Pub Date : 2024-12-17DOI: 10.1007/s00429-024-02882-5
Audrey E M Guyonnet, Kelsey J Racicot, Benjamin Brinkman, Andrew N Iwaniuk
Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.
{"title":"The quantitative anatomy of the hippocampal formation in homing pigeons and other pigeon breeds: implications for spatial cognition.","authors":"Audrey E M Guyonnet, Kelsey J Racicot, Benjamin Brinkman, Andrew N Iwaniuk","doi":"10.1007/s00429-024-02882-5","DOIUrl":"10.1007/s00429-024-02882-5","url":null,"abstract":"<p><p>Artificial selection for specific behavioural and physical traits in domesticated animals has resulted in a wide variety of breeds. One of the most widely recognized examples of behavioural selection is the homing pigeon (Columba livia), which has undergone intense selection for fast and efficient navigation, likely resulting in significant anatomical changes to the hippocampal formation. Previous neuroanatomical comparisons between homing and other pigeon breeds yielded mixed results, but only focused on volumes. We completed a more systematic test for differences in hippocampal formation anatomy between homing and other pigeon breeds by measuring volumes, neuron numbers and neuron densities in the hippocampal formation and septum across homing pigeons and seven other breeds. Overall, we found few differences in hippocampal formation volume across breeds, but large, significant differences in neuron numbers and densities. More specifically, homing pigeons have significantly more hippocampal neurons and at higher density than most other pigeon breeds, with nearly twice as many neurons as feral pigeons. These findings suggest that neuron numbers may be an important component of homing behaviour in homing pigeons. Our data also provide the first evidence that neuronal density can be modified by artificial selection, which has significant implications for the study of domestication and interbreed variation in anatomy and behaviour.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"9"},"PeriodicalIF":2.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Genetic Absence Epilepsy Rat from Strasbourg (GAERS), a rodent model genetically predisposed to absence epilepsy, serves as an experimental tool to elucidate the neuronal mechanisms underlying human absence epilepsy. This study aimed to investigate the morphological features of dendrites and dendritic spines of pyramidal neurons in somatosensory cortex and hippocampus of Wistar and GAERS rats.
Material and method: Adult male GAERS (n = 5) and control Wistar (n = 5) rats were sacrificed by transcardial perfusion and brains were removed. Brain tissues were processed by Golgi impregnation method using FD Rapid GolgiStain Kit. Coronal sections were obtained with a cryostat. Pyramidal neurons in layers V-VI of the somatosensory cortex and the CA1 region of the hippocampus were examined using a light microscope and Neurolucida 360 software. Dendrite nodes, dendrite segments (dendritic branching), dendrite terminations, total dendrite length, dendritic spine density, and dendritic spine types were analyzed.
Results: Compared to Wistar, GAERS exhibited significantly higher numbers of nodes (p = 0.0053, p = 0.0047), segments (p = 0.0036, p = 0.0036), and terminations (p = 0.0033, p = 0.0029) in the dendrites of the somatosensory cortex and the hippocampus, respectively. Furthermore, the total dendrite length (µm) (p = 0.0002, p = 0.0007) and the density of dendritic spines (1/µm) (p = 0.0168, p = 0.0120) were significantly high in GAERS compared to Wistar. When dendritic spine types were evaluated separately, stubby-type dendritic spines in the hippocampus were higher in GAERS compared to Wistar (p = 0.0045).
Conclusion: Intense synaptic connections in the somatosensory cortex and the hippocampus of genetic absence epileptic rats led to morphological alterations in the dendrites and the dendritic spines of pyramidal neurons in these regions, potentially contributing to the pathophysiology of absence seizures.
