Multivariate interval-censored data arise when there are multiple types of events or clusters of study subjects, such that the event times are potentially correlated and when each event is only known to occur over a particular time interval. We formulate the effects of potentially time-varying covariates on the multivariate event times through marginal proportional hazards models while leaving the dependence structures of the related event times unspecified. We construct the nonparametric pseudolikelihood under the working assumption that all event times are independent, and we provide a simple and stable EM-type algorithm. The resulting nonparametric maximum pseudolikelihood estimators for the regression parameters are shown to be consistent and asymptotically normal, with a limiting covariance matrix that can be consistently estimated by a sandwich estimator under arbitrary dependence structures for the related event times. We evaluate the performance of the proposed methods through extensive simulation studies and present an application to data from the Atherosclerosis Risk in Communities Study.
The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed "causal excursion effects", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.