Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13805
E C P Ambrosio, M T O P Bergamo, C Sforza, C F C Carrara, M A A M Machado, T M Oliveira
The goal of this study was to digitally evaluate the development of maxillary dental arches of children with unilateral cleft lip and palate treated with one- and two-stage palatal closure. One hundred and sixty-eight digitized dental models of cheiloplasty and one-stage palatoplasty (G1) and cheiloplasty and two-stage palatoplasty (G2) were evaluated at preoperative time 1 (T1), preoperative time 2 (T2), and postoperative (T3). The following surface distances were evaluated: across surface distance; cleft widths anterior (P-P') and posterior (U-U') cleft widths, intercanine width (C-C'), and intertuberosity width (T-T'); smallest (P'-T') and largest (P-T) segment lengths; and smallest (C'-D') and largest (C-D) segment cleft depths. In G1, P-P', U-U', and C-C' reduced at T2, unlike P'-T' (P<0.05). P-T and C'-D' distances increased at T3 (P<0.05), while C-D increased at all stages (P<0.001). In G2, U-U' and C-C' reduced at T2 (P<0.05), while P'-T', P-T, C'-D', and C-D' increased at T3 (P<0.001). In an intergroup analysis of growth rate, G2 showed higher growth percentages compared to G1, in which C'-D' was significant (P=0.038). Furthermore, C'-D' presented a coefficient of determination of 0.076 (P=0.039). In conclusion, dental arch development is influenced by the rehabilitation protocol. However, in the sample evaluated, the comparison suggested that individuals whose palate was operated on in two stages had the most favorable palatal growth.
{"title":"Across-surface distances after one- and two-stage palatoplasty in children with oral cleft.","authors":"E C P Ambrosio, M T O P Bergamo, C Sforza, C F C Carrara, M A A M Machado, T M Oliveira","doi":"10.1590/1414-431X2024e13805","DOIUrl":"https://doi.org/10.1590/1414-431X2024e13805","url":null,"abstract":"<p><p>The goal of this study was to digitally evaluate the development of maxillary dental arches of children with unilateral cleft lip and palate treated with one- and two-stage palatal closure. One hundred and sixty-eight digitized dental models of cheiloplasty and one-stage palatoplasty (G1) and cheiloplasty and two-stage palatoplasty (G2) were evaluated at preoperative time 1 (T1), preoperative time 2 (T2), and postoperative (T3). The following surface distances were evaluated: across surface distance; cleft widths anterior (P-P') and posterior (U-U') cleft widths, intercanine width (C-C'), and intertuberosity width (T-T'); smallest (P'-T') and largest (P-T) segment lengths; and smallest (C'-D') and largest (C-D) segment cleft depths. In G1, P-P', U-U', and C-C' reduced at T2, unlike P'-T' (P<0.05). P-T and C'-D' distances increased at T3 (P<0.05), while C-D increased at all stages (P<0.001). In G2, U-U' and C-C' reduced at T2 (P<0.05), while P'-T', P-T, C'-D', and C-D' increased at T3 (P<0.001). In an intergroup analysis of growth rate, G2 showed higher growth percentages compared to G1, in which C'-D' was significant (P=0.038). Furthermore, C'-D' presented a coefficient of determination of 0.076 (P=0.039). In conclusion, dental arch development is influenced by the rehabilitation protocol. However, in the sample evaluated, the comparison suggested that individuals whose palate was operated on in two stages had the most favorable palatal growth.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13805"},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13640
Weidong Li, Yueming Huang, Xinhao Zhou, Bohao Cheng, Haitao Wang, Yao Wang
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapeutic strategy that has shown efficacy in hematological malignancies. However, its application in solid tumors, particularly gastrointestinal cancers, faces significant challenges. These include the selection of target antigens, the complexity of the tumor microenvironment, and safety and toxicity concerns. This review provides a current overview of CAR-T therapy in various gastrointestinal cancers, such as esophageal, gastric, colorectal, pancreatic, and liver cancers. It discusses the limitations and future directions of CAR-T therapy in this context. This review highlights innovative strategies, including novel target antigens, multispecific CAR-T cells, armored CAR-T cells, and the development of universal CAR-T cells. These insights aim to inform ongoing research and foster advancements in CAR-T therapy for gastrointestinal cancers.