目的:Strasbourg遗传缺失癫痫大鼠(GAERS)是一种遗传易感缺失癫痫的啮齿动物模型,可作为阐明人类缺失癫痫的神经机制的实验工具。本研究旨在探讨Wistar和GAERS大鼠体感觉皮层和海马锥体神经元树突和树突棘的形态学特征。材料与方法:取成年雄性GAERS大鼠(n = 5)和对照组Wistar大鼠(n = 5),经心肌灌注处死,取脑。采用FD快速高尔基染色试剂盒对脑组织进行高尔基浸渍处理。冠状切片用低温恒温器获得。采用光镜和Neurolucida 360软件对体感皮层V-VI层锥体神经元和海马CA1区锥体神经元进行检测。分析了树突节点、树突节段(树突分支)、树突末端、总树突长度、树突棘密度和树突棘类型。结果:与Wistar相比,GAERS在体感觉皮层树突和海马树突中分别显示出更多的节点(p = 0.0053, p = 0.0047)、节段(p = 0.0036, p = 0.0036)和终止(p = 0.0033, p = 0.0029)。此外,GAERS的总枝晶长度(µm) (p = 0.0002, p = 0.0007)和枝晶棘密度(1/µm) (p = 0.0168, p = 0.0120)均显著高于Wistar。当单独评估树突棘类型时,与Wistar相比,GAERS中海马中的粗短型树突棘更高(p = 0.0045)。结论:遗传性缺失癫痫大鼠体感觉皮层和海马的突触连接强烈,导致这些区域锥体神经元树突和树突棘的形态改变,可能参与了缺失癫痫的病理生理。
{"title":"Evaluation of dendrite morphology in Wistar and genetic absence epileptic rats.","authors":"Sevdenur Yazi, Umit S Sehirli, Rezzan Gulhan, Filiz Onat, Ozlem Kirazli","doi":"10.1007/s00429-024-02868-3","DOIUrl":"10.1007/s00429-024-02868-3","url":null,"abstract":"<p><strong>Objective: </strong>Genetic Absence Epilepsy Rat from Strasbourg (GAERS), a rodent model genetically predisposed to absence epilepsy, serves as an experimental tool to elucidate the neuronal mechanisms underlying human absence epilepsy. This study aimed to investigate the morphological features of dendrites and dendritic spines of pyramidal neurons in somatosensory cortex and hippocampus of Wistar and GAERS rats.</p><p><strong>Material and method: </strong>Adult male GAERS (n = 5) and control Wistar (n = 5) rats were sacrificed by transcardial perfusion and brains were removed. Brain tissues were processed by Golgi impregnation method using FD Rapid GolgiStain Kit. Coronal sections were obtained with a cryostat. Pyramidal neurons in layers V-VI of the somatosensory cortex and the CA1 region of the hippocampus were examined using a light microscope and Neurolucida 360 software. Dendrite nodes, dendrite segments (dendritic branching), dendrite terminations, total dendrite length, dendritic spine density, and dendritic spine types were analyzed.</p><p><strong>Results: </strong>Compared to Wistar, GAERS exhibited significantly higher numbers of nodes (p = 0.0053, p = 0.0047), segments (p = 0.0036, p = 0.0036), and terminations (p = 0.0033, p = 0.0029) in the dendrites of the somatosensory cortex and the hippocampus, respectively. Furthermore, the total dendrite length (µm) (p = 0.0002, p = 0.0007) and the density of dendritic spines (1/µm) (p = 0.0168, p = 0.0120) were significantly high in GAERS compared to Wistar. When dendritic spine types were evaluated separately, stubby-type dendritic spines in the hippocampus were higher in GAERS compared to Wistar (p = 0.0045).</p><p><strong>Conclusion: </strong>Intense synaptic connections in the somatosensory cortex and the hippocampus of genetic absence epileptic rats led to morphological alterations in the dendrites and the dendritic spines of pyramidal neurons in these regions, potentially contributing to the pathophysiology of absence seizures.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"5"},"PeriodicalIF":2.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s00429-024-02872-7
Sohae Chung, Els Fieremans, Dmitry S Novikov, Yvonne W Lui
The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas known to consist of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC known to consist of a greater number of large diameter fibers. Based on the degree of change in ƒ along the callosum, seven callosal subregions were consistently delineated for each individual. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.
