首页 > 最新文献

Reactive oxygen species (Apex, N.C.)最新文献

英文 中文
Hemoglobin Is Not a Biological Fenton Reagent 血红蛋白不是生物芬顿试剂
Pub Date : 2022-03-02 DOI: 10.20455/ros.2022.c.801
P. Penketh
Hemoglobin has been reported to be a biological Fenton reagent, as a consequence of oxidations believed to be produced by hydroxyl radicals. These hydroxyl radicals were thought to be generated from the reaction of hemoglobin with hydrogen peroxide. However, the oxidations that were observed were in fact due to the generation of a strongly oxidizing iron (IV) ferryl species, and not due to hydroxyl radicals.(First online: March 1, 2022)
据报道,血红蛋白是一种生物芬顿试剂,是羟基自由基氧化产生的结果。这些羟基自由基被认为是血红蛋白与过氧化氢反应产生的。然而,观察到的氧化实际上是由于强氧化性铁(IV)铁酰基物质的产生,而不是由于羟基自由基。(首次在线:2022年3月1日)
{"title":"Hemoglobin Is Not a Biological Fenton Reagent","authors":"P. Penketh","doi":"10.20455/ros.2022.c.801","DOIUrl":"https://doi.org/10.20455/ros.2022.c.801","url":null,"abstract":"Hemoglobin has been reported to be a biological Fenton reagent, as a consequence of oxidations believed to be produced by hydroxyl radicals. These hydroxyl radicals were thought to be generated from the reaction of hemoglobin with hydrogen peroxide. However, the oxidations that were observed were in fact due to the generation of a strongly oxidizing iron (IV) ferryl species, and not due to hydroxyl radicals.\u0000(First online: March 1, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49361406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of SOD2 in Migration and Anchorage-Independent Growth of SKOV3 Ovarian Cancer Cells SOD2在SKOV3卵巢癌症细胞迁移和锚定依赖性生长中的作用
Pub Date : 2022-03-02 DOI: 10.20455/ros.2022.r.801
S. Gilligan, M. O’Shea, Calli A. Davison-Versagli
The 5-year survival rates for ovarian cancer are 93%, 75%, and 30% for localized, regional, and distant tumors, respectively. These vast differences in survival rates underscore the need to identify novel therapeutic targets that are effective at different stages of tumor progression to better treat all patients diagnosed with this deadly disease.  Manganese superoxide dismutase (SOD2) is a mitochondrial antioxidant enzyme responsible for eliminating superoxide and preventing oxidative damage to the mitochondria. Recent studies have implicated changes in SOD2 expression levels in multiple cancers, including breast, colorectal, prostate, and head and neck. While studies have begun to unravel the role of SOD2 in ovarian cancer, no one has looked at the specific role SOD2 plays in distinct stages of tumor progression of ovarian cancer. Here, we report SOD2 deficiency (accomplished through utilizing shRNA techniques) results in increased invasive and migratory ability of SKOV3 cells, a commonly used ovarian adenocarcinoma cell line. In contrast, SOD2-deficient SKOV3 cells display abrogated anchorage-independent growth in soft agar. These studies in SKOV3 cells indicate that SOD2 expression hampers invasion and migration critical for early tumor initiation but helps maintain anchorage-independent growth necessary for ovarian cancer metastases. In aggregate, SOD2 plays a context-dependent role in ovarian cancer progression and its utility as a therapeutic target for later-stage anchorage-independent ovarian cancer cells should be further explored.(First online: March 1, 2022)
癌症的5年生存率分别为93%、75%和30%,局部肿瘤、区域肿瘤和远处肿瘤。这些生存率的巨大差异强调了确定在肿瘤进展的不同阶段有效的新治疗靶点的必要性,以更好地治疗所有被诊断患有这种致命疾病的患者。锰超氧化物歧化酶(SOD2)是一种线粒体抗氧化酶,负责消除超氧化物并防止线粒体氧化损伤。最近的研究表明,SOD2在多种癌症中的表达水平发生了变化,包括乳腺癌、结直肠癌、前列腺癌和头颈癌。虽然研究已经开始阐明SOD2在卵巢癌症中的作用,但没有人研究SOD2在癌症肿瘤进展的不同阶段中的具体作用。在此,我们报道了SOD2缺乏(通过利用shRNA技术实现)导致SKOV3细胞(一种常用的卵巢腺癌细胞系)的侵袭和迁移能力增加。相反,SOD2缺陷的SKOV3细胞在软琼脂中显示出不依赖锚定的生长。这些在SKOV3细胞中的研究表明,SOD2表达阻碍了对早期肿瘤发生至关重要的侵袭和迁移,但有助于维持卵巢癌症转移所必需的凤尾鱼非依赖性生长。总之,SOD2在卵巢癌症进展中起着上下文依赖性作用,其作为晚期不依赖于凤尾鱼的卵巢癌症细胞的治疗靶点的作用有待进一步探索。(首次在线:2022年3月1日)
{"title":"The Role of SOD2 in Migration and Anchorage-Independent Growth of SKOV3 Ovarian Cancer Cells","authors":"S. Gilligan, M. O’Shea, Calli A. Davison-Versagli","doi":"10.20455/ros.2022.r.801","DOIUrl":"https://doi.org/10.20455/ros.2022.r.801","url":null,"abstract":"The 5-year survival rates for ovarian cancer are 93%, 75%, and 30% for localized, regional, and distant tumors, respectively. These vast differences in survival rates underscore the need to identify novel therapeutic targets that are effective at different stages of tumor progression to better treat all patients diagnosed with this deadly disease.  Manganese superoxide dismutase (SOD2) is a mitochondrial antioxidant enzyme responsible for eliminating superoxide and preventing oxidative damage to the mitochondria. Recent studies have implicated changes in SOD2 expression levels in multiple cancers, including breast, colorectal, prostate, and head and neck. While studies have begun to unravel the role of SOD2 in ovarian cancer, no one has looked at the specific role SOD2 plays in distinct stages of tumor progression of ovarian cancer. Here, we report SOD2 deficiency (accomplished through utilizing shRNA techniques) results in increased invasive and migratory ability of SKOV3 cells, a commonly used ovarian adenocarcinoma cell line. In contrast, SOD2-deficient SKOV3 cells display abrogated anchorage-independent growth in soft agar. These studies in SKOV3 cells indicate that SOD2 expression hampers invasion and migration critical for early tumor initiation but helps maintain anchorage-independent growth necessary for ovarian cancer metastases. In aggregate, SOD2 plays a context-dependent role in ovarian cancer progression and its utility as a therapeutic target for later-stage anchorage-independent ovarian cancer cells should be further explored.\u0000(First online: March 1, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45183655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into the Relation between Oxidative Stress and Malaria: A Mechanistic and Therapeutic Approach 氧化应激与疟疾关系的机制与治疗
Pub Date : 2021-11-21 DOI: 10.20455/ros.2021.m.805
Abhijit Sarkar, Swarnendu Basak, Sumit Ghosh, Sushweta Mahalanobish, P. Sil
The mortality rate due to malaria has increased tremendously in the last decade. Even though the causative agent of this disease is known, the preventive measures are not potent enough to control the spread of this disease. Malarial infection involves a strong interrelationship between oxidative stress and pathogenesis. This review addresses the various oxidative stress-related mechanisms associated with vector defense, host immunity, plasmodial pathogenesis, and corresponding therapeutic strategies. The mechanisms involving host and vector defense show both similarity and contradiction to the processes involving plasmodial pathogenesis under different circumstances. Therefore, corresponding ameliorative peculiarities are observed in the therapeutic mechanisms adopted by the anti-malarial drugs. The malarial parasite augments oxidative stress to weaken the host and exerts antioxidant effects against host defense mechanisms. However, the anti-malarial drugs induce oxidative insult to reduce parasitic load and exert antioxidant effects against parasite infection-induced oxidative stress in host. Thus, the anti-malarial drugs exhibit antioxidant activity in hosts and/or pro-oxidant activity in parasites.
