首页 > 最新文献

Brain Structure & Function最新文献

英文 中文
No sex difference in maturation of brain morphology during the perinatal period. 围产期大脑形态的成熟没有性别差异。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-17 DOI: 10.1007/s00429-024-02828-x
Yucen Sheng, Ying Wang, Xiaomin Wang, Zhe Zhang, Dalin Zhu, Weihao Zheng

Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.

越来越多的证据表明,从幼儿期到成年晚期,大脑解剖结构存在性别差异。然而,新生儿大脑结构的性别差异是否出现以及性别如何调节围产期大脑皮层形态的发育仍不清楚。在此,我们利用发育中人类连接组项目(dHCP)数据库中的 T2 加权核磁共振成像,其中包括 41 名男新生儿和 40 名女新生儿,出生日期介于月经后 35 至 43 周(PMW)之间。每种性别的新生儿按年龄连续递增的顺序排列,以捕捉皮层厚度和曲率在整个发育过程中的渐进变化。成熟协方差网络(MCN)被定义为皮质区域之间形态测量的耦合发育波动。我们分别根据这两个特征构建了MCN,以说明它们在发育过程中的相互依赖关系,然后比较了不同性别之间的网络拓扑结构。结果表明,男性和女性的大脑皮层结构发育都呈现出一种局部模式,在大脑皮层形态的发育轨迹、整体组织、节点重要性以及MCN的模块化结构方面都没有显著的性别差异。此外,通过将男性和女性新生儿合并成一个统一的队列,我们利用格兰杰因果关系分析(GCA)发现了不同大脑模块之间结构发展的明显依赖性影响,这些影响从高阶区域向初级皮层延伸。我们的研究结果表明,在围产期,不同性别的新生儿大脑皮层形态的成熟模式可能没有差异,并为围产期大脑皮层结构之间的发育因果关系提供了证据。
{"title":"No sex difference in maturation of brain morphology during the perinatal period.","authors":"Yucen Sheng, Ying Wang, Xiaomin Wang, Zhe Zhang, Dalin Zhu, Weihao Zheng","doi":"10.1007/s00429-024-02828-x","DOIUrl":"10.1007/s00429-024-02828-x","url":null,"abstract":"<p><p>Accumulating evidence have documented sex differences in brain anatomy from early childhood to late adulthood. However, whether sex difference of brain structure emerges in the neonatal brain and how sex modulates the development of cortical morphology during the perinatal stage remains unclear. Here, we utilized T2-weighted MRI from the Developing Human Connectome Project (dHCP) database, consisting of 41 male and 40 female neonates born between 35 and 43 postmenstrual weeks (PMW). Neonates of each sex were arranged in a continuous ascending order of age to capture the progressive changes in cortical thickness and curvature throughout the developmental continuum. The maturational covariance network (MCN) was defined as the coupled developmental fluctuations of morphology measures between cortical regions. We constructed MCNs based on the two features, respectively, to illustrate their developmental interdependencies, and then compared the network topology between sexes. Our results showed that cortical structural development exhibited a localized pattern in both males and females, with no significant sex differences in the developmental trajectory of cortical morphology, overall organization, nodal importance, and modular structure of the MCN. Furthermore, by merging male and female neonates into a unified cohort, we identified evident dependencies influences in structural development between different brain modules using the Granger causality analysis (GCA), emanating from high-order regions toward primary cortices. Our findings demonstrate that the maturational pattern of cortical morphology may not differ between sexes during the perinatal period, and provide evidence for the developmental causality among cortical structures in perinatal brains.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1979-1994"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new map of the rat isocortex and proisocortex: cytoarchitecture and M2 receptor distribution patterns. 大鼠等皮层和前等皮层的新地图:细胞结构和 M2 受体分布模式。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2023-06-15 DOI: 10.1007/s00429-023-02654-7
Hossein Haghir, Anika Kuckertz, Ling Zhao, Javad Hami, Nicola Palomero-Gallagher

Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M2 receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain. To complement existing rodent atlases, we applied a silver cell body staining and quantitative in vitro receptor autoradiographic visualization of M2 receptors to alternating sections throughout the entire brain of five adult male Wistar rats (three sectioned coronally, one horizontally, one sagittally). Histological sections and autoradiographs were scanned at a spatial resolution of 1 µm and 20 µm per pixel, respectively, and files were stored as 8 bit images. We used these high-resolution datasets to create an atlas of the entire rat brain, including the olfactory bulb, cerebellum and brainstem. We describe the cyto- and M2 receptor architectonic features of 48 distinct iso- and proisocortical areas across the rat forebrain and provide their mean M2 receptor density. The ensuing parcellation scheme, which is discussed in the framework of existing comprehensive atlasses, includes the novel subdivision of mediomedial secondary visual area Oc2MM into anterior (Oc2MMa) and posterior (Oc2MMp) parts, and of lateral visual area Oc2L into rostrolateral (Oc2Lr), intermediate dorsolateral (Oc2Lid), intermediate ventrolateral (Oc2Liv) and caudolateral (Oc2Lc) secondary visual areas. The M2 receptor densities and the comprehensive map of iso-and proisocortical areas constitute useful tools for future computational and neuroscientific studies.

神经递质及其受体是神经元之间信息传递的关键分子,从而实现了神经元之间的交流。因此,整合大脑细胞和受体结构的多模态图谱是了解大脑结构和功能分隔之间关系的重要工具。研究表明,胆碱能毒蕈碱 M2 受体是哺乳动物大脑初级感觉区域的进化保守分子标记。为了补充现有的啮齿动物图谱,我们对五只成年雄性 Wistar 大鼠(三只冠状切片,一只水平切片,一只矢状切片)的整个大脑交替切片进行了银细胞体染色和 M2 受体体外自显影定量分析。组织学切片和自动放射照片的扫描空间分辨率分别为每像素 1 微米和 20 微米,文件存储为 8 位图像。我们利用这些高分辨率数据集绘制了包括嗅球、小脑和脑干在内的整个大鼠大脑图谱。我们描述了整个大鼠前脑中 48 个不同的等皮层和前皮层区域的细胞和 M2 受体结构特征,并提供了它们的平均 M2 受体密度。我们在现有综合图谱的框架内讨论了随后的划分方案,其中包括将内侧次级视觉区 Oc2MM 划分为前部(Oc2MMa)和后部(Oc2MMp),以及将外侧视觉区 Oc2L 划分为前外侧(Oc2Lr)、中间背外侧(Oc2Lid)、中间腹外侧(Oc2Liv)和尾外侧(Oc2Lc)次级视觉区的新方法。M2 受体密度以及同皮层和前皮层区域的综合图谱是未来计算和神经科学研究的有用工具。
{"title":"A new map of the rat isocortex and proisocortex: cytoarchitecture and M<sub>2</sub> receptor distribution patterns.","authors":"Hossein Haghir, Anika Kuckertz, Ling Zhao, Javad Hami, Nicola Palomero-Gallagher","doi":"10.1007/s00429-023-02654-7","DOIUrl":"10.1007/s00429-023-02654-7","url":null,"abstract":"<p><p>Neurotransmitters and their receptors are key molecules in information transfer between neurons, thus enabling inter-areal communication. Therefore, multimodal atlases integrating the brain's cyto- and receptor architecture constitute crucial tools to understand the relationship between its structural and functional segregation. Cholinergic muscarinic M<sub>2</sub> receptors have been shown to be an evolutionarily conserved molecular marker of primary sensory areas in the mammalian brain. To complement existing rodent atlases, we applied a silver cell body staining and quantitative in vitro receptor autoradiographic visualization of M<sub>2</sub> receptors to alternating sections throughout the entire brain of five adult male Wistar rats (three sectioned coronally, one horizontally, one sagittally). Histological sections and autoradiographs were scanned at a spatial resolution of 1 µm and 20 µm per pixel, respectively, and files were stored as 8 bit images. We used these high-resolution datasets to create an atlas of the entire rat brain, including the olfactory bulb, cerebellum and brainstem. We describe the cyto- and M<sub>2</sub> receptor architectonic features of 48 distinct iso- and proisocortical areas across the rat forebrain and provide their mean M<sub>2</sub> receptor density. The ensuing parcellation scheme, which is discussed in the framework of existing comprehensive atlasses, includes the novel subdivision of mediomedial secondary visual area Oc2MM into anterior (Oc2MMa) and posterior (Oc2MMp) parts, and of lateral visual area Oc2L into rostrolateral (Oc2Lr), intermediate dorsolateral (Oc2Lid), intermediate ventrolateral (Oc2Liv) and caudolateral (Oc2Lc) secondary visual areas. The M<sub>2</sub> receptor densities and the comprehensive map of iso-and proisocortical areas constitute useful tools for future computational and neuroscientific studies.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1795-1822"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9630816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. 灵长类动物额叶皮层微观结构的进化尺度和认知相关性。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2023-10-27 DOI: 10.1007/s00429-023-02719-7
Cheryl D Stimpson, Jeroen B Smaers, Mary Ann Raghanti, Kimberley A Phillips, Bob Jacobs, William D Hopkins, Patrick R Hof, Chet C Sherwood

Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.

研究额叶皮层微观结构的进化变化对于理解神经元和轴突分布的改变如何促进认知系统发育变化至关重要。在本研究中,我们使用神经胶质分数和快速尖峰抑制性中间神经元、大锥体投射神经元亚型、5-羟色胺能神经支配和多巴胺能神经支配的免疫组织化学标记物,对14种灵长类动物的背外侧前额叶皮层、眶额皮层和初级运动皮层的微观结构成分进行了表征。结果显示,这些微观结构变量的进化变化率相似,除了神经纤毛部分,它进化得更慢,与大脑大小的相关性最强。我们还发现,眶额皮层V-VI层的神经胶质分数与测量自我控制的实验任务表现的跨物种差异有关。这些发现深入了解了灵长类动物额叶皮层的进化重组与大脑大小缩放及其与认知过程的关系。
{"title":"Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure.","authors":"Cheryl D Stimpson, Jeroen B Smaers, Mary Ann Raghanti, Kimberley A Phillips, Bob Jacobs, William D Hopkins, Patrick R Hof, Chet C Sherwood","doi":"10.1007/s00429-023-02719-7","DOIUrl":"10.1007/s00429-023-02719-7","url":null,"abstract":"<p><p>Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1823-1838"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54227665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalising XTRACT tractography protocols across common macaque brain templates. 在常见猕猴大脑模板中推广 XTRACT 牵引成像协议。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-02-23 DOI: 10.1007/s00429-024-02760-0
Stephania Assimopoulos, Shaun Warrington, Katherine L Bryant, Stefan Pszczolkowski, Saad Jbabdi, Rogier B Mars, Stamatios N Sotiropoulos

Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.

在神经科学研究中,非人灵长类动物被广泛用作人脑模型,猕猴就是一个突出的例子。我们以前曾介绍过一套牵引成像协议(XTRACT),用于重建人脑和猕猴大脑中 42 个相应的白质(WM)束,并将这些束作为 WM 地标进行了跨物种比较。我们最初的 XTRACT 协议是使用 F99 猕猴大脑模板开发的。然而,更多的猕猴大脑模板正变得越来越常见。在此,我们将 XTRACT tractography 协议定义推广到五种猕猴大脑模板,包括 F99、D99、INIA、Yerkes 和 NMT。我们通过两种方式证明了这些协议的等效性:(a)首先,比较使用不同模板中定义的协议得出的束体;(b)其次,在两个跨物种(人-猕猴)比较任务中,比较不同模板中重建束的投影模式。结果证实,无论使用哪种猕猴大脑模板,所有预测结果都是相似的,这直接证明了这些束成像协议在所考虑的五种模板中的通用性。
{"title":"Generalising XTRACT tractography protocols across common macaque brain templates.","authors":"Stephania Assimopoulos, Shaun Warrington, Katherine L Bryant, Stefan Pszczolkowski, Saad Jbabdi, Rogier B Mars, Stamatios N Sotiropoulos","doi":"10.1007/s00429-024-02760-0","DOIUrl":"10.1007/s00429-024-02760-0","url":null,"abstract":"<p><p>Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1873-1888"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue). 哥廷根小型猪下额皮层(布罗德曼第 25 区同源区)的解剖和连接。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-28 DOI: 10.1007/s00429-024-02855-8
Andreas N Glud, Hamed Zaer, Dariusz Orlowski, Mette Slot Nielsen, Jens Christian H Sørensen, Carsten R Bjarkam

