首页 > 最新文献

Reactive oxygen species (Apex, N.C.)最新文献

英文 中文
Reactive Oxygen Species: Prospects in Plant Metabolism 活性氧在植物代谢中的研究进展
Pub Date : 2023-01-01 DOI: 10.1007/978-981-19-9794-5
{"title":"Reactive Oxygen Species: Prospects in Plant Metabolism","authors":"","doi":"10.1007/978-981-19-9794-5","DOIUrl":"https://doi.org/10.1007/978-981-19-9794-5","url":null,"abstract":"","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"51125278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conoidin A Abrogates Growth of Anchorage-Dependent and Anchorage-Independent SKOV3 Ovarian Cancer Cells Conoidin A抑制锚定依赖性和锚定非依赖性SKOV3卵巢癌细胞的生长
Pub Date : 2022-12-31 DOI: 10.20455/ros.2022.r803
K. Borger, Kassidy M. Jungles, Marissa Z Powell, M. Sanchez, Calli A. Davison-Versagli
Ovarian cancer is one of the leading causes of cancer death in the United States with only 49% of women surviving 5 years after initial diagnosis. Poor screening methods, chemoresistance, and its high metastatic capacity make this disease difficult to treat. Thus, improved treatment methodologies are necessary to improve survival rates and quality of life for ovarian cancer patients. Conoidin A is a water-soluble covalent inhibitor of peroxiredoxin 1 (PRDX1) and peroxiredoxin 2 (PRDX2). While its effects have been primarily studied on parasites, recent studies also begin to elucidate the impacts of conoidin A in other human health conditions, including anticancer effects. However, the anticancer effects and potential utility of conoidin A as a therapeutic, specifically in ovarian cancer, has yet to be investigated. Here, we report that conoidin A eliminates growth of anchorage-dependent and anchorage-independent SKOV3 cells. Furthermore, analyses of clinical samples show increased expression of PRDX1 and PRDX2 in ovarian cancerous tissue, which are the targets of conoidin A. These data identify conoidin A as a potential therapeutic for early and late-stage ovarian cancer and warrants further investigation.(First Online: December 31, 2022)
癌症是美国癌症死亡的主要原因之一,只有49%的女性在初次诊断后存活5年。不良的筛查方法、化疗耐药性及其高转移能力使这种疾病难以治疗。因此,改善治疗方法对于提高癌症患者的生存率和生活质量是必要的。Conoidin A是过氧多辛1(PRDX1)和过氧多辛2(PRDX2)的水溶性共价抑制剂。虽然主要研究了其对寄生虫的影响,但最近的研究也开始阐明conoidin A对其他人类健康状况的影响,包括抗癌作用。然而,conoidin A作为一种治疗药物,特别是在卵巢癌症中的抗癌作用和潜在用途尚待研究。在此,我们报道了conoidin A消除了锚定依赖性和锚定非依赖性SKOV3细胞的生长。此外,对临床样本的分析显示,PRDX1和PRDX2在卵巢癌组织中的表达增加,这是conoidin A的靶点。这些数据确定conoidina A是早期和晚期卵巢癌症的潜在治疗剂,值得进一步研究。(首次在线:2022年12月31日)
{"title":"Conoidin A Abrogates Growth of Anchorage-Dependent and Anchorage-Independent SKOV3 Ovarian Cancer Cells","authors":"K. Borger, Kassidy M. Jungles, Marissa Z Powell, M. Sanchez, Calli A. Davison-Versagli","doi":"10.20455/ros.2022.r803","DOIUrl":"https://doi.org/10.20455/ros.2022.r803","url":null,"abstract":"Ovarian cancer is one of the leading causes of cancer death in the United States with only 49% of women surviving 5 years after initial diagnosis. Poor screening methods, chemoresistance, and its high metastatic capacity make this disease difficult to treat. Thus, improved treatment methodologies are necessary to improve survival rates and quality of life for ovarian cancer patients. Conoidin A is a water-soluble covalent inhibitor of peroxiredoxin 1 (PRDX1) and peroxiredoxin 2 (PRDX2). While its effects have been primarily studied on parasites, recent studies also begin to elucidate the impacts of conoidin A in other human health conditions, including anticancer effects. However, the anticancer effects and potential utility of conoidin A as a therapeutic, specifically in ovarian cancer, has yet to be investigated. Here, we report that conoidin A eliminates growth of anchorage-dependent and anchorage-independent SKOV3 cells. Furthermore, analyses of clinical samples show increased expression of PRDX1 and PRDX2 in ovarian cancerous tissue, which are the targets of conoidin A. These data identify conoidin A as a potential therapeutic for early and late-stage ovarian cancer and warrants further investigation.\u0000(First Online: December 31, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44204706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Is NADPH Critical to Maintain Redox Homeostasis in Hypoxia-Tolerant Naked Mole-Rat Brain? NADPH对维持耐缺氧裸鼹鼠脑氧化还原稳态至关重要吗?