{"title":"Microstructurally informed subject-specific parcellation of the corpus callosum using axonal water fraction.","authors":"Sohae Chung, Els Fieremans, Dmitry S Novikov, Yvonne W Lui","doi":"10.1007/s00429-024-02872-7","DOIUrl":"10.1007/s00429-024-02872-7","url":null,"abstract":"<p><p>The corpus callosum (CC) is the most important interhemispheric white matter (WM) structure composed of several anatomically and functionally distinct WM tracts. Resolving these tracts is a challenge since the callosum appears relatively homogenous in conventional structural imaging. Commonly used callosal parcellation methods such as Hofer and Frahm scheme rely on rigid geometric guidelines to separate the substructures that are limited to consider individual variation. Here we present a novel subject-specific and microstructurally-informed method for callosal parcellation based on axonal water fraction (ƒ) known as a diffusion metric reflective of axon caliber and density. We studied 30 healthy subjects from the Human Connectome Project dataset with multi-shell diffusion MRI. The biophysical parameter ƒ was derived from compartment-specific WM modeling. Inflection points were identified where there were concavity changes in ƒ across the CC to delineate callosal subregions. We observed relatively higher ƒ in anterior and posterior areas known to consist of a greater number of small diameter fibers and lower ƒ in posterior body areas of the CC known to consist of a greater number of large diameter fibers. Based on the degree of change in ƒ along the callosum, seven callosal subregions were consistently delineated for each individual. Therefore, this method provides microstructurally informed callosal parcellation in a subject-specific way, allowing for more accurate analysis in the corpus callosum.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"1"},"PeriodicalIF":2.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s00429-024-02885-2
Patrick Klepits, Karl Koschutnig, Thomas Zussner, Andreas Fink
This study examined the effects of a moderately intense seven-week running intervention on the hippocampal volume and depressive symptoms of young men (20-31 years of age) from the general population (N = 21). A within-subjects-design involving a two-week baseline period before the running intervention, and two subsequent intervention cycles was applied. At four time points of assessment (t1: start of the study; t2: end of baseline period/start of the intervention; t3: end of the first intervention cycle; t4: end of the 2nd intervention cycle/study end) magnetic resonance imaging was performed and symptoms related to depression were assessed employing the Center for Epidemiological Studies Depression (CES-D) Scale. The intervention resulted in a significant increase in the estimated maximum oxygen uptake (VO2max), measured with a standardized walking test (average increase from 42.07 ml*kg- 1*min- 1 to 46.07 ml*kg- 1*min- 1). The CES-D scores decreased significantly over the course of the running intervention (average decrease from 12.76 to 10.48 on a 20-point scale). Significant volumetric increases in the hippocampus were found, most notably after the first intervention cycle in the left (average increase from 613.41 mm³ to 620.55 mm³) and right hippocampal tail (average increase from 629.77 mm³ to 638.17 mm³). These findings provide new evidence regarding the temporal dynamics of hippocampal changes following engagement in physical activity.
{"title":"Changes in hippocampal volume and affective functioning after a moderate intensity running intervention.","authors":"Patrick Klepits, Karl Koschutnig, Thomas Zussner, Andreas Fink","doi":"10.1007/s00429-024-02885-2","DOIUrl":"10.1007/s00429-024-02885-2","url":null,"abstract":"<p><p>This study examined the effects of a moderately intense seven-week running intervention on the hippocampal volume and depressive symptoms of young men (20-31 years of age) from the general population (N = 21). A within-subjects-design involving a two-week baseline period before the running intervention, and two subsequent intervention cycles was applied. At four time points of assessment (t<sub>1</sub>: start of the study; t<sub>2</sub>: end of baseline period/start of the intervention; t<sub>3</sub>: end of the first intervention cycle; t<sub>4</sub>: end of the 2nd intervention cycle/study end) magnetic resonance imaging was performed and symptoms related to depression were assessed employing the Center for Epidemiological Studies Depression (CES-D) Scale. The intervention resulted in a significant increase in the estimated maximum oxygen uptake (VO<sub>2</sub>max), measured with a standardized walking test (average increase from 42.07 ml*kg<sup>- 1</sup>*min<sup>- 1</sup> to 46.07 ml*kg<sup>- 1</sup>*min<sup>- 1</sup>). The CES-D scores decreased significantly over the course of the running intervention (average decrease from 12.76 to 10.48 on a 20-point scale). Significant volumetric increases in the hippocampus were found, most notably after the first intervention cycle in the left (average increase from 613.41 mm³ to 620.55 mm³) and right hippocampal tail (average increase from 629.77 mm³ to 638.17 mm³). These findings provide new evidence regarding the temporal dynamics of hippocampal changes following engagement in physical activity.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"2"},"PeriodicalIF":2.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s00429-024-02863-8