Background: The subgenual gyrus is a promising target for deep brain stimulation (DBS) against depression. However, to optimize this treatment modality, we need translational animal models.

Aim: To describe the anatomy and connectivity of the Göttingen minipig subgenual area (sgC).

Materials and methods: The frontal pole of 5 minipigs was cryosectioned into 40 μm coronal and horizontal sections and stained with Nissl and NeuN-immunohistochemistry to visualize cytoarchitecture and cortical lamination. Eight animals were unilaterally stereotaxically injected in the sgC with anterograde (BDA) and retrograde (FluoroGold) tracers to reveal the sgC connectivity.

Results: In homology with human nomenclature (Brodmann 1909), the minipig sgC can be subdivided into three distinct areas named area 25 (BA25), area 33 (BA33), and indusium griseum (IG). BA25 is a thin agranular cortex, approximately 1 mm thick. Characteristically, perpendicular to the pial surface, cell-poor cortical columns separate the otherwise cell-rich cortex of layer II, III and V. In layer V the cells are of similar size as seen in layer III, while layer VI contains more widely dispersed neurons. BA33 is less differentiated than BA25. Accordingly, the cortex is thinner and displays a complete lack of laminar differentiation due to diffusely arranged small, lightly stained neurons. It abuts the IG, which is a neuron-dense band of heavily stained small neurons separating BA33 directly from the corpus callosum and the posteriorly located septal nuclear area. Due to the limited area size and nearby location to the lateral ventricle and longitudinal cerebral fissure, only 3/8 animals received sgC injections with an antero- and retrograde tracer mixture. Retrograde tracing was seen primarily to the neighbouring ipsilateral ventral- and mPFC areas with some contralateral labelling as well. Prominent projections were furthermore observed from the ipsilateral insula, the medial aspect of the amygdala and the hippocampal formation, diencephalon and the brainstem ventral tegmental area. Anterograde tracing revealed prominent projections to the neighbouring medial prefrontal, mPFC and cingulate cortex, while moderate staining was noted in the hippocampus and adjoining piriform cortex.

Conclusion: The minipig sgC displays a cytoarchitectonic pattern and connectivity like the human and may be well suited for further translational studies on BA25-DBS against depression.

