Actively growing cells maintain a dynamic, far from equilibrium order through metabolism. Under starvation stress or under stress of exposure to the analog of the anabiosis autoinducer (4-hexylresorcinol), cells go into a dormant state (almost complete lack of metabolism) or even into a mummified state. In a dormant state, cells are forced to use the physical mechanisms of DNA protection. The architecture of DNA in the dormant and mummified state of cells was studied by x-ray diffraction of synchrotron radiation and transmission electron microscopy (TEM). Diffraction experiments indicate the appearance of an ordered organization of DNA. TEM made it possible to visualize the type of DNA ordering. Intracellular nanocrystalline, liquid-crystalline, and folded nucleosome-like structures of DNA have been found. The structure of DNA within a cell in an anabiotic dormant state and dormant state (starvation stress) coincides (forms nanocrystalline structures). Data suggest the universality of DNA condensation by a protein Dps for a dormant state, regardless of the type of stress. The mummified state is very different in structure from the dormant state (has no ordering within a cell). It turned out that it is possible to visualize DNA conformation in toroidal and liquid crystal structures in which there is either no or a very small amount of the Dps protein. Observation of the DNA conformation in nanocrystals and folded nucleosome-like structures so far has been inconclusive. The methodological advances described will facilitate high-resolution visualization of the DNA conformation in the near future.