在过去十年中,疟疾造成的死亡率急剧上升。虽然这种疾病的病原体是已知的,但预防措施还不足以控制这种疾病的传播。疟疾感染涉及氧化应激与发病机制之间的密切相互关系。本文综述了与载体防御、宿主免疫、疟原虫发病机制相关的各种氧化应激相关机制,以及相应的治疗策略。宿主和媒介防御的机制与不同情况下的疟原虫发病过程既有相似之处,也有矛盾之处。因此,抗疟疾药物的治疗机制具有相应的改善特性。疟原虫通过增强氧化应激来削弱宿主,并对宿主防御机制发挥抗氧化作用。而抗疟药物通过诱导氧化损伤来减少寄生负荷,对寄生虫感染引起的宿主氧化应激发挥抗氧化作用。因此,抗疟疾药物在宿主和/或寄生虫中表现出抗氧化活性。
{"title":"Insights into the Relation between Oxidative Stress and Malaria: A Mechanistic and Therapeutic Approach","authors":"Abhijit Sarkar, Swarnendu Basak, Sumit Ghosh, Sushweta Mahalanobish, P. Sil","doi":"10.20455/ros.2021.m.805","DOIUrl":"https://doi.org/10.20455/ros.2021.m.805","url":null,"abstract":"The mortality rate due to malaria has increased tremendously in the last decade. Even though the causative agent of this disease is known, the preventive measures are not potent enough to control the spread of this disease. Malarial infection involves a strong interrelationship between oxidative stress and pathogenesis. This review addresses the various oxidative stress-related mechanisms associated with vector defense, host immunity, plasmodial pathogenesis, and corresponding therapeutic strategies. The mechanisms involving host and vector defense show both similarity and contradiction to the processes involving plasmodial pathogenesis under different circumstances. Therefore, corresponding ameliorative peculiarities are observed in the therapeutic mechanisms adopted by the anti-malarial drugs. The malarial parasite augments oxidative stress to weaken the host and exerts antioxidant effects against host defense mechanisms. However, the anti-malarial drugs induce oxidative insult to reduce parasitic load and exert antioxidant effects against parasite infection-induced oxidative stress in host. Thus, the anti-malarial drugs exhibit antioxidant activity in hosts and/or pro-oxidant activity in parasites.","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46880773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Research on Antioxidant-Based Modalities in 2020 2020年抗氧化剂类药物的临床研究
Pub Date : 2021-02-26 DOI: 10.20455/ros.2021.s.803
E. Ros
This Education & Resources web page lists major clinical studies on antioxidant-based modalities or related entities in disease intervention and health promotion, which were published in highly influential journals during 2020. It should be noted that this is not intended to be a complete list, but is rather to focus on rigorously designed and well conducted high-profile randomized controlled trials (RCTs) whose findings were reported in medical or bioscience journals of the highest impact. For more comprehensive information on antioxidant-based clinical trials, the reader may refer to the ClinicalTrials.gov (https://clinicaltrials.gov), the largest clinical trials database, run by the US National Library of Medicine, that holds registrations from over 368,000 trials from 219 countries.2020 LIST IN REVERSE CHRONOLOGICAL ORDERFeofanova et al. A Genome-wide association study discovers 46 loci of the human metabolome in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 2020 Nov 5; 107(5):849-863. doi: https://dx.doi.org/10.1016/j.ajhg.2020.09.003.Key finding: High levels of vitamin E metabolites were associated with lower odds of coronary heart disease.Note: Vitamin E and derivatives are antioxidants, but also possess other biological activities, such as inhibition of protein kinase C-mediated signaling.Horsfall et al. Genetically raised serum bilirubin levels and lung cancer: a cohort study and Mendelian randomisation using UK Biobank. Thorax 2020 Nov; 75(11):955-964. doi: https://dx.doi.org/10.1136/thoraxjnl-2020-214756.Key finding: High serum bilirubin was associated with decreased lung cancer incidence.Note: Bilirubin is a potent antioxidant. According to Dr Davey Smith,  Mendelian randomization is a method of using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in observational studies (from the US CDC website: https://cdc.gov). A positive finding in a Mendelian randomization study provides strong evidence for a causal relationship.Morris et al. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood 2020 Sep 17;136(12):1402-1406. doi: https://dx.doi.org/10.1182/blood.2019003672.Key finding: Arginine therapy increased mitochondrial activity and reduced oxidative stress in children with sickle cell disease with vaso-occlusive pain episodes.Note: Arginine is the substrate for nitric oxide synthetase and possesses antioxidative activities. Nitric oxide acts also as an antioxidant in biological systems.Yubero-Serrano et al. Mediterranean diet and endothelial function in patients with coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. PLoS Med 2020 Sep 9; 17(9):e1003282. doi: https://dx.doi.org/10.1371/journal.pmed.1003282.Key finding: Mediterranean diet intake led to improved endothelial function and lower ROS production.Note: Mediterranean diet is rich in
本教育与资源网页列出了2020年期间在极具影响力的期刊上发表的关于疾病干预和健康促进中基于抗氧化剂的方式或相关实体的主要临床研究。应该指出的是,这并不是一个完整的清单,而是侧重于严格设计和执行良好的引人注目的随机对照试验(rct),其研究结果在最具影响力的医学或生物科学期刊上发表。关于抗氧化剂临床试验的更全面的信息,读者可以参考ClinicalTrials.gov (https://clinicaltrials.gov),这是由美国国家医学图书馆运营的最大的临床试验数据库,拥有来自219个国家的368,000多个试验的注册feofanova等。一项全基因组关联研究在西班牙裔社区健康研究/拉丁美洲人研究中发现了46个人类代谢组位点。Am J Hum Genet 2020 11月5日;107(5): 849 - 863。doi: https://dx.doi.org/10.1016/j.ajhg.2020.09.003.Key发现:高水平的维生素E代谢物与较低的冠心病几率相关。注:维生素E及其衍生物是抗氧化剂,但也具有其他生物活性,如抑制蛋白激酶c介导的信号传导。Horsfall等人。基因升高的血清胆红素水平与肺癌:使用英国生物银行的队列研究和孟德尔随机化。2020年11月;75(11): 955 - 964。doi: https://dx.doi.org/10.1136/thoraxjnl-2020-214756.Key发现:高血清胆红素与肺癌发病率降低有关。注意:胆红素是一种有效的抗氧化剂。根据Davey Smith博士的说法,孟德尔随机化是一种方法,在观察性研究中使用已知功能基因的测量变异来检查可改变暴露对疾病的因果影响(来自美国疾病控制与预防中心网站:https://cdc.gov)。孟德尔随机化研究的积极发现为因果关系提供了强有力的证据。Morris等人。精氨酸治疗对镰状细胞病患者血管闭塞性疼痛期间线粒体功能的影响。《Blood 2020》9月17日;136(12):1402-1406。doi: https://dx.doi.org/10.1182/blood.2019003672.Key发现:精氨酸治疗可增加镰状细胞病伴血管闭塞性疼痛发作患儿的线粒体活性并降低氧化应激。注:精氨酸是一氧化氮合成酶的底物,具有抗氧化活性。一氧化氮在生物系统中也是一种抗氧化剂。Yubero-Serrano等人。地中海饮食与冠心病患者内皮功能的关系:CORDIOPREV随机对照试验分析PLoS Med 2020 Sep 9;17 (9): e1003282。doi: https://dx.doi.org/10.1371/journal.pmed.1003282.Key发现:地中海饮食摄入导致内皮功能改善和ROS生成降低。注意:地中海饮食富含抗氧化剂和抗炎化合物,对健康有很多好处,尤其是对心血管的保护。然而,抗氧化成分对地中海饮食健康益处的确切贡献仍有待确定。Cienfuegos等人。4和6小时限时喂养对体重和心脏代谢健康的影响:一项针对肥胖成人的随机对照试验Cell Metab 2020 Sep 1;32 (3): 366 - 378. - e3。doi: https://dx.doi.org/10.1016/j.cmet.2020.06.018.Key发现:限时喂养降低了体重、胰岛素抵抗和氧化应激。Nathan等人。一项随机、双盲、安慰剂对照的研究,对有肺动脉高压相关肺纤维化风险的受试者进行脉冲、吸入一氧化氮的研究。2020年8月;158(2): 637 - 645。doi: https://dx.doi.org/10.1016/j.chest.2020.02.016.Key发现:吸入一氧化氮导致肺纤维化患者的临床改善。注:生理水平的一氧化氮是一种抗氧化和细胞保护分子。McEvoy等人。孕妇吸烟者服用维生素C持续改善12个月大的婴儿气道功能:一项随机试验。欧元呼吸[J] 2020年7月2日;1902208. doi: https://dx.doi.org/10.1183/13993003.02208-2019.Key发现:向怀孕吸烟者补充维生素C(每天0.5克)可改善婴儿气道功能。