Pub Date : 2022-12-28 DOI: 10.20455/ros.2022.m801
Liam Eaton, M. Pamenter
Nicotinamide adenine dinucleotide phosphate (NADPH) is a ubiquitous electron donor and a key reducing agent in numerous biochemical reactions. Among other important cellular roles, NADPH activity is central to the maintenance of redox homeostasis in eukaryotic cells. NADPH increases markedly during acute in vivo hypoxia in the brain of naked mole-rats, which are among the most hypoxia-tolerant mammals, and which do not exhibit imbalances in redox homeostasis or increased reactive oxygen species (ROS)-mediated damage during bouts of hypoxia-reoxygenation in brain. Conversely, NADPH does not increase in the brain of hypoxia-intolerant mice, which are prone to deleterious ROS bursts during perturbations in oxygen availability. Although the importance of NADPH in mediating ROS homeostasis has been demonstrated in the brain of other mammals, little is known about the source of NADPH changes in hypoxic naked mole-rat brain, nor about the mechanisms via which NADPH may provide neuroprotection in this species. Elucidating the underlying mechanisms that support the remarkably stable ROS profile in naked mole-rat brain may provide insight into novel mechanisms to ameliorate the deleterious impact of ROS bursts in the brains of hypoxia-intolerant mammals, such as occur during stroke and other diseases. In this review, we discuss what is known regarding the management of ROS and NADPH in naked mole-rat brain, examine potential cellular sources of NADPH that may underlie the large hypoxic increase in this molecule during acute hypoxic exposure, and propose experiments to advance our understanding of the role NADPH has in maintaining naked mole-rat brain redox balance.(First online: December 28, 2022)
烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是一种普遍存在的电子供体,也是许多生物化学反应的关键还原剂。在其他重要的细胞作用中,NADPH活性是维持真核细胞氧化还原稳态的核心。裸鼹鼠是最耐缺氧的哺乳动物之一,在急性体内缺氧时,裸鼹鼠的大脑中NADPH显著增加,并且在大脑缺氧-再氧化期间不会表现出氧化还原稳态失衡或活性氧(ROS)介导的损伤增加。相反,缺氧不耐受小鼠的大脑中NADPH不会增加,在氧气可用性扰动期间,这些小鼠容易产生有害的ROS爆发。尽管NADPH在其他哺乳动物大脑中介导ROS稳态的重要性已被证明,但对缺氧裸鼹鼠大脑中NADPH变化的来源知之甚少,也不清楚NADPH在该物种中提供神经保护的机制。阐明裸鼹鼠大脑中ROS异常稳定的潜在机制,可能为改善缺氧不耐受哺乳动物大脑中ROS爆发的有害影响(如中风和其他疾病期间发生的ROS爆发)提供新的机制。在这篇综述中,我们讨论了关于裸鼹鼠大脑中ROS和NADPH管理的已知情况,研究了急性缺氧暴露期间NADPH分子大量缺氧增加的潜在细胞来源,并提出了一些实验来促进我们对NADPH在维持裸鼹鼠大脑氧化还原平衡中的作用的理解。(首次上线时间:2022年12月28日)
{"title":"Is NADPH Critical to Maintain Redox Homeostasis in Hypoxia-Tolerant Naked Mole-Rat Brain?","authors":"Liam Eaton, M. Pamenter","doi":"10.20455/ros.2022.m801","DOIUrl":"https://doi.org/10.20455/ros.2022.m801","url":null,"abstract":"Nicotinamide adenine dinucleotide phosphate (NADPH) is a ubiquitous electron donor and a key reducing agent in numerous biochemical reactions. Among other important cellular roles, NADPH activity is central to the maintenance of redox homeostasis in eukaryotic cells. NADPH increases markedly during acute in vivo hypoxia in the brain of naked mole-rats, which are among the most hypoxia-tolerant mammals, and which do not exhibit imbalances in redox homeostasis or increased reactive oxygen species (ROS)-mediated damage during bouts of hypoxia-reoxygenation in brain. Conversely, NADPH does not increase in the brain of hypoxia-intolerant mice, which are prone to deleterious ROS bursts during perturbations in oxygen availability. Although the importance of NADPH in mediating ROS homeostasis has been demonstrated in the brain of other mammals, little is known about the source of NADPH changes in hypoxic naked mole-rat brain, nor about the mechanisms via which NADPH may provide neuroprotection in this species. Elucidating the underlying mechanisms that support the remarkably stable ROS profile in naked mole-rat brain may provide insight into novel mechanisms to ameliorate the deleterious impact of ROS bursts in the brains of hypoxia-intolerant mammals, such as occur during stroke and other diseases. In this review, we discuss what is known regarding the management of ROS and NADPH in naked mole-rat brain, examine potential cellular sources of NADPH that may underlie the large hypoxic increase in this molecule during acute hypoxic exposure, and propose experiments to advance our understanding of the role NADPH has in maintaining naked mole-rat brain redox balance.\u0000(First online: December 28, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44800906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do SNPs in Glutathione S-Transferase-Omega Allow Predictions of the Susceptibility of Vertebrates to SARS-CoV-2? 谷胱甘肽s -转移酶- omega的snp是否可以预测脊椎动物对SARS-CoV-2的易感性?