背景:源下回是深部脑刺激(DBS)治疗抑郁症的一个有希望的靶点。目的:描述哥廷根小型猪源下区(sgC)的解剖和连接情况:将 5 只迷你猪的额叶冷冻切片成 40 μm 的冠状切片和水平切片,并用 Nissl 和 NeuN 免疫组化染色,以观察细胞结构和皮质分层。对八只动物进行单侧立体定向,在sgC注射前行(BDA)和逆行(FluoroGold)示踪剂,以揭示sgC的连接性:与人类命名法(Brodmann,1909 年)相似,小鼠 sgC 可细分为三个不同的区域,分别命名为 25 区(BA25)、33 区(BA33)和吲哚灰质(IG)。BA25 是一个薄的粒状皮层,厚约 1 毫米。其特点是,垂直于皮质表面,细胞稀少的皮质柱将原本细胞丰富的第二、第三和第五层皮质分开。BA33 的分化程度低于 BA25。因此,皮层较薄,并且由于弥散排列的小而浅染色的神经元,完全缺乏层状分化。它与 IG 相邻,IG 是由重度染色的小神经元组成的神经元密集带,将 BA33 与胼胝体和位于后部的隔核区直接隔开。由于该区域面积有限,且靠近侧脑室和大脑纵裂,只有 3/8 只动物接受了前向和逆行示踪剂混合物的 sgC 注射。逆行示踪主要出现在邻近的同侧腹侧和 mPFC 区域,对侧也有一些标记。此外,还观察到同侧岛叶、杏仁核内侧、海马形成、间脑和脑干腹侧被盖区的显著投射。前向追踪显示,邻近的内侧前额叶、mPFC 和扣带皮层有明显的投射,而海马和邻近的梨状皮层则有中等程度的染色:结论:小型猪 sgC 显示出与人类相似的细胞结构模式和连接性,非常适合 BA25-DBS 治疗抑郁症的进一步转化研究。
{"title":"Anatomy and connectivity of the Göttingen minipig subgenual cortex (Brodmann area 25 homologue).","authors":"Andreas N Glud, Hamed Zaer, Dariusz Orlowski, Mette Slot Nielsen, Jens Christian H Sørensen, Carsten R Bjarkam","doi":"10.1007/s00429-024-02855-8","DOIUrl":"10.1007/s00429-024-02855-8","url":null,"abstract":"<p><strong>Background: </strong>The subgenual gyrus is a promising target for deep brain stimulation (DBS) against depression. However, to optimize this treatment modality, we need translational animal models.</p><p><strong>Aim: </strong>To describe the anatomy and connectivity of the Göttingen minipig subgenual area (sgC).</p><p><strong>Materials and methods: </strong>The frontal pole of 5 minipigs was cryosectioned into 40 μm coronal and horizontal sections and stained with Nissl and NeuN-immunohistochemistry to visualize cytoarchitecture and cortical lamination. Eight animals were unilaterally stereotaxically injected in the sgC with anterograde (BDA) and retrograde (FluoroGold) tracers to reveal the sgC connectivity.</p><p><strong>Results: </strong>In homology with human nomenclature (Brodmann 1909), the minipig sgC can be subdivided into three distinct areas named area 25 (BA25), area 33 (BA33), and indusium griseum (IG). BA25 is a thin agranular cortex, approximately 1 mm thick. Characteristically, perpendicular to the pial surface, cell-poor cortical columns separate the otherwise cell-rich cortex of layer II, III and V. In layer V the cells are of similar size as seen in layer III, while layer VI contains more widely dispersed neurons. BA33 is less differentiated than BA25. Accordingly, the cortex is thinner and displays a complete lack of laminar differentiation due to diffusely arranged small, lightly stained neurons. It abuts the IG, which is a neuron-dense band of heavily stained small neurons separating BA33 directly from the corpus callosum and the posteriorly located septal nuclear area. Due to the limited area size and nearby location to the lateral ventricle and longitudinal cerebral fissure, only 3/8 animals received sgC injections with an antero- and retrograde tracer mixture. Retrograde tracing was seen primarily to the neighbouring ipsilateral ventral- and mPFC areas with some contralateral labelling as well. Prominent projections were furthermore observed from the ipsilateral insula, the medial aspect of the amygdala and the hippocampal formation, diencephalon and the brainstem ventral tegmental area. Anterograde tracing revealed prominent projections to the neighbouring medial prefrontal, mPFC and cingulate cortex, while moderate staining was noted in the hippocampus and adjoining piriform cortex.</p><p><strong>Conclusion: </strong>The minipig sgC displays a cytoarchitectonic pattern and connectivity like the human and may be well suited for further translational studies on BA25-DBS against depression.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1995-2010"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A map of white matter tracts in a lesser ape, the lar gibbon. 一种较小的类人猿,长臂猿的白质区地图。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2023-10-31 DOI: 10.1007/s00429-023-02709-9
Katherine L Bryant, Paul R Manger, Mads F Bertelsen, Alexandre A Khrapitchev, Jérôme Sallet, R Austin Benn, Rogier B Mars

The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.