注意:维生素C是一种多任务化合物;它是一种抗氧化剂,但也具有许多其他的生物功能。Chang等人。氢化可的松、维生素c和硫胺素联合治疗败血症和感染性休克:一项随机对照试验。2020年7月;158(1): 174 - 182。注:维生素C是一种多任务化合物;它是一种抗氧化剂,但也具有许多其他的生物功能。Iglesias等。早期治疗败血症时使用抗坏血酸、硫胺素和糖皮质激素进行代谢复苏的结果:ORANGES试验 2020年7月;158(1): 164 - 173。doi: https://dx.doi.org/10.1016/j.chest.2020.02.049.Key发现:静脉注射抗坏血酸、硫胺素和氢化可的松联合治疗可显著缩短脓毒性休克的缓解时间。注意:维生素C是一种多任务化合物;它是一种抗氧化剂,但也具有许多其他的生物功能。Streese等人。高强度间歇训练调节视网膜微血管表型和p66Shc基因DNA甲基化:一项随机对照试验(EXAMIN AGE)。欧洲心脏杂志2020年4月14日;41(15): 1514 - 1519。doi: https://dx.doi.org/10.1093/eurheartj/ehz196.Key发现:高强度间歇训练改善了高危患者的微血管功能障碍,可能与p66Shc减少有关,p66Shc是一种与线粒体ROS产生有关的氧化还原酶。Ambrosone等。参与合作组临床试验(SWOG S0221)的乳腺癌患者化疗期间膳食补充剂的使用和生存结果。临床肿瘤学杂志2020年3月10日;38(8): 804 - 814。doi: https://dx.doi.org/10.1200/JCO.19.01203.Key发现:抗氧化补充剂(维生素A, C和E;类胡萝卜素;辅酶Q10)在乳腺癌化疗前和期间与不良结果相关。注:在最具影响力的期刊(包括《自然》和《细胞》)上发表的研究中,抗氧化剂已经在各种实验模型中被证明可以促进肿瘤发生和癌症转移。Vallerga等人。DNA甲基化分析将胱氨酸-谷氨酸反转运蛋白SLC7A11与帕金森病的风险联系起来。中国生物医学工程学报,2020;11(1):1238。发现:SLC7A11基因的下调与帕金森病有关。注:SLC7A11编码半胱氨酸-谷氨酸反转运蛋白,调节调节细胞水平的还原型谷胱甘肽(GSH)。Choi等人。血清胆红素水平与卒中风险降低之间的因果关系:一项双样本孟德尔随机研究。动脉粥样硬化血栓血管生物学2020年2月;40(2): 437 - 445。doi: https://dx.doi.org/10.1161/ATVBAHA.119.313055.Key发现:该研究支持高血清胆红素水平与韩国人群中风风险降低之间的因果关系。注意:胆红素是一种有效的抗氧化剂。孟德尔随机化研究提供了因果关系的证据。
{"title":"Clinical Research on Antioxidant-Based Modalities in 2020","authors":"E. Ros","doi":"10.20455/ros.2021.s.803","DOIUrl":"https://doi.org/10.20455/ros.2021.s.803","url":null,"abstract":"This Education & Resources web page lists major clinical studies on antioxidant-based modalities or related entities in disease intervention and health promotion, which were published in highly influential journals during 2020. It should be noted that this is not intended to be a complete list, but is rather to focus on rigorously designed and well conducted high-profile randomized controlled trials (RCTs) whose findings were reported in medical or bioscience journals of the highest impact. For more comprehensive information on antioxidant-based clinical trials, the reader may refer to the ClinicalTrials.gov (https://clinicaltrials.gov), the largest clinical trials database, run by the US National Library of Medicine, that holds registrations from over 368,000 trials from 219 countries.\u00002020 LIST IN REVERSE CHRONOLOGICAL ORDER\u0000Feofanova et al. A Genome-wide association study discovers 46 loci of the human metabolome in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet 2020 Nov 5; 107(5):849-863. doi: https://dx.doi.org/10.1016/j.ajhg.2020.09.003.\u0000Key finding: High levels of vitamin E metabolites were associated with lower odds of coronary heart disease.\u0000Note: Vitamin E and derivatives are antioxidants, but also possess other biological activities, such as inhibition of protein kinase C-mediated signaling.\u0000Horsfall et al. Genetically raised serum bilirubin levels and lung cancer: a cohort study and Mendelian randomisation using UK Biobank. Thorax 2020 Nov; 75(11):955-964. doi: https://dx.doi.org/10.1136/thoraxjnl-2020-214756.\u0000Key finding: High serum bilirubin was associated with decreased lung cancer incidence.\u0000Note: Bilirubin is a potent antioxidant. According to Dr Davey Smith,  Mendelian randomization is a method of using measured variation in genes of known function to examine the causal effect of a modifiable exposure on disease in observational studies (from the US CDC website: https://cdc.gov). A positive finding in a Mendelian randomization study provides strong evidence for a causal relationship.\u0000Morris et al. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood 2020 Sep 17;136(12):1402-1406. doi: https://dx.doi.org/10.1182/blood.2019003672.\u0000Key finding: Arginine therapy increased mitochondrial activity and reduced oxidative stress in children with sickle cell disease with vaso-occlusive pain episodes.\u0000Note: Arginine is the substrate for nitric oxide synthetase and possesses antioxidative activities. Nitric oxide acts also as an antioxidant in biological systems.\u0000Yubero-Serrano et al. Mediterranean diet and endothelial function in patients with coronary heart disease: an analysis of the CORDIOPREV randomized controlled trial. PLoS Med 2020 Sep 9; 17(9):e1003282. doi: https://dx.doi.org/10.1371/journal.pmed.1003282.\u0000Key finding: Mediterranean diet intake led to improved endothelial function and lower ROS production.\u0000Note: Mediterranean diet is rich in","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48296233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Clinical Research on Antioxidant-Based Modalities in 2021 2021年抗氧化剂类药物的临床研究
Pub Date : 2021-02-26 DOI: 10.20455/ros.2021.s.805
E. Ros
Being updated biweekly till the end of the year, this Education & Resources web page lists major clinical studies on antioxidant-based modalities or related entities in disease intervention and health promotion, which have been published in highly influential journals during 2021. It should be noted that this is not intended to be a complete list, but is rather to focus on rigorously designed and well conducted high-profile randomized controlled trials (RCTs) whose findings were reported in medical or bioscience journals of the highest impact. For more comprehensive information on antioxidant-based clinical trials, the reader may refer to the ClinicalTrials.gov (https://clinicaltrials.gov), the largest clinical trials database, run by the US National Library of Medicine, that holds registrations from over 368,000 trials from 219 countries.2021 LIST IN REVERSE CHRONOLOGICAL ORDERXu et al. Edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke: a phase III, randomized, double-blind, comparative trial. Stroke 2021 Mar; 52(3):772-780. doi: https://dx.doi.org/10.1161/STROKEAHA.120.031197.Key finding: Edaravone dexborneol (a combination of edaravone and borneol) was superior to edaravone alone in improving the clinical outcomes of the acute ischemic stroke patients.Note: Edaravone, a synthetic free radical scavenger, was approved by the US FDA in 2017 for treating amyotrophic lateral sclerosis (ALS). Borneol is a phytochemical with diverse biological activities including antioxidative and anti-inflammatory effects.Kim et al. Reactive oxygen species scavenger in acute intracerebral hemorrhage patients: a multicenter, randomized controlled trial. Stroke 2021 Feb 25; doi: https://doi.org/10.1161/STROKEAHA.120.032266.Key finding: Giving N-acetylcysteine 2000 mg/day and selenium 1600 µg/day, intravenously, for 14 days significantly improved the clinical outcomes in the acute intracerebral hemorrhage patients.Note: N-Acetylcysteine is a precursor of glutathione (GSH). Selenium acts as an antioxidant element due, at least partly, to its essentialness for the function of various selenoproteins, including selenium-dependent glutathione peroxidases (GPx).Kalstad et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation 2021 Feb 9; 143(6):528-539. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052209.Key finding: NullNote: n-3 Fatty acids, also known as omega-3 fatty acids, possess potent antioxidative and anti-inflammatory activities.Lynch et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol 2021 Feb; 89(2):212-225. doi: https://dx.doi.org/10.1002/ana.25934.Key finding: Omaveloxolone significantly improved neurological function compared to placebo and is well tolerated.Note: Omaveloxolone, a synthetic oleanane triterpenoid, is an activator of Nrf2, the chief regulator of cellular antioxidant and ot