Pub Date : 2022-06-08 DOI: 10.20455/ros.2022.c805
J. Hancock, D. Veal, T. Craig, Ros C. Rouse
Infection with the SARS-Cov-2 virus causes COVID-19 in humans and is the cause of the pandemic around the world in 2020 and on. However, some animals have been found to be susceptible to the virus too. This has included the non-human primates, dogs, cats, and mustelids. Mink, and very recently hamsters and deer, have been shown to be able to contract the virus and pass it back to humans. However, which animals are susceptible to the virus has been very hard to predict. Many groups have looked at the sequence homology of the angiotensin converting enzyme 2 (ACE2), a receptor for the SARS-Cov-2 virus, across species, but this has had limited success. Similar work on other proteins such as transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and furin have also been unfruitful. Recently, it has been suggested that single nucleotide polymorphisms (SNPs) in the glutathione S-transferase-omega (GSTO) genes of humans could alter viral susceptibility. Therefore, here, the presence of related sequences in vertebrates has been investigated. The SNPs in the GST-omega-1 (GSTO1) gene reported to increase COVID-19 in humans do not appear in the vertebrate species. However, the GST-omega-2 (GSTO2) SNP is represented in several vertebrate species known to have contracted the SAR-CoV-2 virus. Of course, animals may contain unknown SNPs at disruptive points in these genes too. In summary, GSTO1 genes are unlikely, at least at the moment, to be of value in predicting the susceptibility of an animal to the SARS-CoV-2 virus or disease progression, but a further study of the GST-omega-2 genes would be worthwhile. Therefore, more work on SARS-CoV-2 infections on vertebrates is recommended.(First Online: June 8, 2022)
感染SARS-Cov-2病毒会导致人类感染COVID-19,这是2020年及以后全球大流行的原因。然而,一些动物也被发现容易感染这种病毒。这包括非人类灵长类动物、狗、猫和鼬。水貂,以及最近的仓鼠和鹿,已经被证明能够感染病毒并将其传播给人类。然而,很难预测哪些动物容易感染这种病毒。许多研究小组已经研究了血管紧张素转换酶2 (ACE2)的序列同源性,这是SARS-Cov-2病毒的受体,但这方面的成功有限。对其他蛋白质如跨膜丝氨酸蛋白酶2 (TMPRSS2)、神经磷脂-1和furin的类似研究也没有成果。最近有研究表明,人类谷胱甘肽s -转移酶基因的单核苷酸多态性(snp)可能改变病毒的易感性。因此,本文对相关序列在脊椎动物中的存在进行了研究。据报道,在人类中增加COVID-19的GST-omega-1 (GSTO1)基因中的单核苷酸多态性并未出现在脊椎动物物种中。然而,GST-omega-2 (GSTO2) SNP存在于已知感染了sars - cov -2病毒的几种脊椎动物物种中。当然,动物也可能在这些基因的破坏点上含有未知的snp。总之,至少在目前,GSTO1基因不太可能在预测动物对SARS-CoV-2病毒的易感性或疾病进展方面有价值,但对GST-omega-2基因的进一步研究将是值得的。因此,建议对脊椎动物的SARS-CoV-2感染进行更多的研究。(首次上线时间:2022年6月8日)
{"title":"Do SNPs in Glutathione S-Transferase-Omega Allow Predictions of the Susceptibility of Vertebrates to SARS-CoV-2?","authors":"J. Hancock, D. Veal, T. Craig, Ros C. Rouse","doi":"10.20455/ros.2022.c805","DOIUrl":"https://doi.org/10.20455/ros.2022.c805","url":null,"abstract":"Infection with the SARS-Cov-2 virus causes COVID-19 in humans and is the cause of the pandemic around the world in 2020 and on. However, some animals have been found to be susceptible to the virus too. This has included the non-human primates, dogs, cats, and mustelids. Mink, and very recently hamsters and deer, have been shown to be able to contract the virus and pass it back to humans. However, which animals are susceptible to the virus has been very hard to predict. Many groups have looked at the sequence homology of the angiotensin converting enzyme 2 (ACE2), a receptor for the SARS-Cov-2 virus, across species, but this has had limited success. Similar work on other proteins such as transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and furin have also been unfruitful. Recently, it has been suggested that single nucleotide polymorphisms (SNPs) in the glutathione S-transferase-omega (GSTO) genes of humans could alter viral susceptibility. Therefore, here, the presence of related sequences in vertebrates has been investigated. The SNPs in the GST-omega-1 (GSTO1) gene reported to increase COVID-19 in humans do not appear in the vertebrate species. However, the GST-omega-2 (GSTO2) SNP is represented in several vertebrate species known to have contracted the SAR-CoV-2 virus. Of course, animals may contain unknown SNPs at disruptive points in these genes too. In summary, GSTO1 genes are unlikely, at least at the moment, to be of value in predicting the susceptibility of an animal to the SARS-CoV-2 virus or disease progression, but a further study of the GST-omega-2 genes would be worthwhile. Therefore, more work on SARS-CoV-2 infections on vertebrates is recommended.\u0000(First Online: June 8, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42459257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erythrocuprein, also Known as Superoxide Dismutase, Is a Hydroquinone Oxidase, and Imparts Resistance to Mitomycin C 红细胞铜蛋白,也称为超氧化物歧化酶,是一种氢醌氧化酶,对丝裂霉素C产生耐药性
Pub Date : 2022-05-31 DOI: 10.20455/ros.2022.c803
P. Penketh
The enzymatic function of superoxide dismutase (SOD) is proposed to be as a ubiquinol oxidase. The SOD activity of this protein is likely a consequence of the necessary dismutation of superoxide (O2˙ˉ), generated as an enzyme-bound intermediate during its normal activity. The relatively low specificity of this enzyme for hydroquinones allowed it to oxidize a wide range of hydroquinone substrates. The general hydroquinone oxidase activity of this enzyme would thus enable it to behave as a mammalian analogue to bacterial mitomycin C resistance protein (MCRA). This would account for its elevated activity in cells expressing resistance against mitomycin C, porfiromycin, and related analogues, since superoxide itself is relatively nontoxic.