{"title":"CAR-T therapy for gastrointestinal cancers: current status, challenges, and future directions.","authors":"Weidong Li, Yueming Huang, Xinhao Zhou, Bohao Cheng, Haitao Wang, Yao Wang","doi":"10.1590/1414-431X2024e13640","DOIUrl":"https://doi.org/10.1590/1414-431X2024e13640","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapeutic strategy that has shown efficacy in hematological malignancies. However, its application in solid tumors, particularly gastrointestinal cancers, faces significant challenges. These include the selection of target antigens, the complexity of the tumor microenvironment, and safety and toxicity concerns. This review provides a current overview of CAR-T therapy in various gastrointestinal cancers, such as esophageal, gastric, colorectal, pancreatic, and liver cancers. It discusses the limitations and future directions of CAR-T therapy in this context. This review highlights innovative strategies, including novel target antigens, multispecific CAR-T cells, armored CAR-T cells, and the development of universal CAR-T cells. These insights aim to inform ongoing research and foster advancements in CAR-T therapy for gastrointestinal cancers.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13640"},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484376/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e14345
Zhengmei Li, Ling Kang, Ke Jiang
Acute myocardial infarction (AMI) continues to be a leading cause of death globally, with distinct immune cell dynamics in ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) playing a critical role in disease progression and patient outcomes. Sample data for STEMI and NSTEMI were downloaded from the Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra). Differences and correlations of immune infiltrating cells were assessed by CIBERSORT. Differentially expressed genes (DEGs) were identified between STEMI and NSTEMI, followed by functional analysis. Immune-related DEGs were further identified. Some immune-related DEGs were selected to perform expression verification using real-time PCR. There was a significant difference in immune cells between STEMI and NSTEMI, including activated dendritic cells, memory CD4 T cells, mast cells, and CD8 T cells. A total of 229 DEGs were identified, with functions related to inflammatory regulation and drug metabolism. A total of 21 immune-related DEGs, which may play important roles in STEMI and NSTEMI, were identified. Among the 21 immune-related DEGs, genes like CCL18, NRP2, CXCR2, CXCL9, KIR2DL4, BPIFB1, and IL33 were significantly correlated with immune cells and had a tendency for differential expression between STEMI and NSTEMI patients. Our study reveals differences in the distribution of immune cell subsets between STEMI and NSTEMI, highlighting key immune-related genes and their association with immune cells, which may provide new insights into the treatment of AMI.
{"title":"Analysis of the differences in immune-related genes and immune cell subtypes in acute myocardial infarction.","authors":"Zhengmei Li, Ling Kang, Ke Jiang","doi":"10.1590/1414-431X2024e14345","DOIUrl":"https://doi.org/10.1590/1414-431X2024e14345","url":null,"abstract":"<p><p>Acute myocardial infarction (AMI) continues to be a leading cause of death globally, with distinct immune cell dynamics in ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation myocardial infarction (NSTEMI) playing a critical role in disease progression and patient outcomes. Sample data for STEMI and NSTEMI were downloaded from the Sequence Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra). Differences and correlations of immune infiltrating cells were assessed by CIBERSORT. Differentially expressed genes (DEGs) were identified between STEMI and NSTEMI, followed by functional analysis. Immune-related DEGs were further identified. Some immune-related DEGs were selected to perform expression verification using real-time PCR. There was a significant difference in immune cells between STEMI and NSTEMI, including activated dendritic cells, memory CD4 T cells, mast cells, and CD8 T cells. A total of 229 DEGs were identified, with functions related to inflammatory regulation and drug metabolism. A total of 21 immune-related DEGs, which may play important roles in STEMI and NSTEMI, were identified. Among the 21 immune-related DEGs, genes like CCL18, NRP2, CXCR2, CXCL9, KIR2DL4, BPIFB1, and IL33 were significantly correlated with immune cells and had a tendency for differential expression between STEMI and NSTEMI patients. Our study reveals differences in the distribution of immune cell subsets between STEMI and NSTEMI, highlighting key immune-related genes and their association with immune cells, which may provide new insights into the treatment of AMI.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e14345"},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13457
Heng Chen, Xiaosui Ling, Bo Zhao, Jing Chen, XianYi Sun, Jing Yang, Pibao Li
Sepsis is a systemic inflammatory response syndrome in which the host response to infection is dysregulated, leading to circulatory dysfunction and multi-organ damage. It has a high mortality rate and its incidence is increasing year by year, posing a serious threat to human life and health. Mesenchymal stem cells (MSC) have the following properties: hematopoietic support, provision of nutrients, activation of endogenous stem/progenitor cells, repair of tissue damage, elimination of inflammation, immunomodulation, promotion of neovascularization, chemotaxis and migration, anti-apoptosis, anti-oxidation, anti-fibrosis, homing, and many other effects. A large number of studies have confirmed that MSC from different sources have their own characteristics. This article reviews the pathogenesis of sepsis, the biological properties of MSC, and the advantages and disadvantages of different sources of MSC for the treatment of sepsis and their characteristics.