该教育与资源网页每两周更新一次,直到今年年底,列出了关于疾病干预和健康促进中基于抗氧化剂的模式或相关实体的主要临床研究,这些研究已在2021年发表在极具影响力的期刊上。需要注意的是,这并不是一份完整的清单,而是专注于设计严谨、实施良好的高调随机对照试验(RCT),其研究结果发表在影响最大的医学或生物科学期刊上。有关抗氧化剂临床试验的更全面信息,读者可以参考ClinicalTrials.gov(https://clinicaltrials.gov),最大的临床试验数据库,由美国国家医学图书馆运营,拥有来自219个国家的368000多项试验的注册。2021反向时序列表徐等人。依达拉奉-右冰片与依达拉奉单独治疗急性缺血性脑卒中:一项三期、随机、双盲、比较试验。中风2021年3月;52(3):772-780.doi:https://dx.doi.org/10.1161/STROKEAHA.120.031197.Key研究结果:依达拉奉-右冰片(依达拉奉和冰片的组合)在改善急性缺血性脑卒中患者的临床结果方面优于依达拉奉。注:依达拉奉是一种合成自由基清除剂,于2017年被美国食品药品监督管理局批准用于治疗肌萎缩侧索硬化症(ALS)。冰片是一种具有多种生物活性的植物化学物质,具有抗氧化和抗炎作用。Kim等。急性脑出血患者的活性氧清除剂:一项多中心、随机对照试验。中风2021年2月25日;doi:https://doi.org/10.1161/STROKEAHA.120.032266.Key研究结果:静脉注射N-乙酰半胱氨酸2000 mg/天和硒1600µg/天,持续14天,显著改善了急性脑出血患者的临床结果。注:N-乙酰半胱氨酸是谷胱甘肽(GSH)的前体。硒是一种抗氧化元素,至少部分原因是它对各种硒蛋白的功能至关重要,包括硒依赖性谷胱甘肽过氧化物酶(GPx)。Kalstad等人,n-3脂肪酸补充剂对老年心肌梗死患者的影响:一项随机对照试验。2021年2月9日发行;143(6):528-539.doi:https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052209.Key研究结果:无效注:n-3脂肪酸,也称为ω-3脂肪酸,具有强大的抗氧化和抗炎活性。林奇等。奥匹韦洛龙治疗弗里德里希共济失调的安全性和有效性(MOXIe研究)。Ann Neurol 2021年2月;89(2):212-225.doi:https://dx.doi.org/10.1002/ana.25934.Key研究结果:与安慰剂相比,奥匹韦洛龙显著改善了神经功能,并且耐受性良好。注:奥马维酮是一种合成的油酸三萜,是Nrf2的激活剂,Nrf2是细胞抗氧化剂和其他细胞保护基因的主要调节因子。Meir等人,绿色地中海饮食对肝内脂肪的影响:DIRECT PLUS随机对照试验。Gut 2021 1月18日;gutjnl-2020-323106。doi:https://dx.doi.org/10.1136/gutjnl-2020-323106.Key研究结果:富含绿色植物和多酚的绿色地中海饮食可以改善非酒精性脂肪肝(NAFLD)。注意:地中海饮食、绿色植物(绿茶)和坚果富含抗氧化剂和抗炎化合物,具有许多健康益处,尤其是心血管保护。然而,抗氧化成分对地中海饮食健康益处的确切贡献仍有待确定。Rinott等。饮食调节的自体粪便微生物群移植对体重恢复的影响。胃肠病学2021年1月;160(1):158-173.e10.doi:https://dx.doi.org/10.1053/j.gastro.2020.08.041.Key研究结果:富含多酚的饮食调节自体粪便微生物群移植减轻了体重恢复并保持了血糖控制。注意:膳食多酚具有抗氧化、抗炎和许多其他生物活性。郑等。血浆维生素C与2型糖尿病:欧洲人群的全基因组关联研究和孟德尔随机化分析。糖尿病护理2021年1月;44(1):98-106.doi:https://dx.doi.org/10.2337/dc20-1328.Keyfinding:空;没有证据支持维生素C补充剂在2型糖尿病预防中的疗效。注:维生素C是一种多任务复合物;它是一种抗氧化剂,但也具有许多其他生物功能。根据Davey Smith博士的说法,孟德尔随机化是一种在观察性研究中使用已知功能基因的测量变异来检查可改变暴露对疾病的因果影响的方法(来自美国疾病控制与预防中心网站:https://cdc.gov)。孟德尔随机化研究中的一项积极发现为因果关系提供了有力的证据。Luo等人。
{"title":"Clinical Research on Antioxidant-Based Modalities in 2021","authors":"E. Ros","doi":"10.20455/ros.2021.s.805","DOIUrl":"https://doi.org/10.20455/ros.2021.s.805","url":null,"abstract":"Being updated biweekly till the end of the year, this Education & Resources web page lists major clinical studies on antioxidant-based modalities or related entities in disease intervention and health promotion, which have been published in highly influential journals during 2021. It should be noted that this is not intended to be a complete list, but is rather to focus on rigorously designed and well conducted high-profile randomized controlled trials (RCTs) whose findings were reported in medical or bioscience journals of the highest impact. For more comprehensive information on antioxidant-based clinical trials, the reader may refer to the ClinicalTrials.gov (https://clinicaltrials.gov), the largest clinical trials database, run by the US National Library of Medicine, that holds registrations from over 368,000 trials from 219 countries.\u00002021 LIST IN REVERSE CHRONOLOGICAL ORDER\u0000Xu et al. Edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke: a phase III, randomized, double-blind, comparative trial. Stroke 2021 Mar; 52(3):772-780. doi: https://dx.doi.org/10.1161/STROKEAHA.120.031197.\u0000Key finding: Edaravone dexborneol (a combination of edaravone and borneol) was superior to edaravone alone in improving the clinical outcomes of the acute ischemic stroke patients.\u0000Note: Edaravone, a synthetic free radical scavenger, was approved by the US FDA in 2017 for treating amyotrophic lateral sclerosis (ALS). Borneol is a phytochemical with diverse biological activities including antioxidative and anti-inflammatory effects.\u0000Kim et al. Reactive oxygen species scavenger in acute intracerebral hemorrhage patients: a multicenter, randomized controlled trial. Stroke 2021 Feb 25; doi: https://doi.org/10.1161/STROKEAHA.120.032266.\u0000Key finding: Giving N-acetylcysteine 2000 mg/day and selenium 1600 µg/day, intravenously, for 14 days significantly improved the clinical outcomes in the acute intracerebral hemorrhage patients.\u0000Note: N-Acetylcysteine is a precursor of glutathione (GSH). Selenium acts as an antioxidant element due, at least partly, to its essentialness for the function of various selenoproteins, including selenium-dependent glutathione peroxidases (GPx).\u0000Kalstad et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation 2021 Feb 9; 143(6):528-539. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052209.\u0000Key finding: Null\u0000Note: n-3 Fatty acids, also known as omega-3 fatty acids, possess potent antioxidative and anti-inflammatory activities.\u0000Lynch et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann Neurol 2021 Feb; 89(2):212-225. doi: https://dx.doi.org/10.1002/ana.25934.\u0000Key finding: Omaveloxolone significantly improved neurological function compared to placebo and is well tolerated.\u0000Note: Omaveloxolone, a synthetic oleanane triterpenoid, is an activator of Nrf2, the chief regulator of cellular antioxidant and ot","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47036409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A List of Highly Influential Journals 高影响力期刊排行榜
Pub Date : 2021-02-26 DOI: 10.20455/ros.2021.s.801
E. Ros