Bo Jiang, Lei Ding, Keke Chen, Qiwei Huang, Xingyu Han, Zhaohui Jin, Li-Zhi Cao, Jianxu Zhang, Qing Li, Cuiping Xue, Yiliu He, Boyan Fang, Guangying Pei, Tianyi Yan
Attention impairment, a prevalent non-motor symptom in Parkinson's disease (PD), plays a crucial role in movement disorders. PD patients exhibit abnormalities in the attentional network related to alerting, orienting, and executive control. While dopamine medications have well-documented effects on motor function, their impact on attention networks and the underlying neural mechanisms involved in motor functions remain unclear. In this study, we utilized a modified attention network test to investigate the neural correlates underlying attention network effects measured by electroencephalography (EEG) in 29 PD patients, both on and off dopamine medication and examined their association with motor performance. Interestingly, we found that dopamine medication specifically modulated the orienting effect of the attention network. We analyzed event-related potential components, time-frequency oscillations, and brain network connectivity, as determined by the weighted phase lag index, within the orienting effect under different dopamine medication states. We observed that event-related desynchronization in the betalow, event-related synchronization in the betahigh, and functional connectivity of the betalow in the frontal, central, and parietal were regulated by dopamine medication in the orienting effect. We discovered an association between the attention network's orienting effect and motor performance alterations, which may be attributed to enhanced functional connectivity within the betalow-brain network. Enhanced weighted phase lag index of the betalow-brain network in the orienting effect may contribute to dopamine-dependent changes in motor performance. These preliminary findings provide insights into the EEG mechanisms that underlie the impact of the orienting effect in individuals with PD, shedding light on the influence of dopamine medication and its potential role in regulating top-down attention processes. These findings could help in the advancement of substitution strategies and may have the potential to address both motor and cognitive deficits in PD patients.
{"title":"Beta oscillation modulations of the orienting attention network effect correlate with dopamine-dependent motor symptoms of Parkinson's disease.","authors":"Bo Jiang, Lei Ding, Keke Chen, Qiwei Huang, Xingyu Han, Zhaohui Jin, Li-Zhi Cao, Jianxu Zhang, Qing Li, Cuiping Xue, Yiliu He, Boyan Fang, Guangying Pei, Tianyi Yan","doi":"10.1007/s00429-024-02863-8","DOIUrl":"10.1007/s00429-024-02863-8","url":null,"abstract":"<p><p>Attention impairment, a prevalent non-motor symptom in Parkinson's disease (PD), plays a crucial role in movement disorders. PD patients exhibit abnormalities in the attentional network related to alerting, orienting, and executive control. While dopamine medications have well-documented effects on motor function, their impact on attention networks and the underlying neural mechanisms involved in motor functions remain unclear. In this study, we utilized a modified attention network test to investigate the neural correlates underlying attention network effects measured by electroencephalography (EEG) in 29 PD patients, both on and off dopamine medication and examined their association with motor performance. Interestingly, we found that dopamine medication specifically modulated the orienting effect of the attention network. We analyzed event-related potential components, time-frequency oscillations, and brain network connectivity, as determined by the weighted phase lag index, within the orienting effect under different dopamine medication states. We observed that event-related desynchronization in the beta<sub>low</sub>, event-related synchronization in the beta<sub>high</sub>, and functional connectivity of the beta<sub>low</sub> in the frontal, central, and parietal were regulated by dopamine medication in the orienting effect. We discovered an association between the attention network's orienting effect and motor performance alterations, which may be attributed to enhanced functional connectivity within the beta<sub>low</sub>-brain network. Enhanced weighted phase lag index of the beta<sub>low</sub>-brain network in the orienting effect may contribute to dopamine-dependent changes in motor performance. These preliminary findings provide insights into the EEG mechanisms that underlie the impact of the orienting effect in individuals with PD, shedding light on the influence of dopamine medication and its potential role in regulating top-down attention processes. These findings could help in the advancement of substitution strategies and may have the potential to address both motor and cognitive deficits in PD patients.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 1","pages":"4"},"PeriodicalIF":2.7,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-06DOI: 10.1007/s00429-024-02827-y
Mohamed L Seghier, Sami Boudelaa
There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.
