Summary We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.
{"title":"A note on minimax robustness of designs against correlated or heteroscedastic responses","authors":"D P Wiens","doi":"10.1093/biomet/asae001","DOIUrl":"https://doi.org/10.1093/biomet/asae001","url":null,"abstract":"Summary We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new efficient nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the discrete cosine transform is proposed. The method is implemented in the R package vstdct that accompanies the paper.
本文提出了一种新的高效托普利兹协方差矩阵非参数估计器。该估计器基于数据转换,将托普利兹协方差矩阵估计问题转化为近似高斯回归中的均值估计问题。由此产生的托普利兹协方差矩阵估计器在构造上是正定的,完全由数据驱动,计算速度非常快。此外,对于一大类 Toeplitz 矩阵,该估计器在谱规范下是最小最优的。这些结果很容易扩展到对托普利兹协方差矩阵逆的估计。此外,还提出了基于离散余弦变换的谱密度惠特尔似然法的替代版本。本文附带的 R 软件包 vstdct 实现了该方法。
{"title":"Efficient nonparametric estimation of Toeplitz covariance matrices","authors":"K Klockmann, T Krivobokova","doi":"10.1093/biomet/asae002","DOIUrl":"https://doi.org/10.1093/biomet/asae002","url":null,"abstract":"A new efficient nonparametric estimator for Toeplitz covariance matrices is proposed. This estimator is based on a data transformation that translates the problem of Toeplitz covariance matrix estimation to the problem of mean estimation in an approximate Gaussian regression. The resulting Toeplitz covariance matrix estimator is positive definite by construction, fully data-driven and computationally very fast. Moreover, this estimator is shown to be minimax optimal under the spectral norm for a large class of Toeplitz matrices. These results are readily extended to estimation of inverses of Toeplitz covariance matrices. Also, an alternative version of the Whittle likelihood for the spectral density based on the discrete cosine transform is proposed. The method is implemented in the R package vstdct that accompanies the paper.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139506380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate a class of methods for selective inference that condition on a selection event. Such methods follow a two-stage process. First, a data-driven collection of hypotheses is chosen from some large universe of hypotheses. Subsequently, inference takes place within this data-driven collection, conditioned on the information that was used for the selection. Examples of such methods include basic data splitting, as well as modern data carving methods and post-selection inference methods for lasso coefficients based on the polyhedral lemma. In this paper, we adopt a holistic view on such methods, considering the selection, conditioning, and final error control steps together as a single method. From this perspective, we demonstrate that multiple testing methods defined directly on the full universe of hypotheses are always at least as powerful as selective inference methods based on selection and conditioning. This result holds true even when the universe is potentially infinite and only implicitly defined, such as in the case of data splitting. We give general theory and intuitions before investigating in detail several case studies where a shift to a non-selective or unconditional perspective can yield a power gain.
{"title":"On Selecting and Conditioning in Multiple Testing and Selective Inference","authors":"Jelle J Goeman, Aldo Solari","doi":"10.1093/biomet/asad078","DOIUrl":"https://doi.org/10.1093/biomet/asad078","url":null,"abstract":"We investigate a class of methods for selective inference that condition on a selection event. Such methods follow a two-stage process. First, a data-driven collection of hypotheses is chosen from some large universe of hypotheses. Subsequently, inference takes place within this data-driven collection, conditioned on the information that was used for the selection. Examples of such methods include basic data splitting, as well as modern data carving methods and post-selection inference methods for lasso coefficients based on the polyhedral lemma. In this paper, we adopt a holistic view on such methods, considering the selection, conditioning, and final error control steps together as a single method. From this perspective, we demonstrate that multiple testing methods defined directly on the full universe of hypotheses are always at least as powerful as selective inference methods based on selection and conditioning. This result holds true even when the universe is potentially infinite and only implicitly defined, such as in the case of data splitting. We give general theory and intuitions before investigating in detail several case studies where a shift to a non-selective or unconditional perspective can yield a power gain.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Summary Subgraph counts, in particular the number of occurrences of small shapes such as triangles, characterize properties of random networks. As a result, they have seen wide use as network summary statistics. Subgraphs are typically counted globally, making existing approaches unable to describe vertex-specific characteristics. In contrast, rooted subgraphs focus on vertex neighbourhoods, and are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes most statistical network models. This result enables a shift in the statistical analysis of graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that gender and race are significant predictors of local friendship patterns.