This Education & Resources web page provides a list, in alphabetical order, of highly influential journals (typically with an impact factor of 10 or above) where high profile research articles on ROS may be found. This, however, is not intended to be a complete list.LIST IN ALPHABETICAL ORDERAmerican Journal of GastroenterologyAmerican Journal of Human GeneticsAmerican Journal of Respiratory and Critical Care MedicineAnnals of Internal MedicineAnnals of NeurologyAutophagyBloodBrainBritish Medical JournalCancer ResearchCell (and Molecular Cell, Cancer Cell, Cell Metabolism, Cell Stem Cell, Developmental Cell, Cell Host Microbe)Cell ResearchChestCirculationCirculation ResearchCurrent BiologyEMBO J (and EMBO Molecular Medicine)European Heart JournalEuropean Journal of Heart FailureEuropean Respiratory JournalGastroenterologyGenes and DevelopmentGenome BiologyGenome ResearchGutHepatologyImmunityJAMA (and JAMA Internal Medicine, JAMA Cardiology)Journal of Allergy and Clinical ImmunologyJournal of the American College of Cardiology (and JACC Cardiovascular Imaging, JACC Cardiovascular Interventions, JACC Heart Failure)   Journal of Cell BiologyJournal of Clinical InvestigationJournal of Experimental MedicineJournal of the American Chemical SocietyJournal of the National Cancer InstituteLancet (and Lancet Oncology, Lancet Neurology, Lancet Diabetes & Endocrinology)MicrobiomeMolecular Biology and EvolutionMolecular CancerMolecular PlantNature (and Nature Genetics, Nature Medicine, Nature Methods, Nature Biotechnology, Nature Materials, Nature Nanotechnology, Nature Communications, Nature Structural & Molecular Biology, Nature Neuroscience, Nature Immunology, Nature Cell Biology, Nature Chemical Biology, Nature Microbiology, Nature Plants, Nature Chemical Biology)NeuronNew England Journal of MedicineNucleic Acids ResearchPlant CellPLOS MedicineProceedings of the National Academy of Sciences of the United States of AmericaScience (and Science Signaling, Science Translational Medicine, Science Immunology)
这个教育和资源网页按字母顺序提供了一个具有高度影响力的期刊(影响因子通常为10或以上)的列表,其中可以找到关于ROS的高知名度研究文章。然而,这并不是一个完整的列表。《美国胃肠病学杂志》《美国人类遗传学杂志》《美国呼吸与重症医学杂志》《内科医学年鉴》《神经学年鉴》《自噬血脑》《英国医学杂志》《癌症研究》《细胞与分子细胞》、《癌细胞》、《细胞代谢》、《细胞干细胞》、《发育细胞》、细胞宿主微生物细胞研究循环循环研究现代生物学欧洲心脏杂志欧洲心力衰竭杂志欧洲呼吸杂志星相病学基因与发育基因组生物学基因组研究病理免疫学JAMA(和JAMA内科,JAMA心脏病学)过敏与临床免疫学杂志美国心脏病学会杂志(和JACC心血管成像,JACC心血管干预,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,JACC心血管成像,JACC心血管干预,《细胞生物学杂志》《临床研究杂志》《实验医学杂志》《美国化学学会杂志》《国家癌症研究所杂志》《柳叶刀肿瘤学》《柳叶刀神经病学》《柳叶刀糖尿病与内分泌学》《微生物学》《分子生物学与进化》《分子癌症》《分子植物》《自然遗传学》《自然医学》《自然方法》《自然生物技术》《自然材料》《自然纳米技术》《自然通讯》自然结构与分子生物学,自然神经科学,自然免疫学,自然细胞生物学,自然化学生物学,自然微生物学,自然植物,自然化学生物学神经元新英格兰医学杂志核酸研究植物细胞美国国家科学院院刊科学(和科学信号科学,科学转化医学,科学免疫学)
{"title":"A List of Highly Influential Journals","authors":"E. Ros","doi":"10.20455/ros.2021.s.801","DOIUrl":"https://doi.org/10.20455/ros.2021.s.801","url":null,"abstract":"This Education & Resources web page provides a list, in alphabetical order, of highly influential journals (typically with an impact factor of 10 or above) where high profile research articles on ROS may be found. This, however, is not intended to be a complete list.\u0000LIST IN ALPHABETICAL ORDER\u0000American Journal of Gastroenterology\u0000American Journal of Human Genetics\u0000American Journal of Respiratory and Critical Care Medicine\u0000Annals of Internal Medicine\u0000Annals of Neurology\u0000Autophagy\u0000Blood\u0000Brain\u0000British Medical Journal\u0000Cancer Research\u0000Cell (and Molecular Cell, Cancer Cell, Cell Metabolism, Cell Stem Cell, Developmental Cell, Cell Host Microbe)\u0000Cell Research\u0000Chest\u0000Circulation\u0000Circulation Research\u0000Current Biology\u0000EMBO J (and EMBO Molecular Medicine)\u0000European Heart Journal\u0000European Journal of Heart Failure\u0000European Respiratory Journal\u0000Gastroenterology\u0000Genes and Development\u0000Genome Biology\u0000Genome Research\u0000Gut\u0000Hepatology\u0000Immunity\u0000JAMA (and JAMA Internal Medicine, JAMA Cardiology)\u0000Journal of Allergy and Clinical Immunology\u0000Journal of the American College of Cardiology (and JACC Cardiovascular Imaging, JACC Cardiovascular Interventions, JACC Heart Failure)   \u0000Journal of Cell Biology\u0000Journal of Clinical Investigation\u0000Journal of Experimental Medicine\u0000Journal of the American Chemical Society\u0000Journal of the National Cancer Institute\u0000Lancet (and Lancet Oncology, Lancet Neurology, Lancet Diabetes & Endocrinology)\u0000Microbiome\u0000Molecular Biology and Evolution\u0000Molecular Cancer\u0000Molecular Plant\u0000Nature (and Nature Genetics, Nature Medicine, Nature Methods, Nature Biotechnology, Nature Materials, Nature Nanotechnology, Nature Communications, Nature Structural & Molecular Biology, Nature Neuroscience, Nature Immunology, Nature Cell Biology, Nature Chemical Biology, Nature Microbiology, Nature Plants, Nature Chemical Biology)\u0000Neuron\u0000New England Journal of Medicine\u0000Nucleic Acids Research\u0000Plant Cell\u0000PLOS Medicine\u0000Proceedings of the National Academy of Sciences of the United States of America\u0000Science (and Science Signaling, Science Translational Medicine, Science Immunology)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46338691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Peroxide, Water Channels, and Tissue Injury 过氧化氢、水通道和组织损伤
Pub Date : 2021-02-23 DOI: 10.20455/ros.2021.n.803
E. Ros
Water channels, also known as aquaporins, were discovered by Peter C. Agre, the recipient of the 2003 Nobel Prize in Chemistry. In addition to facilitating transport of water, these channels have been shown to also mediate the diffusion of hydrogen peroxide across cell membranes and consequently control the biological functions of this important reactive oxygen species. Findings from multiple recent studies published in highly influential journals have further advanced our understanding on how to control the biological effects of hydrogen peroxide via targeting specific water channels.REFERENCESHopkins RZ. Hydrogen Peroxide in biology and medicine: an overview. React Oxyg Species (Apex) 2017; 3(7):26–37. doi: https://dx.doi.org/10.20455/ros.2017.809.Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 2007; 282(2):1183‒92. doi: https://dx.doi.org/10.1074/jbc.M603761200.Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 2010; 107(36):15681‒6. doi: https://dx.doi.org/10.1073/pnas.1005776107.Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 2016; 471(1):191‒7. doi: https://dx.doi.org/10.1016/j.bbrc.2016.01.153.Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 2012; 209(10):1743‒52. doi: https://dx.doi.org/10.1084/jem.20112398.Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 2015; 6:7454. doi: https://dx.doi.org/10.1038/ncomms8454.Satooka H, Hara-Chikuma M. Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol 2016; 36(7):1206‒18. doi: https://dx.doi.org/10.1128/MCB.00971-15.Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, et al. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 2020; 12(564). doi: https://dx.doi.org/10.1126/scitranslmed.aay2176.Steinhorn B, Sorrentino A, Badole S, Bogdanova Y, Belousov V, Michel T. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat Commun 2018; 9(1):4044. doi: https://dx.doi.org/10.1038/s41467-018-06533-2.Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020; 11(1):5666. doi: https://dx.doi.org/10.1038/s41467-020-19491-5.Han