最近,通过扩散MRI在灵长类动物大脑中构建可直接比较的白质图谱的方法的发展,使我们能够探索人类、类人猿和其他灵长类动物特有的特殊性。在这里,我们使用对一只年轻成年(5.5岁)雄性长臂猿大脑的离体扩散加权扫描,构建了第一个小型类人猿的白质图谱。我们发现长臂猿颞叶的白质结构表明了一些特殊化,这让人想起了之前报道的类人猿,特别是颞叶弓形束和下纵束的扩张。我们的发现表明,这些进入颞叶的白质扩展存在于大约1600万年前人类的最后一个共同祖先中,并在类人猿和人类谱系中得到了进一步的修饰。白质图谱为识别人类和其他灵长类物种之间的神经解剖学差异和相似性提供了有用的资源,并为深入了解大脑组织的进化变异和停滞提供了见解。
{"title":"A map of white matter tracts in a lesser ape, the lar gibbon.","authors":"Katherine L Bryant, Paul R Manger, Mads F Bertelsen, Alexandre A Khrapitchev, Jérôme Sallet, R Austin Benn, Rogier B Mars","doi":"10.1007/s00429-023-02709-9","DOIUrl":"10.1007/s00429-023-02709-9","url":null,"abstract":"<p><p>The recent development of methods for constructing directly comparable white matter atlases in primate brains from diffusion MRI allows us to probe specializations unique to humans, great apes, and other primate taxa. Here, we constructed the first white matter atlas of a lesser ape using an ex vivo diffusion-weighted scan of a brain from a young adult (5.5 years) male lar gibbon. We find that white matter architecture of the gibbon temporal lobe suggests specializations that are reminiscent of those previously reported for great apes, specifically, the expansion of the arcuate fasciculus and the inferior longitudinal fasciculus in the temporal lobe. Our findings suggest these white matter expansions into the temporal lobe were present in the last common ancestor to hominoids approximately 16 million years ago and were further modified in the great ape and human lineages. White matter atlases provide a useful resource for identifying neuroanatomical differences and similarities between humans and other primate species and provide insight into the evolutionary variation and stasis of brain organization.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1839-1854"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images. 根据连续的细胞结构图像绘制猕猴(Macaca fascicularis)矢状面参考脑图谱。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-27 DOI: 10.1007/s00429-024-02851-y
Yue Luo, Xiangning Li, Can Zhou, Guangcai Liu, Xueyan Jia, Xiaoquan Yang, Anan Li, Hui Gong, Zhao Feng

The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain. To address this issue, we utilized fluorescence micro-optical sectioning tomography to obtain sub-micron resolution cytoarchitectonic images of the macaque brain at the sagittal plane. Based on the obtained 8000 image sequences, a reference brain atlas comprising 45 sagittal sections was created, delineating 270 brain regions other than the cortex. Additionally, a website was established to share the reference atlas corresponding image data. This study is expected to provide an essential dataset and tool for scientists studying the macaque brain.