超氧化物歧化酶(SOD)的酶功能被认为是一种泛醌氧化酶。这种蛋白质的SOD活性可能是超氧化物(O2*-)在其正常活性过程中作为酶结合中间体产生的必要歧化的结果。这种酶对对苯二酚的特异性相对较低,使其能够氧化多种对苯二酚底物。因此,这种酶的一般对苯二酚氧化酶活性将使其能够表现为细菌丝裂霉素C抗性蛋白(MCRA)的哺乳动物类似物。这将解释其在表达对丝裂霉素C、博来霉素和相关类似物的耐药性的细胞中的活性升高,因为超氧化物本身相对无毒。
{"title":"Erythrocuprein, also Known as Superoxide Dismutase, Is a Hydroquinone Oxidase, and Imparts Resistance to Mitomycin C","authors":"P. Penketh","doi":"10.20455/ros.2022.c803","DOIUrl":"https://doi.org/10.20455/ros.2022.c803","url":null,"abstract":"The enzymatic function of superoxide dismutase (SOD) is proposed to be as a ubiquinol oxidase. The SOD activity of this protein is likely a consequence of the necessary dismutation of superoxide (O2˙ˉ), generated as an enzyme-bound intermediate during its normal activity. The relatively low specificity of this enzyme for hydroquinones allowed it to oxidize a wide range of hydroquinone substrates. The general hydroquinone oxidase activity of this enzyme would thus enable it to behave as a mammalian analogue to bacterial mitomycin C resistance protein (MCRA). This would account for its elevated activity in cells expressing resistance against mitomycin C, porfiromycin, and related analogues, since superoxide itself is relatively nontoxic.","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47263627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nrf2 Signaling in Viral Infections 病毒感染中的Nrf2信号
Pub Date : 2022-03-03 DOI: 10.20455/ros.2022.n.805
E. Ros
Nrf2 is a central regulator of cellular antioxidant and other cytoprotective genes. Several recent studies revealed a novel role for Nrf2 signaling in protecting against viral infections, including COVID-19. The findings from these studies pointed to a feasibility for treating viral infections, including COVID-19, via pharmacological activation of the Nrf2 signaling pathway.(First online: March 3, 2022)REFERENCESItoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2):313–22. doi: https://dx.doi.org/10.1006/bbrc.1997.6943Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 2018; 98(3):1169–203. doi: https://dx.doi.org/10.1152/physrev.00023.2017Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7:11624. doi: https://dx.doi.org/10.1038/ncomms11624Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell 2018; 34(1):21–43. doi: https://dx.doi.org/10.1016/j.ccell.2018.03.022Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, et al. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 2009; 179(2):138–50. doi: https://dx.doi.org/10.1164/rccm.200804-535OCFerrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP, et al. Dengue virus targets Nrf2 for NS2B3-mediated degradation leading to enhanced oxidative stress and viral replication. J Virol 2020; 94(24). doi: https://dx.doi.org/10.1128/JVI.01551-20Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun 2019; 10(1):4878. doi: https://dx.doi.org/10.1038/s41467-019-12894-zOlagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020; 11(1):4938. doi: https://dx.doi.org/10.1038/s41467-020-18764-3
Nrf2是细胞抗氧化和其他细胞保护基因的中心调节因子。最近的几项研究揭示了Nrf2信号在预防病毒感染(包括COVID-19)方面的新作用。这些研究结果表明,通过药理激活Nrf2信号通路来治疗包括COVID-19在内的病毒感染是可行的。(首次在线:2022年3月3日)参考文献itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y,等。Nrf2/小Maf异源二聚体通过抗氧化反应元件介导II期解毒酶基因的诱导。生物化学,生物物理,1997;236(2): 313 - 22所示。doi: https://dx.doi.org/10.1006/bbrc.1997.6943Yamamoto M, Kensler TW, Motohashi H. KEAP1-NRF2系统:用于维持氧化还原稳态的巯基传感器效应装置。physical Rev 2018;98(3): 1169 - 203。doi: https://dx.doi.org/10.1152/physrev.00023.2017Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H,等。Nrf2通过阻断促炎细胞因子转录抑制巨噬细胞炎症反应。学报2016;7:11624。doi: https://dx.doi.org/10.1038/ncomms11624Rojo de la Vega M, Chapman E, Zhang DD. NRF2与癌症的标志。Cancer Cell 2018;34(1): 21-43。doi: https://dx.doi.org/10.1016/j.ccell.2018.03.022Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M,等。Nrf2在呼吸道合胞病毒病小鼠模型中的抗病毒活性。[J]呼吸急救医学2009;179(2): 138 - 50。doi: https://dx.doi.org/10.1164/rccm.200804-535OCFerrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP,等。登革病毒靶向Nrf2介导ns2b3介导的降解,导致氧化应激增强和病毒复制。[J];94(24)。[J]李建军,李建军,李建军,等。单纯疱疹病毒1感染细胞的单细胞rna测序将NRF2激活与抗病毒程序联系起来。Nat comm2019;10(1): 4878。doi: https://dx.doi.org/10.1038/s41467-019-12894-zOlagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M,等。sars - cov2介导的nrf2信号抑制表明4-辛酯-衣康酸酯和富马酸二甲酯具有有效的抗病毒和抗炎活性。Nat comm 2020;11(1): 4938。doi: https://dx.doi.org/10.1038/s41467 - 020 - 18764 - 3