水道,也被称为水通道蛋白,是由2003年诺贝尔化学奖获得者彼得·阿格雷发现的。除了促进水的运输外,这些通道还被证明可以介导过氧化氢在细胞膜上的扩散,从而控制这种重要活性氧的生物功能。最近发表在极具影响力的期刊上的多项研究结果进一步加深了我们对如何通过靶向特定水道来控制过氧化氢生物效应的理解。参考霍普金斯RZ。生物学和医学中的过氧化氢:综述。React Oxyg物种(Apex)2017;3(7):26-37.doi:https://dx.doi.org/10.20455/ros.2017.809.BienertGP、Moller AL、Kristiansen KA、Schulz A、Moller IM、Schjoerring JK等。特异性水通道蛋白促进过氧化氢在膜上的扩散。生物化学杂志2007;282(2):1183-92.doi:https://dx.doi.org/10.1074/jbc.M603761200.MillerEW,Dickinson BC,Chang CJ。水通道蛋白-3介导过氧化氢摄取以调节下游细胞内信号传导。美国国家科学院院刊2010;107(36):15681-6.doi:https://dx.doi.org/10.1073/pnas.1005776107.WatanabeS,Moniaga CS,Nielsen S,Hara Chikuma M.水通道蛋白-9促进哺乳动物细胞中过氧化氢的膜转运。Biochem Biophys Res Commun 2016;471(1):191-7.doi:https://dx.doi.org/10.1016/j.bbrc.2016.01.153.Hara-ChikumaM,Chikuma S,Sugiyama Y,Kabashima K,Verkman AS,Inoue S等。趋化因子依赖性T细胞迁移需要水通道蛋白-3介导的过氧化氢摄取。《实验医学杂志》2012;209(10):1743-52.doi:https://dx.doi.org/10.1084/jem.20112398.Hara-ChikumaM,Satooka H,Watanabe S,Honda T,Miyachi Y,WatanabeT等。角质形成细胞中NF-κB信号传导和银屑病的发展需要水通道蛋白-3介导的过氧化氢转运。Nat Commun 2015;6:7454.doi:https://dx.doi.org/10.1038/ncomms8454.SatookaH,Hara-Chikuma M.水通道蛋白-3通过调节过氧化氢转运及其下游细胞信号传导来控制乳腺癌症细胞迁移。Mol Cell Biol 2016;36(7):1206-18.doi:https://dx.doi.org/10.1128/MCB.00971-15.MontielV,Bella R,Michel LYM,Esfahani H,De Mulder D,Robinson EL等。水通道蛋白-1的抑制通过阻断过氧化氢的跨膜转运来防止心肌重塑。Sci-Transl Med 2020;12(564)。doi:https://dx.doi.org/10.1126/scitranslmed.aay2176.SteinhornB,Sorrentino A,Badole S,Bogdanova Y,Belousov V,Michel T.心脏中过氧化氢的化学遗传学产生会导致严重的心脏功能障碍。Nat Commun 2018;9(1):4044.doi:https://dx.doi.org/10.1038/s41467-018-06533-2.Hara-ChikumaM,Tanaka M,Verkman AS,Yasui M.单克隆抗体抑制巨噬细胞中的水通道蛋白-3作为肝损伤的潜在治疗方法。Nat Commun 2020;11(1):5666.doi:https://dx.doi.org/10.1038/s41467-020-19491-5.HanssonGK。炎症、动脉粥样硬化和冠状动脉疾病。《新英格兰医学杂志》2005;352(16):1685-95.doi:https://dx.doi.org/10.1056/NEJMra043430.PerryVH,Nicoll JA,Holmes C.神经退行性疾病中的小胶质细胞。Nat Rev Neurol 2010;6(4):193-201。doi:https://dx.doi.org/10.1038/nrneurol.2010.17.
{"title":"Hydrogen Peroxide, Water Channels, and Tissue Injury","authors":"E. Ros","doi":"10.20455/ros.2021.n.803","DOIUrl":"https://doi.org/10.20455/ros.2021.n.803","url":null,"abstract":"Water channels, also known as aquaporins, were discovered by Peter C. Agre, the recipient of the 2003 Nobel Prize in Chemistry. In addition to facilitating transport of water, these channels have been shown to also mediate the diffusion of hydrogen peroxide across cell membranes and consequently control the biological functions of this important reactive oxygen species. Findings from multiple recent studies published in highly influential journals have further advanced our understanding on how to control the biological effects of hydrogen peroxide via targeting specific water channels.\u0000REFERENCES\u0000\u0000Hopkins RZ. Hydrogen Peroxide in biology and medicine: an overview. React Oxyg Species (Apex) 2017; 3(7):26–37. doi: https://dx.doi.org/10.20455/ros.2017.809.\u0000Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 2007; 282(2):1183‒92. doi: https://dx.doi.org/10.1074/jbc.M603761200.\u0000Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 2010; 107(36):15681‒6. doi: https://dx.doi.org/10.1073/pnas.1005776107.\u0000Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 2016; 471(1):191‒7. doi: https://dx.doi.org/10.1016/j.bbrc.2016.01.153.\u0000Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, Verkman AS, Inoue S, et al. Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 2012; 209(10):1743‒52. doi: https://dx.doi.org/10.1084/jem.20112398.\u0000Hara-Chikuma M, Satooka H, Watanabe S, Honda T, Miyachi Y, Watanabe T, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-kappaB signalling in keratinocytes and development of psoriasis. Nat Commun 2015; 6:7454. doi: https://dx.doi.org/10.1038/ncomms8454.\u0000Satooka H, Hara-Chikuma M. Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Mol Cell Biol 2016; 36(7):1206‒18. doi: https://dx.doi.org/10.1128/MCB.00971-15.\u0000Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, et al. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 2020; 12(564). doi: https://dx.doi.org/10.1126/scitranslmed.aay2176.\u0000Steinhorn B, Sorrentino A, Badole S, Bogdanova Y, Belousov V, Michel T. Chemogenetic generation of hydrogen peroxide in the heart induces severe cardiac dysfunction. Nat Commun 2018; 9(1):4044. doi: https://dx.doi.org/10.1038/s41467-018-06533-2.\u0000Hara-Chikuma M, Tanaka M, Verkman AS, Yasui M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat Commun 2020; 11(1):5666. doi: https://dx.doi.org/10.1038/s41467-020-19491-5.\u0000Han","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49666278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium Ion Regulates Mitochondrial ROS 钠离子调节线粒体ROS
Pub Date : 2021-02-23 DOI: 10.20455/ros.2021.n.805
E. Ros
In addition to the diverse well-known physiological functions and pathophysiological effects of sodium ion (Na⁺), regulation of mitochondrial reactive oxygen species (ROS) by Na⁺ has recently been demonstrated by several studies published in highly influential journals. The findings from these studies, especially the proposed “cytosolic Na⁺‒Na⁺/Ca²⁺ exchanger‒mitochondrial ROS” axis, have greatly broadened our understanding of this most popular element in physiology and disease.REFERENCESKohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121(14):1606-13. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3):356-71. doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 2009; 104(3):292-303. doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 2007; 356(19):1966-78. doi: https://dx.doi.org/10.1056/NEJMra064486.Hernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586(7828):287-91. doi: https://dx.doi.org/10.1038/s41586-020-2551-y.Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, et al. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. Elife 2017; 6. doi: https://dx.doi.org/10.7554/eLife.29929.Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560-9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, et al. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat Commun 2018; 9(1):2241. doi: https://dx.doi.org/10.1038/s41467-018-04686-8.Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225-36. doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020.