{"title":"Central limit theorems for local network statistics","authors":"P A Maugis","doi":"10.1093/biomet/asad080","DOIUrl":"https://doi.org/10.1093/biomet/asad080","url":null,"abstract":"Summary Subgraph counts, in particular the number of occurrences of small shapes such as triangles, characterize properties of random networks. As a result, they have seen wide use as network summary statistics. Subgraphs are typically counted globally, making existing approaches unable to describe vertex-specific characteristics. In contrast, rooted subgraphs focus on vertex neighbourhoods, and are fundamental descriptors of local network properties. We derive the asymptotic joint distribution of rooted subgraph counts in inhomogeneous random graphs, a model which generalizes most statistical network models. This result enables a shift in the statistical analysis of graphs, from estimating network summaries, to estimating models linking local network structure and vertex-specific covariates. As an example, we consider a school friendship network and show that gender and race are significant predictors of local friendship patterns.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139051073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quality control charts aim at raising an alarm as soon as sequentially obtained observations of an underlying random process no longer seem to be within stochastic fluctuations prescribed by an ‘in-control’ scenario. Such random processes can often be modelled using the concept of stationarity, or even independence as in most classical works. An important out-of-control scenario is the changepoint alternative, for which the distribution of the process changes at an unknown point in time. In his seminal 1954 Biometrika paper, E. S. Page introduced the famous cumulative sum control charts for changepoint monitoring. Innovatively, decision rules based on cumulative sum procedures took the full history of the process into account, whereas previous procedures were based only on a fixed and typically small number of the most recent observations. The extreme case of using only the most recent observation, often referred to as the Shewhart chart, is more akin to serial outlier than changepoint detection. Page’s cumulative sum approach, introduced seven decades ago, is ubiquitous in modern changepoint analysis, and his original paper has led to a multitude of follow-up papers in different research communities. This review is focused on a particular subfield of this research, namely nonparametric sequential, or online, changepoint tests which are constructed to maintain a desired Type 1 error as opposed to the more traditional approach seeking to minimize the average run length of the procedures. Such tests have originated at the intersection of econometrics and statistics. We trace the development of these tests and highlight their properties, mostly using a simple location model for clarity of exposition, but also review more complex situations such as regression and time series models.
质量控制图的目的是,一旦连续获得的底层随机过程的观测结果似乎不再符合 "在控 "方案所规定的随机波动范围,就会发出警报。此类随机过程通常可以使用静止概念建模,甚至可以使用大多数经典著作中的独立概念建模。一个重要的失控情景是变化点替代方案,即过程的分布在一个未知的时间点发生变化。E. S. Page 在 1954 年发表的开创性论文《Biometrika》中,提出了著名的用于变化点监控的累积和控制图。创新性的是,基于累积总和程序的决策规则考虑到了整个过程的历史,而以前的程序仅基于固定的、通常为数不多的最新观测数据。仅使用最近观测值的极端情况通常被称为休哈特图表,它更类似于序列离群值,而非变化点检测。佩奇在七十年前提出的累积和方法在现代变化点分析中无处不在,他的原始论文在不同研究领域引发了大量后续论文。本综述的重点是这一研究的一个特殊子领域,即非参数序列或在线变化点检验,其构建目的是保持理想的 1 类误差,而不是寻求最小化程序平均运行长度的传统方法。这类检验起源于计量经济学和统计学的交叉学科。我们追溯了这些检验的发展历程,并强调了它们的特性,为了论述清晰,我们主要使用了简单的位置模型,但也回顾了回归和时间序列模型等更复杂的情况。
{"title":"The state of cumulative sum sequential change point testing seventy years after Page","authors":"Alexander Aue, Claudia Kirch","doi":"10.1093/biomet/asad079","DOIUrl":"https://doi.org/10.1093/biomet/asad079","url":null,"abstract":"\u0000 Quality control charts aim at raising an alarm as soon as sequentially obtained observations of an underlying random process no longer seem to be within stochastic fluctuations prescribed by an ‘in-control’ scenario. Such random processes can often be modelled using the concept of stationarity, or even independence as in most classical works. An important out-of-control scenario is the changepoint alternative, for which the distribution of the process changes at an unknown point in time. In his seminal 1954 Biometrika paper, E. S. Page introduced the famous cumulative sum control charts for changepoint monitoring. Innovatively, decision rules based on cumulative sum procedures took the full history of the process into account, whereas previous procedures were based only on a fixed and typically small number of the most recent observations. The extreme case of using only the most recent observation, often referred to as the Shewhart chart, is more akin to serial outlier than changepoint detection. Page’s cumulative sum approach, introduced seven decades ago, is ubiquitous in modern changepoint analysis, and his original paper has led to a multitude of follow-up papers in different research communities. This review is focused on a particular subfield of this research, namely nonparametric sequential, or online, changepoint tests which are constructed to maintain a desired Type 1 error as opposed to the more traditional approach seeking to minimize the average run length of the procedures. Such tests have originated at the intersection of econometrics and statistics. We trace the development of these tests and highlight their properties, mostly using a simple location model for clarity of exposition, but also review more complex situations such as regression and time series models.