{"title":"Mesenchymal stem cells from different sources for sepsis treatment: prospects and limitations.","authors":"Heng Chen, Xiaosui Ling, Bo Zhao, Jing Chen, XianYi Sun, Jing Yang, Pibao Li","doi":"10.1590/1414-431X2024e13457","DOIUrl":"https://doi.org/10.1590/1414-431X2024e13457","url":null,"abstract":"<p><p>Sepsis is a systemic inflammatory response syndrome in which the host response to infection is dysregulated, leading to circulatory dysfunction and multi-organ damage. It has a high mortality rate and its incidence is increasing year by year, posing a serious threat to human life and health. Mesenchymal stem cells (MSC) have the following properties: hematopoietic support, provision of nutrients, activation of endogenous stem/progenitor cells, repair of tissue damage, elimination of inflammation, immunomodulation, promotion of neovascularization, chemotaxis and migration, anti-apoptosis, anti-oxidation, anti-fibrosis, homing, and many other effects. A large number of studies have confirmed that MSC from different sources have their own characteristics. This article reviews the pathogenesis of sepsis, the biological properties of MSC, and the advantages and disadvantages of different sources of MSC for the treatment of sepsis and their characteristics.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13457"},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13219
M Sababathy, G Ramanathan, S Ganesan, S Sababathy, A R Yasmin, R Ramasamy, J B Foo, Q H Looi, S H Nur-Fazila
Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.
{"title":"Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers.","authors":"M Sababathy, G Ramanathan, S Ganesan, S Sababathy, A R Yasmin, R Ramasamy, J B Foo, Q H Looi, S H Nur-Fazila","doi":"10.1590/1414-431X2024e13219","DOIUrl":"https://doi.org/10.1590/1414-431X2024e13219","url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a critical, life-threatening condition marked by severe inflammation and impaired lung function. Mesenchymal stromal/stem cells (MSCs) present a promising therapeutic avenue due to their immunomodulatory, anti-inflammatory, and regenerative capabilities. This review comprehensively evaluates MSC-based strategies for ARDS treatment, including direct administration, tissue engineering, extracellular vesicles (EVs), nanoparticles, natural products, artificial intelligence (AI), gene modification, and MSC preconditioning. Direct MSC administration has demonstrated therapeutic potential but necessitates optimization to overcome challenges related to effective cell delivery, homing, and integration into damaged lung tissue. Tissue engineering methods, such as 3D-printed scaffolds and MSC sheets, enhance MSC survival and functionality within lung tissue. EVs and MSC-derived nanoparticles offer scalable and safer alternatives to cell-based therapies. Likewise, natural products and bioactive compounds derived from plants can augment MSC function and resilience, offering complementary strategies to enhance therapeutic outcomes. In addition, AI technologies could aid in optimizing MSC delivery and dosing, and gene editing tools like CRISPR/Cas9 allow precise modification of MSCs to enhance their therapeutic properties and target specific ARDS mechanisms. Preconditioning MSCs with hypoxia, growth factors, or pharmacological agents further enhances their therapeutic potential. While MSC therapies hold significant promise for ARDS, extensive research and clinical trials are essential to determine optimal protocols and ensure long-term safety and effectiveness.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13219"},"PeriodicalIF":1.9,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13627
T P Costa, M Aoki, C M Ribeiro, E Socca, L Itinose, R Basso, L Blanes
The COVID-19 pandemic has driven the search for alternative therapies, including convalescent plasma, historically used in infectious diseases. Despite results in other diseases, its effectiveness against COVID-19 remains uncertain with conflicting results in clinical trials. A pragmatic, single-center, prospective, and open randomized controlled trial was carried out in a hospital in Brazil, with the aim of evaluating the impact of convalescent plasma on the clinical improvement of patients hospitalized with COVID-19. The World Health Organization (WHO) ordinal scale was used to measure clinical improvement, focusing on the reduction in disease severity by up to 2 points, while antibody and C-reactive protein levels were monitored over time. After hospital admission, participants were randomized 1:1 to receive convalescent plasma and standard treatment or to be part of the control group with standard treatment. Follow-up