{"title":"Nrf2 Signaling in Viral Infections","authors":"E. Ros","doi":"10.20455/ros.2022.n.805","DOIUrl":"https://doi.org/10.20455/ros.2022.n.805","url":null,"abstract":"Nrf2 is a central regulator of cellular antioxidant and other cytoprotective genes. Several recent studies revealed a novel role for Nrf2 signaling in protecting against viral infections, including COVID-19. The findings from these studies pointed to a feasibility for treating viral infections, including COVID-19, via pharmacological activation of the Nrf2 signaling pathway.\u0000(First online: March 3, 2022)\u0000REFERENCES\u0000\u0000Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2):313–22. doi: https://dx.doi.org/10.1006/bbrc.1997.6943\u0000Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 2018; 98(3):1169–203. doi: https://dx.doi.org/10.1152/physrev.00023.2017\u0000Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7:11624. doi: https://dx.doi.org/10.1038/ncomms11624\u0000Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell 2018; 34(1):21–43. doi: https://dx.doi.org/10.1016/j.ccell.2018.03.022\u0000Cho HY, Imani F, Miller-DeGraff L, Walters D, Melendi GA, Yamamoto M, et al. Antiviral activity of Nrf2 in a murine model of respiratory syncytial virus disease. Am J Respir Crit Care Med 2009; 179(2):138–50. doi: https://dx.doi.org/10.1164/rccm.200804-535OC\u0000Ferrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP, et al. Dengue virus targets Nrf2 for NS2B3-mediated degradation leading to enhanced oxidative stress and viral replication. J Virol 2020; 94(24). doi: https://dx.doi.org/10.1128/JVI.01551-20\u0000Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S, et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat Commun 2019; 10(1):4878. doi: https://dx.doi.org/10.1038/s41467-019-12894-z\u0000Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020; 11(1):4938. doi: https://dx.doi.org/10.1038/s41467-020-18764-3\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44181483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria as a Critical Target of COVID-19 Pathogenesis 线粒体是新冠肺炎发病机制的关键靶点
Pub Date : 2022-03-03 DOI: 10.20455/ros.2022.n.807
E. Ros
Over the past two years, findings from several research studies published in highly influential journals pointed to a critical involvement of mitochondria in the pathophysiology of SARS-CoV2 infections. Among the most exciting findings are the involvement of (i) the “mitochondrial ROS–HIF-1α –glycolysis” axis, (ii) the “cGAS–STING” signaling, and (iii) the “mitochondrial apoptotic cell death” pathway.(First online: March 3, 2022)REFERENCES                      Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116(2):205–19. doi: https://dx.doi.org/10.1016/s0092-8674(04)00046-7Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3):909–50. doi: https://dx.doi.org/10.1152/physrev.00026.2013Ros EO. Mitochondrial ROS take center stage in immune regulation. React Oxyg Species (Apex) 2021; 11:n9–n10. doi: https://dx.doi.org/10.20455/ros.2021.n.809Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42(3):406–17. doi: https://dx.doi.org/10.1016/j.immuni.2015.02.002Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab 2020; 32(3):437–46 e5. doi: https://dx.doi.org/10.1016/j.cmet.2020.07.007Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04421-wSimpson DS, Pang J, Weir A, Kong IY, Fritsch M, Rashidi M, et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 2022. doi: https://dx.doi.org/10.1016/j.immuni.2022.01.003
在过去的两年里,发表在极具影响力的期刊上的几项研究结果表明,线粒体在严重急性呼吸系统综合征冠状病毒2型感染的病理生理学中起着关键作用。最令人兴奋的发现包括(i)“线粒体ROS–HIF-1α-糖酵解”轴的参与,(ii)“cGAS–STING”信号传导,以及(iii)“线粒体凋亡细胞死亡”途径。(首次在线:2022年3月3日)参考文献Danial NN,Korsmeyer SJ。细胞死亡:关键控制点。Cell 2004;116(2):205–19.doi:https://dx.doi.org/10.1016/s0092-8674(04)00046-7Zorov DB,Juhaszova M,Sollott SJ.线粒体活性氧(ROS)和ROS诱导的ROS释放。Physiol Rev 2014;94(3):909–50.doi:https://dx.doi.org/10.1152/physrev.00026.2013RosEO。线粒体ROS在免疫调节中处于中心阶段。React Oxyg物种(Apex)2021;11:n9–n10。doi:https://dx.doi.org/10.20455/ros.2021.n.809WeinbergSE、Sena LA、Chandel NS。线粒体在先天免疫和适应性免疫的调节中。豁免2015;42(3):406–17.doi:https://dx.doi.org/10.1016/j.immuni.2015.02.002CodoAC、Davanzo GG、Monteiro LB、de Souza GF、Muraro SP、Virgilio da Silva JV等。葡萄糖水平升高通过HIF-1α/糖酵解依赖轴有利于严重急性呼吸系统综合征冠状病毒2型感染和单核细胞反应。细胞代谢2020;32(3):437–46 e5。doi:https://dx.doi.org/10.1016/j.cmet.2020.07.007DomizioJD、Gulen MF、Saidoune F、Thacker VV、Yatim A、Sharma K等。cGAS-STING途径驱动新冠肺炎中的I型IFN免疫病理学。自然2022。doi:https://dx.doi.org/10.1038/s41586-022-04421-wSimpsonDS,Pang J,Weir A,Kong IY,Fritsch M,Rashidi M等。干扰素γ通过胱天蛋白酶-8和线粒体细胞死亡途径启动巨噬细胞进行病原体配体诱导的杀伤。豁免2022。doi:https://dx.doi.org/10.1016/j.immuni.2022.01.003
