on β-lactamase inhibitors targeting these enzymes. These detailed information on β-lactamases and their inhibitors could give valuable information for novel β-lactamase inhibitors design.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140320858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications 改进核酸适配体的合成和结合亲和力及其治疗和诊断应用
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-21 DOI: 10.1016/j.bpc.2024.107218
Malaya Mili , Vinay Bachu , Pooja Rani Kuri , Naveen Kumar Singh , Pranab Goswami

Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.

与传统抗体相比,核酸适配体具有体积小、合成简单且成本低廉、靶标范围广以及在不同环境条件下稳定性高等优点,因此作为识别分子吸引了全球分析和医药科学家的关注。可以对这些识别分子进行化学修饰,使其能够抵抗血清中的核酸酶作用,减少肾素的快速清除,提高目标亲和力和选择性,并使其能够与支持系统进行化学共轭,从而促进其选择性应用。本综述重点介绍高效拟合物的开发及其在临床诊断和治疗中的应用。基于适配体的感染性和非感染性疾病诊断取得了重大进展。同时,在治疗应用方面,灵敏配体也取得了令人鼓舞的进展,它们在诊断癌症、神经退行性疾病、微生物感染和成像方面的应用就是明证。本综述还介绍了许多基于适配体的商业产品临床试验的最新进展。结语中总结了这一主题的主要发展和关键问题。
{"title":"Improving synthesis and binding affinities of nucleic acid aptamers and their therapeutics and diagnostic applications","authors":"Malaya Mili ,&nbsp;Vinay Bachu ,&nbsp;Pooja Rani Kuri ,&nbsp;Naveen Kumar Singh ,&nbsp;Pranab Goswami","doi":"10.1016/j.bpc.2024.107218","DOIUrl":"10.1016/j.bpc.2024.107218","url":null,"abstract":"<div><p>Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140271378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
H2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments 压力下的 H2 生成:[FeFe]-氢化酶在高压环境中显示出强大的稳定性
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-11 DOI: 10.1016/j.bpc.2024.107217
Kristina Edenharter , Michel W. Jaworek , Vera Engelbrecht , Roland Winter , Thomas Happe

Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.

氢化酶是一组催化 H2 转化为质子和电子以及逆反应的多种金属酶。由[FeFe]-氢化酶组成的亚群是微生物中催化 H2 转化最有效的酶。我们采用傅立叶变换红外光谱法和高压停流法,结合快速紫外/可见光检测法,测定了两种[FeFe]-氢化酶在高温高压条件下的稳定性和活性。我们的数据显示,这两种酶在高温下具有稳定性,并且在解折温度下活性仍在增加。值得注意的是,这两种酶都显示出其结构具有非常高的压力稳定性,甚至可以达到几千巴的压力。它们的高压力稳定性使酶的活性可高达2千巴,这大大超过了地球深海和海底下生物所遇到的压力极限。
{"title":"H2 production under stress: [FeFe]‑hydrogenases reveal strong stability in high pressure environments","authors":"Kristina Edenharter ,&nbsp;Michel W. Jaworek ,&nbsp;Vera Engelbrecht ,&nbsp;Roland Winter ,&nbsp;Thomas Happe","doi":"10.1016/j.bpc.2024.107217","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107217","url":null,"abstract":"<div><p>Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H<sub>2</sub> into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]‑hydrogenases, which are the most efficient enzymes of microbes for catalytic H<sub>2</sub> conversion. We have determined the stability and activity of two [FeFe]‑hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224000462/pdfft?md5=63a9b00b8624f7892908de829beda053&pid=1-s2.0-S0301462224000462-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the bio-crystallization: An insight to therapeutic relevance 了解生物结晶:洞察治疗相关性
IF 3.8 3区 生物学 Q2 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-03-05 DOI: 10.1016/j.bpc.2024.107216
Vivek Pandey , Tejasvi Pandey

In the realm of biomedical engineering and materials science, the synthesis of biomaterials plays a pivotal role in advancing therapeutic strategies for regeneration of tissues. The deliberate control of crystallization processes in biomaterial synthesis has emerged as a key avenue for tailoring the properties of these materials, enabling the design of innovative solutions for a wide array of medical applications. This review delves into the interplay between controlled crystallization and biomaterial synthesis, exploring its multifaceted applications in the therapeutic domains. The investigation encompasses a wide spectrum of matrices, ranging from small molecules to large biomolecules, highlighting their unique contributions in modulating crystallization processes. Furthermore, the review critically assesses the analytical techniques and methodologies employed to probe and characterize the depths of crystallization dynamics. Advanced imaging, spectroscopic, and computational tools are discussed in the context of unraveling the intricate mechanisms governing nucleation and crystallization processes within the organic matrix. Finally we delve in the applications of such advance material in therapeutics of hard and soft tissues.

在生物医学工程和材料科学领域,生物材料的合成在推进组织再生治疗策略方面发挥着举足轻重的作用。在生物材料合成过程中有意识地控制结晶过程已成为调整这些材料特性的关键途径,从而为广泛的医疗应用设计出创新的解决方案。本综述深入探讨了受控结晶与生物材料合成之间的相互作用,探讨了其在治疗领域的多方面应用。研究涵盖了从小分子到大生物分子的各种基质,突出了它们在调节结晶过程中的独特贡献。此外,该综述还严格评估了用于探测和表征结晶动力学深度的分析技术和方法。在揭示有机基质内成核和结晶过程的复杂机制方面,讨论了先进的成像、光谱和计算工具。最后,我们将深入探讨这种先进材料在软硬组织治疗中的应用。
{"title":"Understanding the bio-crystallization: An insight to therapeutic relevance","authors":"Vivek Pandey ,&nbsp;Tejasvi Pandey","doi":"10.1016/j.bpc.2024.107216","DOIUrl":"https://doi.org/10.1016/j.bpc.2024.107216","url":null,"abstract":"<div><p>In the realm of biomedical engineering and materials science, the synthesis of biomaterials plays a pivotal role in advancing therapeutic strategies for regeneration of tissues. The deliberate control of crystallization processes in biomaterial synthesis has emerged as a key avenue for tailoring the properties of these materials, enabling the design of innovative solutions for a wide array of medical applications. This review delves into the interplay between controlled crystallization and biomaterial synthesis, exploring its multifaceted applications in the therapeutic domains. The investigation encompasses a wide spectrum of matrices, ranging from small molecules to large biomolecules, highlighting their unique contributions in modulating crystallization processes. Furthermore, the review critically assesses the analytical techniques and methodologies employed to probe and characterize the depths of crystallization dynamics. Advanced imaging, spectroscopic, and computational tools are discussed in the context of unraveling the intricate mechanisms governing nucleation and crystallization processes within the organic matrix. Finally we delve in the applications of such advance material in therapeutics of hard and soft tissues.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140103759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysical chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1