was carried out on days 1, 3, 7, 14 and/or at discharge. From January 14 to April 4, 2022, 38 patients were included, but 3 were excluded due to protocol deviations, resulting in a total of 35 patients: 19 in the control group and 16 in the plasma group. There was no significant difference in clinical improvement between the convalescent plasma group and the control group, nor in secondary outcomes. The study had limitations due to the small number of patients and limited representation of COVID-19 cases. Broader investigations are needed to integrate therapies into medical protocols, both for COVID-19 and other diseases. Conducting randomized studies is challenging due to the complexity of medical conditions and the variety of treatments available.
{"title":"Efficacy of convalescent plasma in hospitalized COVID-19 patients: findings from a controlled trial.","authors":"T P Costa, M Aoki, C M Ribeiro, E Socca, L Itinose, R Basso, L Blanes","doi":"10.1590/1414-431X2024e13627","DOIUrl":"10.1590/1414-431X2024e13627","url":null,"abstract":"<p><p>The COVID-19 pandemic has driven the search for alternative therapies, including convalescent plasma, historically used in infectious diseases. Despite results in other diseases, its effectiveness against COVID-19 remains uncertain with conflicting results in clinical trials. A pragmatic, single-center, prospective, and open randomized controlled trial was carried out in a hospital in Brazil, with the aim of evaluating the impact of convalescent plasma on the clinical improvement of patients hospitalized with COVID-19. The World Health Organization (WHO) ordinal scale was used to measure clinical improvement, focusing on the reduction in disease severity by up to 2 points, while antibody and C-reactive protein levels were monitored over time. After hospital admission, participants were randomized 1:1 to receive convalescent plasma and standard treatment or to be part of the control group with standard treatment. Follow-up was carried out on days 1, 3, 7, 14 and/or at discharge. From January 14 to April 4, 2022, 38 patients were included, but 3 were excluded due to protocol deviations, resulting in a total of 35 patients: 19 in the control group and 16 in the plasma group. There was no significant difference in clinical improvement between the convalescent plasma group and the control group, nor in secondary outcomes. The study had limitations due to the small number of patients and limited representation of COVID-19 cases. Broader investigations are needed to integrate therapies into medical protocols, both for COVID-19 and other diseases. Conducting randomized studies is challenging due to the complexity of medical conditions and the variety of treatments available.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13627"},"PeriodicalIF":1.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463911/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13253
Jing Zhang, Cui Li, Zhuo Chen, Xiaoling Zhao, Yuanyuan He, Lei Wei, Nana Kong
Jun N-terminal kinase pathway-associated phosphatase (JKAP) regulates CD4+ T-cell differentiation and immunity, which are linked to mental disorders. This study aimed to explore the relationships between JKAP and T helper 17 (Th17)/regulatory T (Treg) ratio, as well as their associations with anxiety and depression in postpartum women. Serum JKAP were measured by enzyme-linked immunosorbent assay and blood Th17 and Treg cells were measured by flow cytometry in 250 postpartum women. Anxiety and depression were evaluated by the 6-item State-Trait Anxiety Inventory (STAI6) and Edinburgh Postnatal Depression Scale (EPDS). Anxiety and depression rates were 22.0 and 28.4%, respectively, among postpartum women. Notably, JKAP was negatively associated with the STAI6 (P=0.002) and EPDS scores (P<0.001) in postpartum women and was lower in postpartum women with anxiety (P=0.023) or depression (P=0.002) than in those without. Moreover, JKAP was inversely related to Th17 cells and Th17/Treg ratio but positively correlated with Treg cells in postpartum women (all P<0.001). Interestingly, Th17 cells and Th17/Treg ratio were both positively associated with STAI6 and EPDS scores in postpartum women (all P<0.001). Furthermore, Th17 cells and Th17/Treg ratio were lower in postpartum women with anxiety or depression than in those without (all P<0.01). Nevertheless, Treg cells were not linked to anxiety or depression in postpartum women. JKAP was negatively associated with Th17 cells and Th17/Treg ratio; moreover, they all related to anxiety and depression in postpartum women, indicating that JKAP may be involved in postpartum anxiety and depression via interactions with Th17 cells.