{"title":"Mitochondria as a Critical Target of COVID-19 Pathogenesis","authors":"E. Ros","doi":"10.20455/ros.2022.n.807","DOIUrl":"https://doi.org/10.20455/ros.2022.n.807","url":null,"abstract":"Over the past two years, findings from several research studies published in highly influential journals pointed to a critical involvement of mitochondria in the pathophysiology of SARS-CoV2 infections. Among the most exciting findings are the involvement of (i) the “mitochondrial ROS–HIF-1α –glycolysis” axis, (ii) the “cGAS–STING” signaling, and (iii) the “mitochondrial apoptotic cell death” pathway.\u0000(First online: March 3, 2022)\u0000REFERENCES                      \u0000\u0000Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116(2):205–19. doi: https://dx.doi.org/10.1016/s0092-8674(04)00046-7\u0000Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3):909–50. doi: https://dx.doi.org/10.1152/physrev.00026.2013\u0000Ros EO. Mitochondrial ROS take center stage in immune regulation. React Oxyg Species (Apex) 2021; 11:n9–n10. doi: https://dx.doi.org/10.20455/ros.2021.n.809\u0000Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015; 42(3):406–17. doi: https://dx.doi.org/10.1016/j.immuni.2015.02.002\u0000Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab 2020; 32(3):437–46 e5. doi: https://dx.doi.org/10.1016/j.cmet.2020.07.007\u0000Domizio JD, Gulen MF, Saidoune F, Thacker VV, Yatim A, Sharma K, et al. The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04421-w\u0000Simpson DS, Pang J, Weir A, Kong IY, Fritsch M, Rashidi M, et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 2022. doi: https://dx.doi.org/10.1016/j.immuni.2022.01.003\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49400174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ROS in 2022: New Focus, Same Mission 2022年的ROS:新的焦点,相同的使命
Pub Date : 2022-03-02 DOI: 10.20455/ros.2022.e.801
E. Ros
This ROS Editorial brings to the reader’s attention a new focus of the Journal on disseminating cutting-edge research highlights and mini-review articles. The Journal also considers submissions on concise method protocols, insightful commentaries, and short-research communications.(First online: March 1, 2022)
这篇ROS社论引起了读者的注意,这是《华尔街日报》传播前沿研究亮点和小型评论文章的新焦点。《华尔街日报》还考虑了关于简明方法协议、富有洞察力的评论和简短研究交流的意见书。(首次在线:2022年3月1日)
{"title":"ROS in 2022: New Focus, Same Mission","authors":"E. Ros","doi":"10.20455/ros.2022.e.801","DOIUrl":"https://doi.org/10.20455/ros.2022.e.801","url":null,"abstract":"This ROS Editorial brings to the reader’s attention a new focus of the Journal on disseminating cutting-edge research highlights and mini-review articles. The Journal also considers submissions on concise method protocols, insightful commentaries, and short-research communications.\u0000(First online: March 1, 2022)","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45073460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Salt Promotes Inflammation: Mechanistic Insights 盐促进炎症:机制学见解
Pub Date : 2022-03-02 DOI: 10.20455/ros.2022.n.801
E. Ros
It has been well established that high dietary salt intake promotes inflammation and contributes to the pathogenesis of many inflammatory disorders, especially cardiovascular diseases. Several recent studies published in prestigious journals have further elucidated the molecular pathways underlying high salt-induced inflammation, including identification of the involvement of mitochondrial electron transport chain and the Nrf2-SIRT3 signaling axis. These novel findings provide important mechanistic insights and offer potential opportunities for developing modalities for intervention of high salt-associated pathophysiological conditions.