除了钠离子(Na +)多种众所周知的生理功能和病理生理作用外,Na +对线粒体活性氧(ROS)的调节最近也被几篇发表在极具影响力期刊上的研究证实。这些研究的发现,特别是提出的“细胞质Na + -Na + /Ca +交换器-线粒体ROS”轴,极大地拓宽了我们对这一生理和疾病中最受欢迎的元素的理解。[参考文献]刘涛,刘洪涛,李建平,王晓明,等。升高的胞质Na+增加了衰竭心肌细胞中活性氧的线粒体形成。发行量2010;121(14): 1606 - 13所示。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B.线粒体ROS驱动心力衰竭猝死和慢性蛋白质组重塑。Circ Res 2018;123(3): 356 - 71。doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.Murphy E, Eisner DA。细胞内和线粒体钠在健康和疾病中的调节。Circ Res 2009;104(3): 292 - 303。doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.Adrogue HJ, madas NE。钠钾在高血压发病机制中的作用。中华医学杂志2007;356(19): 1966 - 78。doi: https://dx.doi.org/10.1056/NEJMra064486.Hernansanz-Agustin P, choya - foes C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T,等。Na+通过线粒体呼吸链控制缺氧信号。自然2020;586(7828): 287 - 91。doi: https://dx.doi.org/10.1038/s41586-020-2551-y.Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B,等。全细胞线粒体固相钙储存的3D可视化。Elife 2017;6. doi: https://dx.doi.org/10.7554/eLife.29929.Shadel GS, Horvath TL.线粒体ROS信号在机体内稳态。细胞2015;163(3): 560 - 9。doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A,等。线粒体活性氧调节浆细胞样树突状细胞对CD8+ T细胞的诱导。Nat common 2018;9(1): 2241。doi: https://dx.doi.org/10.1038/s41467-018-04686-8.Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA,等。线粒体是通过活性氧信号激活抗原特异性T细胞所必需的。免疫2013;38(2): 225 - 36。doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020。
{"title":"Sodium Ion Regulates Mitochondrial ROS","authors":"E. Ros","doi":"10.20455/ros.2021.n.805","DOIUrl":"https://doi.org/10.20455/ros.2021.n.805","url":null,"abstract":"In addition to the diverse well-known physiological functions and pathophysiological effects of sodium ion (Na⁺), regulation of mitochondrial reactive oxygen species (ROS) by Na⁺ has recently been demonstrated by several studies published in highly influential journals. The findings from these studies, especially the proposed “cytosolic Na⁺‒Na⁺/Ca²⁺ exchanger‒mitochondrial ROS” axis, have greatly broadened our understanding of this most popular element in physiology and disease.\u0000REFERENCES\u0000\u0000Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121(14):1606-13. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.109.914911.\u0000Dey S, DeMazumder D, Sidor A, Foster DB, O'Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3):356-71. doi: https://dx.doi.org/10.1161/CIRCRESAHA.118.312708.\u0000Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res 2009; 104(3):292-303. doi: https://dx.doi.org/10.1161/CIRCRESAHA.108.189050.\u0000Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med 2007; 356(19):1966-78. doi: https://dx.doi.org/10.1056/NEJMra064486.\u0000Hernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, et al. Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature 2020; 586(7828):287-91. doi: https://dx.doi.org/10.1038/s41586-020-2551-y.\u0000Wolf SG, Mutsafi Y, Dadosh T, Ilani T, Lansky Z, Horowitz B, et al. 3D visualization of mitochondrial solid-phase calcium stores in whole cells. Elife 2017; 6. doi: https://dx.doi.org/10.7554/eLife.29929.\u0000Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560-9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001.\u0000Oberkampf M, Guillerey C, Mouries J, Rosenbaum P, Fayolle C, Bobard A, et al. Mitochondrial reactive oxygen species regulate the induction of CD8+ T cells by plasmacytoid dendritic cells. Nat Commun 2018; 9(1):2241. doi: https://dx.doi.org/10.1038/s41467-018-04686-8.\u0000Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013; 38(2):225-36. doi: https://dx.doi.org/10.1016/j.immuni.2012.10.020.\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47244265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The US FDA-Approved Drug Dimethyl Fumarate, an Nrf2 Activator, for Treating Multiple Sclerosis: The Mechanisms of Action Revisited 美国fda批准药物富马酸二甲酯,一种Nrf2激活剂,用于治疗多发性硬化症:作用机制的重新审视
Pub Date : 2021-02-23 DOI: 10.20455/ros.2021.n.807
E. Ros
Dimethyl fumarate, a potent Nrf2 activator and antioxidant-inducing compound, has been approved by the US Food and Drug Administration (FDA) as a first-line drug for treating relapsing forms of multiple sclerosis (MS). Two latest studies published in Nat Commun demonstrated that the efficacy of the drug in treating MS may be associated with increased reactive oxygen species production instead.REFERENCESRothstein JD. Edaravone: a new drug approved for ALS. Cell 2017; 171(4):725. doi: https://dx.doi.org/10.1016/j.cell.2017.10.011.Ashrafian H, Czibik G, Bellahcene M, Aksentijevic D, Smith AC, Mitchell SJ, et al. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 2012; 15(3):361–71. doi: https://dx.doi.org/10.1016/j.cmet.2012.01.017.Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367(12):1098–107. doi: https://dx.doi.org/10.1056/NEJMoa1114287.Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A, Sagan SA, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci USA 2016; 113(17):4777–82. doi: https://dx.doi.org/10.1073/pnas.1603907113.Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018; 360(6387):449–53. doi: https://dx.doi.org/10.1126/science.aan4665.Carlstrom KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun 2019; 10(1):3081. doi: https://dx.doi.org/10.1038/s41467-019-11139-3.Luckel C, Picard F, Raifer H, Campos Carrascosa L, Guralnik A, Zhang Y, et al. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun 2019; 10(1):5722. doi: https://dx.doi.org/10.1038/s41467-019-13731-z.