{"title":"Circulating JKAP levels may correlate with postpartum anxiety and depression through its interaction with T helper 17 cells.","authors":"Jing Zhang, Cui Li, Zhuo Chen, Xiaoling Zhao, Yuanyuan He, Lei Wei, Nana Kong","doi":"10.1590/1414-431X2024e13253","DOIUrl":"10.1590/1414-431X2024e13253","url":null,"abstract":"<p><p>Jun N-terminal kinase pathway-associated phosphatase (JKAP) regulates CD4+ T-cell differentiation and immunity, which are linked to mental disorders. This study aimed to explore the relationships between JKAP and T helper 17 (Th17)/regulatory T (Treg) ratio, as well as their associations with anxiety and depression in postpartum women. Serum JKAP were measured by enzyme-linked immunosorbent assay and blood Th17 and Treg cells were measured by flow cytometry in 250 postpartum women. Anxiety and depression were evaluated by the 6-item State-Trait Anxiety Inventory (STAI6) and Edinburgh Postnatal Depression Scale (EPDS). Anxiety and depression rates were 22.0 and 28.4%, respectively, among postpartum women. Notably, JKAP was negatively associated with the STAI6 (P=0.002) and EPDS scores (P<0.001) in postpartum women and was lower in postpartum women with anxiety (P=0.023) or depression (P=0.002) than in those without. Moreover, JKAP was inversely related to Th17 cells and Th17/Treg ratio but positively correlated with Treg cells in postpartum women (all P<0.001). Interestingly, Th17 cells and Th17/Treg ratio were both positively associated with STAI6 and EPDS scores in postpartum women (all P<0.001). Furthermore, Th17 cells and Th17/Treg ratio were lower in postpartum women with anxiety or depression than in those without (all P<0.01). Nevertheless, Treg cells were not linked to anxiety or depression in postpartum women. JKAP was negatively associated with Th17 cells and Th17/Treg ratio; moreover, they all related to anxiety and depression in postpartum women, indicating that JKAP may be involved in postpartum anxiety and depression via interactions with Th17 cells.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13253"},"PeriodicalIF":1.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13116
N Sharawy, B E Aboulhoda, M M Khalifa, G N Morcos, S A A G Morsy, M A Alghamdi, I M Khalifa, W A Abd Algaleel
Nephrotoxicity is a common complication that limits the clinical utility of cisplatin. Ferroptosis is an iron-dependent necrotic cell death program that is mediated by phospholipid peroxidation. The molecular mechanisms that disrupt iron homeostasis and lead to ferroptosis are yet to be elucidated. In this study, we aimed to investigate the involvement of nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor that mediates ferroptosis and autophagic degradation of ferritin in nephrotoxicity. Adult male Sprague-Dawley rats were randomly-assigned to four groups: control group, cisplatin (Cis)-treated group, deferiprone (DEF)-treated group, and Cis+DEF co-treated group. Serum, urine, and kidneys were isolated to perform biochemical, morphometric, and immunohistochemical analysis. Iron accumulation was found to predispose to ferroptotic damage of the renal tubular cells. Treatment with deferiprone highlights the role of ferroptosis in nephrotoxicity. Upregulation of NCOA4 in parallel with low ferritin level in renal tissue seems to participate in iron-induced ferroptosis. This study indicated that ferroptosis may participate in cisplatin-induced tubular cell death and nephrotoxicity through iron-mediated lipid peroxidation. Iron dyshomeostasis could be attributed to NCOA4-mediated ferritin degradation.