脑图谱对于探索大脑的解剖结构和功能至关重要。非人类灵长类动物,如猕猴,因其基因与人类相似而受到越来越多的关注。然而,目前的猕猴脑图谱只能提供沿冠状方向间隔的粗切片,无法满足猕猴脑功能和多组学研究中单细胞分辨率研究的需要。针对这一问题,我们利用荧光微光学切片断层扫描技术获得了矢状面亚微米分辨率的猕猴脑细胞结构图像。根据获得的 8000 个图像序列,我们绘制了由 45 个矢状切面组成的参考脑图集,划分了除皮层以外的 270 个脑区。此外,还建立了一个网站来共享参考图集的相应图像数据。这项研究有望为研究猕猴大脑的科学家提供一个重要的数据集和工具。
{"title":"Mapping sagittal-plane reference brain atlas of the cynomolgus macaque (Macaca fascicularis) based on consecutive cytoarchitectonic images.","authors":"Yue Luo, Xiangning Li, Can Zhou, Guangcai Liu, Xueyan Jia, Xiaoquan Yang, Anan Li, Hui Gong, Zhao Feng","doi":"10.1007/s00429-024-02851-y","DOIUrl":"10.1007/s00429-024-02851-y","url":null,"abstract":"<p><p>The brain atlas is essential for exploring the anatomical structure and function of the brain. Non-human primates, such as cynomolgus macaque, have received increasing attention due to their genetic similarity to humans. However, current macaque brain atlases only offer coarse sections with intervals along the coronal direction, failing to meet the needs of single-cell resolution studies in functional and multi-omics research of the macaque brain. To address this issue, we utilized fluorescence micro-optical sectioning tomography to obtain sub-micron resolution cytoarchitectonic images of the macaque brain at the sagittal plane. Based on the obtained 8000 image sequences, a reference brain atlas comprising 45 sagittal sections was created, delineating 270 brain regions other than the cortex. Additionally, a website was established to share the reference atlas corresponding image data. This study is expected to provide an essential dataset and tool for scientists studying the macaque brain.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2045-2057"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The superior colliculus projection upon the macaque inferior olive. 上丘在猕猴下橄榄上的投影。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-01-19 DOI: 10.1007/s00429-023-02743-7
Paul J May, Susan Warren, Yoshiko Kojima

Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.

在探索小脑在行为可塑性中的作用时,囊回适应是一个富有成效的模型。在该模型中,目标在囊回过程中被移动,随着动物的适应而逐渐引起囊回矢量的改变。来自下橄榄的爬行纤维通路提供了由上丘产生的视觉误差信号,该信号被认为对小脑适应至关重要。然而,目前对灵长类构造-橄榄通路的研究仅采用了对上丘中央部分进行大量注射的方法。为了提供更详细的图像,我们在猕猴上丘的不同区域注射了前向示踪剂。如前所述,大面积中央注射主要标记的是对侧内侧下橄榄尾端 C 细分内的密集末端场。此外,还发现了几个以前未观察到的稀疏末端标记点:双侧的库伊背帽和同侧的内侧下橄榄 C 子区。对上丘的喙小囊状部分进行生理定向的小剂量注射,可在内侧下橄榄的相同区域产生末端区域,但密度有所降低。对尾部上丘(大振幅凝视变化的编码区域)进行小剂量注射,同样会在相同区域标记出终极场。在主要的构造-髓鞘投射中缺乏地形模式表明,要么视觉误差的精确矢量没有传递到蚓部,要么这种误差的编码是通过非地形方式进行的。
{"title":"The superior colliculus projection upon the macaque inferior olive.","authors":"Paul J May, Susan Warren, Yoshiko Kojima","doi":"10.1007/s00429-023-02743-7","DOIUrl":"10.1007/s00429-023-02743-7","url":null,"abstract":"<p><p>Saccade accommodation is a productive model for exploring the role of the cerebellum in behavioral plasticity. In this model, the target is moved during the saccade, gradually inducing a change in the saccade vector as the animal adapts. The climbing fiber pathway from the inferior olive provides a visual error signal generated by the superior colliculus that is believed to be crucial for cerebellar adaptation. However, the primate tecto-olivary pathway has only been explored using large injections of the central portion of the superior colliculus. To provide a more detailed picture, we have made injections of anterograde tracers into various regions of the macaque superior colliculus. As shown previously, large central injections primarily label a dense terminal field within the C subdivision at caudal end of the contralateral medial inferior olive. Several, previously unobserved, sites of sparse terminal labeling were noted: bilaterally in the dorsal cap of Kooy and ipsilaterally in the C subdivision of the medial inferior olive. Small, physiologically directed, injections into the rostral, small saccade portion of the superior colliculus produced terminal fields in the same regions of the medial inferior olive, but with decreased density. Small injections of the caudal superior colliculus, where large amplitude gaze changes are encoded, again labeled a terminal field located in the same areas. The lack of a topographic pattern within the main tecto-olivary projection suggests that either the precise vector of the visual error is not transmitted to the vermis, or that encoding of this error is via non-topographic means.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1855-1871"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Farewell and announcement. 告别并宣布
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-09-23 DOI: 10.1007/s00429-024-02856-7
Susan R Sesack
{"title":"Farewell and announcement.","authors":"Susan R Sesack","doi":"10.1007/s00429-024-02856-7","DOIUrl":"10.1007/s00429-024-02856-7","url":null,"abstract":"","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1773"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of the chimpanzee and human brain superficial structural connectivities. 黑猩猩与人类大脑表层结构连接性的比较分析。
IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-17 DOI: 10.1007/s00429-024-02823-2
Maëlig Chauvel, Marco Pascucci, Ivy Uszynski, Bastien Herlin, Jean-François Mangin, William D Hopkins, Cyril Poupon

Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.

弥散核磁共振成像束描术(dMRI)从根本上改变了我们研究人脑白质通路的能力。虽然长程连接已被广泛研究,但浅层白质束(SWMB)仍是大脑连接中相对未被充分探索的一个方面。本研究对人脑和黑猩猩大脑中的表层白质束连接进行了全面检查,采用了经验和几何方法的新组合,以客观的方式对表层白质束形态进行分类。这项研究利用两个解剖地图集--银杏丘维尔黑猩猩地图集和银杏丘维尔人类地图集(分别包含 844 条和 1375 条表层神经束)--重点关注 SWMB 形态的稀疏表征,以探索黑猩猩大脑中鲜为人知的表层连接性,并促进对这些神经束形态变化的深入理解。虽然在这两个物种中都观察到了类似的、人类已经熟知的 U 形纤维,但也发现了其他几何形状更为复杂的纤维,如 6 形和 J 形纤维。使用基于等值线图的形状分析方法,人类和黑猩猩不同纤维束形态的定位是不同的,这可能反映了大脑回旋过程。最终,该分析旨在揭示黑猩猩和人类之间的SWMB的共性和差异,从而揭示这些关键神经结构的进化和组织。
{"title":"Comparative analysis of the chimpanzee and human brain superficial structural connectivities.","authors":"Maëlig Chauvel, Marco Pascucci, Ivy Uszynski, Bastien Herlin, Jean-François Mangin, William D Hopkins, Cyril Poupon","doi":"10.1007/s00429-024-02823-2","DOIUrl":"10.1007/s00429-024-02823-2","url":null,"abstract":"<p><p>Diffusion MRI tractography (dMRI) has fundamentally transformed our ability to investigate white matter pathways in the human brain. While long-range connections have extensively been studied, superficial white matter bundles (SWMBs) have remained a relatively underexplored aspect of brain connectivity. This study undertakes a comprehensive examination of SWMB connectivity in both the human and chimpanzee brains, employing a novel combination of empirical and geometric methodologies to classify SWMB morphology in an objective manner. Leveraging two anatomical atlases, the Ginkgo Chauvel chimpanzee atlas and the Ginkgo Chauvel human atlas, comprising respectively 844 and 1375 superficial bundles, this research focuses on sparse representations of the morphology of SWMBs to explore the little-understood superficial connectivity of the chimpanzee brain and facilitate a deeper understanding of the variability in shape of these bundles. While similar, already well-known in human U-shape fibers were observed in both species, other shapes with more complex geometry such as 6 and J shapes were encountered. The localisation of the different bundle morphologies, putatively reflecting the brain gyrification process, was different between humans and chimpanzees using an isomap-based shape analysis approach. Ultimately, the analysis aims to uncover both commonalities and disparities in SWMBs between chimpanzees and humans, shedding light on the evolution and organization of these crucial neural structures.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1943-1977"},"PeriodicalIF":2.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brain Structure & Function
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1