{"title":"Constraining current neuroanatomical models of reading: the view from Arabic.","authors":"Mohamed L Seghier, Sami Boudelaa","doi":"10.1007/s00429-024-02827-y","DOIUrl":"10.1007/s00429-024-02827-y","url":null,"abstract":"<p><p>There is a growing interest in imaging understudied orthographies to unravel their neuronal correlates and their implications for existing computational and neuroanatomical models. Here, we review current brain mapping literature about Arabic words. We first offer a succinct description of some unique linguistic features of Arabic that challenge current cognitive models of reading. We then appraise the existing functional neuroimaging studies that investigated written Arabic word processing. Our review revealed that (1) Arabic is still understudied, (2) the most investigated features concerned the effects of vowelling and diglossia in Arabic reading, (3) findings were not always discussed in the light of existing reading models such as the dual route cascaded, the triangle, and the connectionist dual process models, and (4) current evidence is unreliable when it comes to the exact neuronal pathways that sustain Arabic word processing. Overall, despite the fact that Arabic has some unique linguistic features that challenge and ultimately enrich current reading models, the existing functional neuroimaging literature falls short of offering a reliable evidence about brain networks of Arabic reading. We conclude by highlighting the need for more systematic studies of the linguistic features of Arabic to build theoretical and neuroanatomical models that are concurrently specific and general.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2167-2185"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-05DOI: 10.1007/s00429-024-02838-9
Ivica Kostović
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
{"title":"Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging.","authors":"Ivica Kostović","doi":"10.1007/s00429-024-02838-9","DOIUrl":"10.1007/s00429-024-02838-9","url":null,"abstract":"<p><p>In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. \"Pioneering\" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2339-2367"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-25DOI: 10.1007/s00429-024-02839-8
Victor Altmayer, Aude Sangare, Charlotte Calligaris, Louis Puybasset, Vincent Perlbarg, Lionel Naccache, Jacobo Diego Sitt, Benjamin Rohaut
Brain connectivity, allowing information to be shared between distinct cortical areas and thus to be processed in an integrated way, has long been considered critical for consciousness. However, the relationship between functional intercortical interactions and the structural connections thought to underlie them is poorly understood. In the present work, we explore both functional (with an EEG-based metric: the median weighted symbolic mutual information in the theta band) and structural (with a brain MRI-based metric: fractional anisotropy) connectivities in a cohort of 78 patients with disorders of consciousness. Both metrics could distinguish patients in a vegetative state from patients in minimally conscious state. Crucially, we discovered a significant positive correlation between functional and structural connectivities. Furthermore, we showed that this structure-function relationship is more specifically observed when considering structural connectivity within the intra- and inter-hemispheric long-distance cortico-cortical bundles involved in the Global Neuronal Workspace (GNW) theory of consciousness, thus supporting predictions of this model. Altogether, these results support the interest of multimodal assessments of brain connectivity in refining the diagnostic evaluation of patients with disorders of consciousness.
{"title":"Functional and structural brain connectivity in disorders of consciousness.","authors":"Victor Altmayer, Aude Sangare, Charlotte Calligaris, Louis Puybasset, Vincent Perlbarg, Lionel Naccache, Jacobo Diego Sitt, Benjamin Rohaut","doi":"10.1007/s00429-024-02839-8","DOIUrl":"10.1007/s00429-024-02839-8","url":null,"abstract":"<p><p>Brain connectivity, allowing information to be shared between distinct cortical areas and thus to be processed in an integrated way, has long been considered critical for consciousness. However, the relationship between functional intercortical interactions and the structural connections thought to underlie them is poorly understood. In the present work, we explore both functional (with an EEG-based metric: the median weighted symbolic mutual information in the theta band) and structural (with a brain MRI-based metric: fractional anisotropy) connectivities in a cohort of 78 patients with disorders of consciousness. Both metrics could distinguish patients in a vegetative state from patients in minimally conscious state. Crucially, we discovered a significant positive correlation between functional and structural connectivities. Furthermore, we showed that this structure-function relationship is more specifically observed when considering structural connectivity within the intra- and inter-hemispheric long-distance cortico-cortical bundles involved in the Global Neuronal Workspace (GNW) theory of consciousness, thus supporting predictions of this model. Altogether, these results support the interest of multimodal assessments of brain connectivity in refining the diagnostic evaluation of patients with disorders of consciousness.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2285-2298"},"PeriodicalIF":2.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}