{"title":"Amelioration of nephrotoxicity by targeting ferroptosis: role of NCOA4, IREB2, and SLC7a11 signaling.","authors":"N Sharawy, B E Aboulhoda, M M Khalifa, G N Morcos, S A A G Morsy, M A Alghamdi, I M Khalifa, W A Abd Algaleel","doi":"10.1590/1414-431X2024e13116","DOIUrl":"10.1590/1414-431X2024e13116","url":null,"abstract":"<p><p>Nephrotoxicity is a common complication that limits the clinical utility of cisplatin. Ferroptosis is an iron-dependent necrotic cell death program that is mediated by phospholipid peroxidation. The molecular mechanisms that disrupt iron homeostasis and lead to ferroptosis are yet to be elucidated. In this study, we aimed to investigate the involvement of nuclear receptor coactivator 4 (NCOA4), a selective cargo receptor that mediates ferroptosis and autophagic degradation of ferritin in nephrotoxicity. Adult male Sprague-Dawley rats were randomly-assigned to four groups: control group, cisplatin (Cis)-treated group, deferiprone (DEF)-treated group, and Cis+DEF co-treated group. Serum, urine, and kidneys were isolated to perform biochemical, morphometric, and immunohistochemical analysis. Iron accumulation was found to predispose to ferroptotic damage of the renal tubular cells. Treatment with deferiprone highlights the role of ferroptosis in nephrotoxicity. Upregulation of NCOA4 in parallel with low ferritin level in renal tissue seems to participate in iron-induced ferroptosis. This study indicated that ferroptosis may participate in cisplatin-induced tubular cell death and nephrotoxicity through iron-mediated lipid peroxidation. Iron dyshomeostasis could be attributed to NCOA4-mediated ferritin degradation.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13116"},"PeriodicalIF":1.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13606
Jin-Yi Li, Shan-Shan Dai, Zheng-Yang Li, Qing-Yu Guo, Fei Liu
This study aimed to illustrate the biological behavior and changes in cell function during the progression of apical periodontitis in deciduous teeth and to explore the underlying molecular mechanism. Deciduous teeth periodontal ligament stem cells (DePDLSCs) were derived and their identity was confirmed. The viability, inflammation, and osteogenic ability of cells were tested by exposing them to various concentrations of lipopolysaccharide (LPS) (0-100 μg/mL) using the cell counting kit-8 (CCK-8) assay, reverse transcription polymerase chain reaction (real-time PCR), alkaline phosphatase (ALP) staining, and ALP activity assay. In addition, osteogenic-induced cells with and without 10 μg/mL LPS were harvested for high-throughput sequencing. Based on sequencing data, proinflammatory factors and ALP expression were measured after interference with the PI3K-AKT signaling pathway activator, 740Y-P. LPS biphasically affected the proliferation and osteogenesis of DePDLSCs. Low concentrations of LPS showed stimulatory effects, whereas inhibitory effects were observed at high concentrations. Sequencing analysis showed that the PI3K-AKT signaling pathway was significantly downregulated when DePDLSCs were treated with 10 μg/mL LPS. The LPS-induced inflammation and osteogenesis inhibition of DePDLSCs were partially rescued by 740Y-P treatment. In conclusion, LPS affected DePDLSCs proliferation and osteogenesis in a biphasic manner. Moderate activation of PI3K-AKT signaling pathway was beneficial for osteogenic differentiation and anti-inflammatory effect in DePDLSCs. This research may provide etiological probes for apical periodontitis and its treatment.