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138951837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: ‘A cross-validation-based statistical theory for point processes’","authors":"","doi":"10.1093/biomet/asad077","DOIUrl":"https://doi.org/10.1093/biomet/asad077","url":null,"abstract":"","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139169267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Summary Phylogenetic association analysis plays a crucial role in investigating the correlation between microbial compositions and specific outcomes of interest in microbiome studies. However, existing methods for testing such associations have limitations related to the assumption of a linear association in high-dimensional settings and the handling of confounding effects. Therefore, there is a need for methods capable of characterizing complex associations, including nonmonotonic relationships. This paper introduces a novel phylogenetic association analysis framework and associated tests to address these challenges by employing conditional rank correlation as a measure of association. These tests account for confounders in a fully nonparametric manner, ensuring robustness against outliers and the ability to detect diverse dependencies. The proposed framework aggregates conditional rank correlations for subtrees using a weighted sum and maximum approach to capture both dense and sparse signals. The significance level of the test statistics is determined by calibrating through a nearest neighbour bootstrapping method, which is straightforward to implement and can accommodate additional datasets when available. The practical advantages of the proposed framework are demonstrated through numerical experiments utilizing both simulated and real microbiome datasets.
{"title":"Phylogenetic Association Analysis with Conditional Rank Correlation","authors":"Shulei Wang, Bo Yuan, T Tony Cai, Hongzhe Li","doi":"10.1093/biomet/asad075","DOIUrl":"https://doi.org/10.1093/biomet/asad075","url":null,"abstract":"Summary Phylogenetic association analysis plays a crucial role in investigating the correlation between microbial compositions and specific outcomes of interest in microbiome studies. However, existing methods for testing such associations have limitations related to the assumption of a linear association in high-dimensional settings and the handling of confounding effects. Therefore, there is a need for methods capable of characterizing complex associations, including nonmonotonic relationships. This paper introduces a novel phylogenetic association analysis framework and associated tests to address these challenges by employing conditional rank correlation as a measure of association. These tests account for confounders in a fully nonparametric manner, ensuring robustness against outliers and the ability to detect diverse dependencies. The proposed framework aggregates conditional rank correlations for subtrees using a weighted sum and maximum approach to capture both dense and sparse signals. The significance level of the test statistics is determined by calibrating through a nearest neighbour bootstrapping method, which is straightforward to implement and can accommodate additional datasets when available. The practical advantages of the proposed framework are demonstrated through numerical experiments utilizing both simulated and real microbiome datasets.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Summary This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds (LPBs) for survival times with censored data.We build on recent work by Candès et al. (2021), whose approach first subsets the data to discard any data points with early censoring times, and then uses a reweighting technique (namely, weighted conformal inference (Tibshirani et al., 2019)) to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to LPBs that are less conservative and give more accurate information. We show that in the Type I right-censoring setting, if either of the censoring mechanism or the conditional quantile of survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate LPBs for users’ active times on a mobile app.