富马酸二甲酯是一种有效的Nrf2激活剂和抗氧化剂诱导化合物,已被美国食品和药物管理局(FDA)批准作为治疗复发型多发性硬化症(MS)的一线药物。发表在《Nat common》上的两项最新研究表明,该药治疗多发性硬化症的疗效可能与活性氧产生的增加有关。REFERENCESRothstein JD。依达拉奉:一种被批准治疗渐冻症的新药。细胞2017;171(4): 725。doi: https://dx.doi.org/10.1016/j.cell.2017.10.011.Ashrafian H, Czibik G, Bellahcene M, Aksentijevic D, Smith AC, Mitchell SJ,等。富马酸通过激活Nrf2抗氧化途径起到心脏保护作用。Cell Metab 2012;15(3): 361 - 71。doi: https://dx.doi.org/10.1016/j.cmet.2012.01.017.Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K,等。口服BG-12治疗复发性多发性硬化的安慰剂对照3期研究。中华医学杂志2012;367(12): 1098 - 107。doi: https://dx.doi.org/10.1056/NEJMoa1114287.Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A, Sagan SA,等。富马酸二甲酯处理诱导不依赖于Nrf2的适应性和先天免疫调节。2016;113(17): 4777 - 82。doi: https://dx.doi.org/10.1073/pnas.1603907113.Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N,等。富马酸二甲酯靶向GAPDH和有氧糖酵解来调节免疫。科学2018;360(6387): 449 - 53。[doi: https://dx.doi.org/10.1126/science.aan4665.Carlstrom] KE, Ewing E, Granqvist M, Gyllenberg A, aeinehhs, Enoksson SL,等。富马酸二甲酯治疗复发缓解型多发性硬化症的疗效与单核细胞中的ROS通路有关。Nat comm2019;10(1): 3081。[j]张勇,刘建军,张勇,等。富马酸二甲酯抑制IL-17+ CD8+ T细胞与多发性硬化症的临床反应相关Nat comm2019;10(1): 5722。doi: https://dx.doi.org/10.1038/s41467 - 019 - 13731 - z。
{"title":"The US FDA-Approved Drug Dimethyl Fumarate, an Nrf2 Activator, for Treating Multiple Sclerosis: The Mechanisms of Action Revisited","authors":"E. Ros","doi":"10.20455/ros.2021.n.807","DOIUrl":"https://doi.org/10.20455/ros.2021.n.807","url":null,"abstract":"Dimethyl fumarate, a potent Nrf2 activator and antioxidant-inducing compound, has been approved by the US Food and Drug Administration (FDA) as a first-line drug for treating relapsing forms of multiple sclerosis (MS). Two latest studies published in Nat Commun demonstrated that the efficacy of the drug in treating MS may be associated with increased reactive oxygen species production instead.\u0000REFERENCES\u0000\u0000Rothstein JD. Edaravone: a new drug approved for ALS. Cell 2017; 171(4):725. doi: https://dx.doi.org/10.1016/j.cell.2017.10.011.\u0000Ashrafian H, Czibik G, Bellahcene M, Aksentijevic D, Smith AC, Mitchell SJ, et al. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 2012; 15(3):361–71. doi: https://dx.doi.org/10.1016/j.cmet.2012.01.017.\u0000Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367(12):1098–107. doi: https://dx.doi.org/10.1056/NEJMoa1114287.\u0000Schulze-Topphoff U, Varrin-Doyer M, Pekarek K, Spencer CM, Shetty A, Sagan SA, et al. Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proc Natl Acad Sci USA 2016; 113(17):4777–82. doi: https://dx.doi.org/10.1073/pnas.1603907113.\u0000Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science 2018; 360(6387):449–53. doi: https://dx.doi.org/10.1126/science.aan4665.\u0000Carlstrom KE, Ewing E, Granqvist M, Gyllenberg A, Aeinehband S, Enoksson SL, et al. Therapeutic efficacy of dimethyl fumarate in relapsing-remitting multiple sclerosis associates with ROS pathway in monocytes. Nat Commun 2019; 10(1):3081. doi: https://dx.doi.org/10.1038/s41467-019-11139-3.\u0000Luckel C, Picard F, Raifer H, Campos Carrascosa L, Guralnik A, Zhang Y, et al. IL-17+ CD8+ T cell suppression by dimethyl fumarate associates with clinical response in multiple sclerosis. Nat Commun 2019; 10(1):5722. doi: https://dx.doi.org/10.1038/s41467-019-13731-z.\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43636902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen Peroxide: A Novel Mechanism of Its Production from Pure Water 过氧化氢:一种从纯水中生产过氧化氢的新机理
Pub Date : 2021-02-22 DOI: 10.20455/ros.2021.n.801
E. Ros
The latest cutting-edge research findings published in highly influential journals have greatly advanced our current understanding of hydrogen peroxide (H₂O₂), a notable reactive oxygen species, in chemistry, biology, and medicine. In this context, recent studies by J.K. Lee et al., published in Proc Natl Acad Sci USA, discovered a novel mechanism of spontaneous production of H₂O₂ from pure water in the absence of catalysts or external electric field. This discovery by J.K. Lee et al. has changed our view on the chemical connection between H₂O₂ and H₂O though the biological significance of the discovery remains unknown.REFERENCESHopkins RZ, Li YR. Essentials of Free Radical Biology and Medicine. Cell Med Press, Raleigh, NC, USA. 2017.Hopkins RZ. Hydrogen peroxide in biology and medicine: an overview. React Oxyg Species (Apex) 2017; 3(7):26–37. doi: https://dx.doi.org/10.20455/ros.2017.809.Bergman P, Parise B, Liseau R, Larsson B, Olofsson H, Menten KM, et al. Detection of interstellar hydrogen peroxide. Astronomy Astrophysics 2011; 531:L8. doi: https://dx.doi.org/10.1051/0004-6361/201117170.Lee JK, Walker KL, Han HS, Kang J, Prinz FB, Waymouth RM, et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc Natl Acad Sci USA 2019; 116(39):19294‒8. doi: https://dx.doi.org/10.1073/pnas.1911883116.Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, Prinz FB, et al. Condensing water vapor to droplets generates hydrogen peroxide. Proc Natl Acad Sci USA 2020; 117(49):30934‒41. doi: https://dx.doi.org/10.1073/pnas.2020158117.
发表在极具影响力的期刊上的最新前沿研究成果极大地促进了我们目前对过氧化氢(H₂O₂), 化学、生物学和医学中一种著名的活性氧。在这种情况下,J.K.Lee等人最近发表在《美国国家科学院院刊》上的研究发现了一种自发产生H的新机制₂O₂ 在没有催化剂或外部电场的情况下从纯水中提取。李等人的这一发现改变了我们对H之间化学联系的看法₂O₂ 和H₂尽管这一发现的生物学意义尚不清楚。参考文献:霍普金斯RZ,李YR。自由基生物学与医学基础。细胞医学出版社,美国北卡罗来纳州罗利市,2017。霍普金斯RZ。过氧化氢在生物学和医学中的应用:综述。React Oxyg物种(Apex)2017;3(7):26-37.doi:https://dx.doi.org/10.20455/ros.2017.809.BergmanP,Parise B,Liseau R,Larsson B,Olofsson H,Menten KM等。星际过氧化氢的检测。2011年天文学-天体物理学;531:L8.doi:https://dx.doi.org/10.1051/0004-6361/201117170.LeeJK,Walker KL,Han HS,Kang J,Prinz FB,Waymouth RM等。水性微滴自发产生过氧化氢。美国国家科学院院刊2019;116(39):19294-8.doi:https://dx.doi.org/10.1073/pnas.1911883116.LeeJK、Han HS、Chaikasetsin S、Marron DP、Waymouth RM、Prinz FB等。将水蒸气冷凝成液滴会产生过氧化氢。美国国家科学院院刊2020;117(49):30934-41.doi:https://dx.doi.org/10.1073/pnas.2020158117.
{"title":"Hydrogen Peroxide: A Novel Mechanism of Its Production from Pure Water","authors":"E. Ros","doi":"10.20455/ros.2021.n.801","DOIUrl":"https://doi.org/10.20455/ros.2021.n.801","url":null,"abstract":"The latest cutting-edge research findings published in highly influential journals have greatly advanced our current understanding of hydrogen peroxide (H₂O₂), a notable reactive oxygen species, in chemistry, biology, and medicine. In this context, recent studies by J.K. Lee et al., published in Proc Natl Acad Sci USA, discovered a novel mechanism of spontaneous production of H₂O₂ from pure water in the absence of catalysts or external electric field. This discovery by J.K. Lee et al. has changed our view on the chemical connection between H₂O₂ and H₂O though the biological significance of the discovery remains unknown.\u0000REFERENCES\u0000\u0000Hopkins RZ, Li YR. Essentials of Free Radical Biology and Medicine. Cell Med Press, Raleigh, NC, USA. 2017.\u0000Hopkins RZ. Hydrogen peroxide in biology and medicine: an overview. React Oxyg Species (Apex) 2017; 3(7):26–37. doi: https://dx.doi.org/10.20455/ros.2017.809.\u0000Bergman P, Parise B, Liseau R, Larsson B, Olofsson H, Menten KM, et al. Detection of interstellar hydrogen peroxide. Astronomy Astrophysics 2011; 531:L8. doi: https://dx.doi.org/10.1051/0004-6361/201117170.\u0000Lee JK, Walker KL, Han HS, Kang J, Prinz FB, Waymouth RM, et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc Natl Acad Sci USA 2019; 116(39):19294‒8. doi: https://dx.doi.org/10.1073/pnas.1911883116.\u0000Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, Prinz FB, et al. Condensing water vapor to droplets generates hydrogen peroxide. Proc Natl Acad Sci USA 2020; 117(49):30934‒41. doi: https://dx.doi.org/10.1073/pnas.2020158117.\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44622573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reactive oxygen species (Apex, N.C.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1