(First online: March 1, 2022)REFERENCESThornton SN. Sodium intake, cardiovascular disease, and physiology. Nat Rev Cardiol 2018; 15(8):497. doi: https://dx.doi.org/10.1038/s41569-018-0047-3Cook NR, He FJ, MacGregor GA, Graudal N. Sodium and health-concordance and controversy. BMJ 2020; 369:m2440. doi: https://dx.doi.org/10.1136/bmj.m2440Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446):513–7. doi: https://dx.doi.org/10.1038/nature11984Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551(7682):585–9. doi: https://dx.doi.org/10.1038/nature24628Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25(8):893–910. doi: https://dx.doi.org/10.1038/cr.2015.87Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, et al. Salt Transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021; 144(2):144–58. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788Ros EO. Sodium ion regulates mitochondrial ROS. React Oxyg Species (Apex) 2021; 11:n5–n6. doi: https://dx.doi.org/10.20455/ros.2021.n.805.Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560–9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 2018; 115(12):3138–43. doi: https://dx.doi.org/10.1073/pnas.1713837115Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4):439–5
高盐饮食摄入促进炎症,并有助于许多炎症性疾病的发病机制,特别是心血管疾病。最近发表在著名期刊上的几项研究进一步阐明了高盐诱导炎症的分子途径,包括线粒体电子传递链和Nrf2-SIRT3信号轴的参与。这些新发现提供了重要的机制见解,并为开发干预高盐相关病理生理状况的模式提供了潜在的机会。(首次在线:2022年3月1日)钠摄入量、心血管疾病和生理。Nat Rev Cardiol 2018;15(8): 497。doi: https://dx.doi.org/10.1038/s41569-018-0047-3Cook NR,何方军,MacGregor GA, Graudal N.钠与健康的一致性和争议。BMJ 2020;369: m2440。doi: https://dx.doi.org/10.1136/bmj.m2440Wu C, Yosef N, Thalhamer T,朱翀,肖松,Kishi Y,等。诱导型盐感激酶SGK1诱导致病性TH17细胞。自然2013;496(7446): 513 - 7。doi: https://dx.doi.org/10.1038/nature11984Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H,等。盐反应性肠道共生调节TH17轴和疾病。自然2017;551(7682): 585 - 9。doi: https://dx.doi.org/10.1038/nature24628Zhang王文成,郑晓军,杜立军,孙建勇,沈志祥,石超,等。高盐启动巨噬细胞的特定激活状态,M(Na)。Cell Res 2015;25(8): 893 - 910。doi: https://dx.doi.org/10.1038/cr.2015.87Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T,等。盐暂时抑制单核吞噬细胞的线粒体能量。发行量2021;144(2): 144 - 58。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788Ros EO。钠离子调控线粒体活性氧。React Oxyg Species (Apex) 2021;11: n5-n6。doi: https://dx.doi.org/10.20455/ros.2021.n.805.Shadel GS, Horvath TL.线粒体ROS信号在机体内稳态。细胞2015;163(3): 560 - 9。doi: https://dx.doi.org/10.1016/j.cell.2015.10.001Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T,等。高盐摄入通过刺激内源性果糖的产生和代谢导致小鼠瘦素抵抗和肥胖。美国国家科学促进会2018;115(12): 3138 - 43。doi: https://dx.doi.org/10.1073/pnas.1713837115Gao P,尤明,李磊,张强,方鑫,魏鑫,等。盐诱导的肝脏炎症记忆通过表观遗传调节SIRT3参与心血管损伤。发行量2022;145(5): 375 - 91。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG等。线粒体去乙酰化酶Sirt3减少血管功能障碍和高血压,而原发性高血压中Sirt3的消耗与血管炎症和氧化应激有关。Circ Res 2020;126(4): 439 - 52。doi: https://dx.doi.org/10.1161/CIRCRESAHA.119.315767Kim A, Koo JH, Lee JM, Joo MS, Kim TH, Kim H,等。nrf2介导的SIRT3诱导可保护肝细胞免受内质网应激性肝损伤。fasb j 2022;36 (3): e22170。doi: https://dx.doi.org/10.1096/fj.202101470R
{"title":"Salt Promotes Inflammation: Mechanistic Insights","authors":"E. Ros","doi":"10.20455/ros.2022.n.801","DOIUrl":"https://doi.org/10.20455/ros.2022.n.801","url":null,"abstract":"It has been well established that high dietary salt intake promotes inflammation and contributes to the pathogenesis of many inflammatory disorders, especially cardiovascular diseases. Several recent studies published in prestigious journals have further elucidated the molecular pathways underlying high salt-induced inflammation, including identification of the involvement of mitochondrial electron transport chain and the Nrf2-SIRT3 signaling axis. These novel findings provide important mechanistic insights and offer potential opportunities for developing modalities for intervention of high salt-associated pathophysiological conditions.\u0000(First online: March 1, 2022)\u0000REFERENCES\u0000\u0000Thornton SN. Sodium intake, cardiovascular disease, and physiology. Nat Rev Cardiol 2018; 15(8):497. doi: https://dx.doi.org/10.1038/s41569-018-0047-3\u0000Cook NR, He FJ, MacGregor GA, Graudal N. Sodium and health-concordance and controversy. BMJ 2020; 369:m2440. doi: https://dx.doi.org/10.1136/bmj.m2440\u0000Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446):513–7. doi: https://dx.doi.org/10.1038/nature11984\u0000Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551(7682):585–9. doi: https://dx.doi.org/10.1038/nature24628\u0000Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25(8):893–910. doi: https://dx.doi.org/10.1038/cr.2015.87\u0000Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, et al. Salt Transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021; 144(2):144–58. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788\u0000Ros EO. Sodium ion regulates mitochondrial ROS. React Oxyg Species (Apex) 2021; 11:n5–n6. doi: https://dx.doi.org/10.20455/ros.2021.n.805.\u0000Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560–9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001\u0000Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 2018; 115(12):3138–43. doi: https://dx.doi.org/10.1073/pnas.1713837115\u0000Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600\u0000Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4):439–5","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48904810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metformin Finds Its New Molecular Targets 二甲双胍发现新的分子靶点
Pub Date : 2022-03-02 DOI: 10.20455/ros.2022.n.803
E. Ros
Metformin is a widely used antidiabetic drug. Studies over the past year have identified multiple novel molecular targets and pathways that metformin may act on to exert its beneficial effects in treating diabetes and potentially other disorders involving dysregulated inflammation. These newly found targets include mitochondrial complex I, Nrf2-SIRT3 signaling axis, PEN2, and lysosomal proton pump v-ATPase.(First online: March 1, 2022)REFERENCESFlory J, Lipska K. Metformin in 2019. JAMA 2019; 321(19):1926–7. doi: https://dx.doi.org/10.1001/jama.2019.3805Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54(7):1463–77 e11. doi: https://dx.doi.org/10.1016/j.immuni.2021.05.004Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506):542–6. doi: https://dx.doi.org/10.1038/nature13270Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8):1167–74. doi: https://dx.doi.org/10.1172/JCI13505Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04431-8
二甲双胍是一种应用广泛的抗糖尿病药物。过去一年的研究已经确定了多种新的分子靶点和途径,二甲双胍可能会对其发挥作用,在治疗糖尿病和其他可能涉及炎症失调的疾病方面发挥有益作用。这些新发现的靶标包括线粒体复合体I、Nrf2-SIRT3信号轴、PEN2和溶酶体质子泵v-ATP酶。(首次在线:2022年3月1日)参考文献Flory J,Lipska K.二甲双胍在2019年。JAMA 2019;321(19):1926–7.doi:https://dx.doi.org/10.1001/jama.2019.3805XianH,Liu Y,Rundberg Nilsson A,Gatchalian R,Crother TR,Tourtellotte WG等。二甲双胍对线粒体ATP和DNA合成的抑制消除了NLRP3炎症小体激活和肺部炎症。豁免2021;54(7):1463–77 e11。doi:https://dx.doi.org/10.1016/j.immuni.2021.05.004MadirajuAK,Erion DM,Rahimi Y,Zhang XM,Braddock DT,Albright RA等。二甲双胍通过抑制线粒体甘油磷酸脱氢酶来抑制糖异生。Nature 2014;510(7506):542–6.doi:https://dx.doi.org/10.1038/nature13270ZhouG,Myers R,Li Y,Chen Y,Shen X,Fenyk Melody J,等。AMP活化蛋白激酶在二甲双胍作用机制中的作用。《临床投资杂志》2001;108(8):1167-74.doi:https://dx.doi.org/10.1172/JCI13505GaoP,游M,李L,张Q,方X,魏X,等。盐诱导的肝脏炎症记忆通过SIRT3的表观遗传学调节导致心血管损伤。循环2022;145(5):375–91.doi:https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600MaT,Tian X,Zhang B,Li M,Wang Y,Yang C,et al.低剂量二甲双胍通过PEN2靶向溶酶体AMPK通路。自然2022。doi:https://dx.doi.org/10.1038/s41586-022-04431-8
{"title":"Metformin Finds Its New Molecular Targets","authors":"E. Ros","doi":"10.20455/ros.2022.n.803","DOIUrl":"https://doi.org/10.20455/ros.2022.n.803","url":null,"abstract":"Metformin is a widely used antidiabetic drug. Studies over the past year have identified multiple novel molecular targets and pathways that metformin may act on to exert its beneficial effects in treating diabetes and potentially other disorders involving dysregulated inflammation. These newly found targets include mitochondrial complex I, Nrf2-SIRT3 signaling axis, PEN2, and lysosomal proton pump v-ATPase.\u0000(First online: March 1, 2022)\u0000REFERENCES\u0000\u0000Flory J, Lipska K. Metformin in 2019. JAMA 2019; 321(19):1926–7. doi: https://dx.doi.org/10.1001/jama.2019.3805\u0000Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54(7):1463–77 e11. doi: https://dx.doi.org/10.1016/j.immuni.2021.05.004\u0000Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506):542–6. doi: https://dx.doi.org/10.1038/nature13270\u0000Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8):1167–74. doi: https://dx.doi.org/10.1172/JCI13505\u0000Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600\u0000Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04431-8\u0000","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46107338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Reactive oxygen species (Apex, N.C.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1