{"title":"Conformalized survival analysis with adaptive cutoffs","authors":"Yu Gui, Rohan Hore, Zhimei Ren, Rina Foygel Barber","doi":"10.1093/biomet/asad076","DOIUrl":"https://doi.org/10.1093/biomet/asad076","url":null,"abstract":"Summary This paper introduces an assumption-lean method that constructs valid and efficient lower predictive bounds (LPBs) for survival times with censored data.We build on recent work by Candès et al. (2021), whose approach first subsets the data to discard any data points with early censoring times, and then uses a reweighting technique (namely, weighted conformal inference (Tibshirani et al., 2019)) to correct for the distribution shift introduced by this subsetting procedure. For our new method, instead of constraining to a fixed threshold for the censoring time when subsetting the data, we allow for a covariate-dependent and data-adaptive subsetting step, which is better able to capture the heterogeneity of the censoring mechanism. As a result, our method can lead to LPBs that are less conservative and give more accurate information. We show that in the Type I right-censoring setting, if either of the censoring mechanism or the conditional quantile of survival time is well estimated, our proposed procedure achieves nearly exact marginal coverage, where in the latter case we additionally have approximate conditional coverage. We evaluate the validity and efficiency of our proposed algorithm in numerical experiments, illustrating its advantage when compared with other competing methods. Finally, our method is applied to a real dataset to generate LPBs for users’ active times on a mobile app.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-02-06DOI: 10.1093/biomet/asad007
Sijia Li, Alex Luedtke
We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the estimation of a variety of parameters in similar data fusion settings, including in the estimation of the average treatment effect and average reward under a policy, with the majority of them merging one historical data source with covariates, actions, and rewards and one data source of the same covariates. In this work, we consider the general case where one or more data sources align with each part of the distribution of the target population, for example, the conditional distribution of the reward given actions and covariates. We describe potential gains in efficiency that can arise from fusing these data sources together in a single analysis, which we characterize by a reduction in the semiparametric efficiency bound. We also provide a general means to construct estimators that achieve these bounds. In numerical simulations, we illustrate marked improvements in efficiency from using our proposed estimators rather than their natural alternatives. Finally, we illustrate the magnitude of efficiency gains that can be realized in vaccine immunogenicity studies by fusing data from two HIV vaccine trials.
{"title":"Efficient Estimation under Data Fusion.","authors":"Sijia Li, Alex Luedtke","doi":"10.1093/biomet/asad007","DOIUrl":"10.1093/biomet/asad007","url":null,"abstract":"<p><p>We aim to make inferences about a smooth, finite-dimensional parameter by fusing data from multiple sources together. Previous works have studied the estimation of a variety of parameters in similar data fusion settings, including in the estimation of the average treatment effect and average reward under a policy, with the majority of them merging one historical data source with covariates, actions, and rewards and one data source of the same covariates. In this work, we consider the general case where one or more data sources align with each part of the distribution of the target population, for example, the conditional distribution of the reward given actions and covariates. We describe potential gains in efficiency that can arise from fusing these data sources together in a single analysis, which we characterize by a reduction in the semiparametric efficiency bound. We also provide a general means to construct estimators that achieve these bounds. In numerical simulations, we illustrate marked improvements in efficiency from using our proposed estimators rather than their natural alternatives. Finally, we illustrate the magnitude of efficiency gains that can be realized in vaccine immunogenicity studies by fusing data from two HIV vaccine trials.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44309457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Thompson, Catherine S Forbes, Steven N Maceachern, Mario Peruggia
Statistical hypotheses are translations of scientific hypotheses into statements about one or more distributions, often concerning their centre. Tests that assess statistical hypotheses of centre implicitly assume a specific centre, e.g., the mean or median. Yet, scientific hypotheses do not always specify a particular centre. This ambiguity leaves the possibility for a gap between scientific theory and statistical practice that can lead to rejection of a true null. In the face of replicability crises in many scientific disciplines, significant results of this kind are concerning. Rather than testing a single centre, this paper proposes testing a family of plausible centres, such as that induced by the Huber loss function. Each centre in the family generates a testing problem, and the resulting family of hypotheses constitutes a familial hypothesis. A Bayesian nonparametric procedure is devised to test familial hypotheses, enabled by a novel pathwise optimization routine to fit the Huber family. The favourable properties of the new test are demonstrated theoretically and experimentally. Two examples from psychology serve as real-world case studies.
{"title":"Familial inference: Tests for hypotheses on a family of centres","authors":"Ryan Thompson, Catherine S Forbes, Steven N Maceachern, Mario Peruggia","doi":"10.1093/biomet/asad074","DOIUrl":"https://doi.org/10.1093/biomet/asad074","url":null,"abstract":"Statistical hypotheses are translations of scientific hypotheses into statements about one or more distributions, often concerning their centre. Tests that assess statistical hypotheses of centre implicitly assume a specific centre, e.g., the mean or median. Yet, scientific hypotheses do not always specify a particular centre. This ambiguity leaves the possibility for a gap between scientific theory and statistical practice that can lead to rejection of a true null. In the face of replicability crises in many scientific disciplines, significant results of this kind are concerning. Rather than testing a single centre, this paper proposes testing a family of plausible centres, such as that induced by the Huber loss function. Each centre in the family generates a testing problem, and the resulting family of hypotheses constitutes a familial hypothesis. A Bayesian nonparametric procedure is devised to test familial hypotheses, enabled by a novel pathwise optimization routine to fit the Huber family. The favourable properties of the new test are demonstrated theoretically and experimentally. Two examples from psychology serve as real-world case studies.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}