{"title":"Osteogenic mechanism of deciduous teeth periodontal ligament stem cells in inflammatory environment.","authors":"Jin-Yi Li, Shan-Shan Dai, Zheng-Yang Li, Qing-Yu Guo, Fei Liu","doi":"10.1590/1414-431X2024e13606","DOIUrl":"10.1590/1414-431X2024e13606","url":null,"abstract":"<p><p>This study aimed to illustrate the biological behavior and changes in cell function during the progression of apical periodontitis in deciduous teeth and to explore the underlying molecular mechanism. Deciduous teeth periodontal ligament stem cells (DePDLSCs) were derived and their identity was confirmed. The viability, inflammation, and osteogenic ability of cells were tested by exposing them to various concentrations of lipopolysaccharide (LPS) (0-100 μg/mL) using the cell counting kit-8 (CCK-8) assay, reverse transcription polymerase chain reaction (real-time PCR), alkaline phosphatase (ALP) staining, and ALP activity assay. In addition, osteogenic-induced cells with and without 10 μg/mL LPS were harvested for high-throughput sequencing. Based on sequencing data, proinflammatory factors and ALP expression were measured after interference with the PI3K-AKT signaling pathway activator, 740Y-P. LPS biphasically affected the proliferation and osteogenesis of DePDLSCs. Low concentrations of LPS showed stimulatory effects, whereas inhibitory effects were observed at high concentrations. Sequencing analysis showed that the PI3K-AKT signaling pathway was significantly downregulated when DePDLSCs were treated with 10 μg/mL LPS. The LPS-induced inflammation and osteogenesis inhibition of DePDLSCs were partially rescued by 740Y-P treatment. In conclusion, LPS affected DePDLSCs proliferation and osteogenesis in a biphasic manner. Moderate activation of PI3K-AKT signaling pathway was beneficial for osteogenic differentiation and anti-inflammatory effect in DePDLSCs. This research may provide etiological probes for apical periodontitis and its treatment.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13606"},"PeriodicalIF":1.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-01-01DOI: 10.1590/1414-431X2024e13599
F O Buono, R D S Pugliese, W A da Silveira, D P C Tirapelli, F J C Dos Reis, J M de Andrade, H H A Carrara, D G Tiezzi
In this study, we identified miRNAs and their potential mRNA targets that are intricately linked to primary chemotherapy response in patients with invasive ductal carcinomas. A cohort of individuals diagnosed with advanced invasive breast ductal carcinoma who underwent primary chemotherapy served as the cornerstone of our study. We conducted a comparative analysis of microRNA expression among patients who either responded or did not respond to primary systemic therapy. To analyze the correlation between the expression of the whole transcriptome and the 24 differentially expressed (DE) miRNAs, we harnessed the extensive repository of The Cancer Genome Atlas (TCGA) database. We mapped molecular mechanisms associated with these miRNAs and their targets from TCGA breast carcinomas. The resultant expression profile of the 24 DE miRNAs emerged as a potent and promising predictive model, offering insights into the intricate dynamics of chemotherapy responsiveness of advanced breast tumors. The discriminative analysis based on the principal component analysis identified the most representative miRNAs across breast cancer samples (miR-210, miR-197, miR-328, miR-519a, and miR-628). Moreover, the consensus clustering generated four possible clusters of TCGA patients. Further studies should be conducted to advance these findings.
{"title":"Potential biomarkers as a predictive factor of response to primary chemotherapy in breast cancer patients.","authors":"F O Buono, R D S Pugliese, W A da Silveira, D P C Tirapelli, F J C Dos Reis, J M de Andrade, H H A Carrara, D G Tiezzi","doi":"10.1590/1414-431X2024e13599","DOIUrl":"10.1590/1414-431X2024e13599","url":null,"abstract":"<p><p>In this study, we identified miRNAs and their potential mRNA targets that are intricately linked to primary chemotherapy response in patients with invasive ductal carcinomas. A cohort of individuals diagnosed with advanced invasive breast ductal carcinoma who underwent primary chemotherapy served as the cornerstone of our study. We conducted a comparative analysis of microRNA expression among patients who either responded or did not respond to primary systemic therapy. To analyze the correlation between the expression of the whole transcriptome and the 24 differentially expressed (DE) miRNAs, we harnessed the extensive repository of The Cancer Genome Atlas (TCGA) database. We mapped molecular mechanisms associated with these miRNAs and their targets from TCGA breast carcinomas. The resultant expression profile of the 24 DE miRNAs emerged as a potent and promising predictive model, offering insights into the intricate dynamics of chemotherapy responsiveness of advanced breast tumors. The discriminative analysis based on the principal component analysis identified the most representative miRNAs across breast cancer samples (miR-210, miR-197, miR-328, miR-519a, and miR-628). Moreover, the consensus clustering generated four possible clusters of TCGA patients. Further studies should be conducted to advance these findings.</p>","PeriodicalId":9088,"journal":{"name":"Brazilian Journal of Medical and Biological Research","volume":"57 ","pages":"e13599"},"PeriodicalIF":1.9,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}