首页 > 最新文献

ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers最新文献

英文 中文
Waste Heat Driven Hybrid Refrigeration System: A Review 余热驱动混合制冷系统的研究进展
D. K. Joshi
The objective of this paper is to describe a newly-developed hybrid refrigeration system .This hybrid refrigeration system , combination of a vapor compression refrigeration system driven by the high grade electrical energy and heat driven an absorption refrigeration system .Absorption system activated by waste heat available from the condenser of vapour compression system to produce the required necessary temperature in generator to vaporize refrigerant. However an electrical heater in the generator is provided to give additional heat, to increases the temperature and pressure of refrigerant vapours. An absorption-compression hybrid refrigeration system is studied, and it can recover maximum condensation heat for the generation of refrigerant vapours.
本文介绍了一种新型的混合式制冷系统,该混合式制冷系统是由高质量电能驱动的蒸汽压缩制冷系统和热驱动的吸收式制冷系统相结合,吸收式制冷系统利用蒸汽压缩系统的冷凝器产生的余热激活,在发生器内产生所需温度使制冷剂汽化。然而,发电机中的电加热器提供额外的热量,以增加制冷剂蒸汽的温度和压力。研究了一种吸收-压缩混合制冷系统,该系统可以回收产生制冷剂蒸汽的最大冷凝热。
{"title":"Waste Heat Driven Hybrid Refrigeration System: A Review","authors":"D. K. Joshi","doi":"10.37591/JORACHV.V7I2.834","DOIUrl":"https://doi.org/10.37591/JORACHV.V7I2.834","url":null,"abstract":"The objective of this paper is to describe a newly-developed hybrid refrigeration system .This hybrid refrigeration system , combination of a vapor compression refrigeration system driven by the high grade electrical energy and heat driven an absorption refrigeration system .Absorption system activated by waste heat available from the condenser of vapour compression system to produce the required necessary temperature in generator to vaporize refrigerant. However an electrical heater in the generator is provided to give additional heat, to increases the temperature and pressure of refrigerant vapours. An absorption-compression hybrid refrigeration system is studied, and it can recover maximum condensation heat for the generation of refrigerant vapours.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73985924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indoor Room Air Conditioning Using External Enclosure 室外机框空调
C. Armenta-Déu
This paper presents a new air conditioning system using an external air chamber enclosure. The system is based on evaporative refrigeration technique humidifying hot air from the environment by means of a new design humidifier. Temperature at the air chamber is set up according to the required comfort conditions. The air chamber plays the role of a heat collector from indoor room radiative energy. This new system avoids thermal gradient inside the room improving the comfort because of a more homogeneous temperature distribution. Maximum thermal amplitude at the air chamber and indoor room is of 2°C. Theoretical analysis has been developed to determine the refrigeration energy consumption matching values with literature data. Experimental tests have shown a good correlation with theoretical prediction, within accuracy of 7.8%, close to the 8.2 % uncertainty of experimental measurements. A significant reduction in energy consumption has been achieved with COP values up to 4.8 for 31.5°C of ambient temperature. COP increases linearly with ambient temperature and enhances efficiency of air conditioning compression units above 31.5°C, although shows poorer performance below 29°C, what makes the new system especially suitable for hot climates. The result of the evaporative refrigeration at the air chamber has permitted the reduction of daily thermal amplitude from 17°C at the outside, to only 2°C, at the inside. COP of the new system moves from 1.1 to 4.8 within ambient temperature limits, 25.5°C to 31.5°C. Maximum amplitude of temperature at the indoor room has been of 2°C, with a maximum thermal gradient that has not exceeded 0.5°C/m.
本文介绍了一种采用外置空气室外壳的新型空调系统。该系统采用蒸发式制冷技术,通过新设计的加湿器对环境中的热空气进行加湿。根据所需的舒适条件设置气室温度。空气室起着收集室内辐射能的集热器的作用。这个新系统避免了房间内的热梯度,因为温度分布更均匀,提高了舒适度。空气室和室内的最大热幅值为2℃。通过理论分析,确定了制冷能耗与文献数据的匹配值。实验测试表明,与理论预测有很好的相关性,精度在7.8%以内,接近实验测量的8.2%的不确定度。当环境温度为31.5°C时,COP值高达4.8,能耗显著降低。COP随环境温度线性增加,在31.5°C以上提高了空调压缩机组的效率,尽管在29°C以下表现不佳,这使得新系统特别适合炎热气候。在空气室蒸发制冷的结果已经允许减少每日热振幅从17°C在外部,只有2°C,在内部。在环境温度范围内,新系统的COP从1.1到4.8,从25.5°C到31.5°C。室内温度的最大振幅为2℃,最大热梯度不超过0.5℃/m。
{"title":"Indoor Room Air Conditioning Using External Enclosure","authors":"C. Armenta-Déu","doi":"10.37591/jorachv.v7i2.940","DOIUrl":"https://doi.org/10.37591/jorachv.v7i2.940","url":null,"abstract":"This paper presents a new air conditioning system using an external air chamber enclosure. The system is based on evaporative refrigeration technique humidifying hot air from the environment by means of a new design humidifier. Temperature at the air chamber is set up according to the required comfort conditions. The air chamber plays the role of a heat collector from indoor room radiative energy. This new system avoids thermal gradient inside the room improving the comfort because of a more homogeneous temperature distribution. Maximum thermal amplitude at the air chamber and indoor room is of 2°C. Theoretical analysis has been developed to determine the refrigeration energy consumption matching values with literature data. Experimental tests have shown a good correlation with theoretical prediction, within accuracy of 7.8%, close to the 8.2 % uncertainty of experimental measurements. A significant reduction in energy consumption has been achieved with COP values up to 4.8 for 31.5°C of ambient temperature. COP increases linearly with ambient temperature and enhances efficiency of air conditioning compression units above 31.5°C, although shows poorer performance below 29°C, what makes the new system especially suitable for hot climates. The result of the evaporative refrigeration at the air chamber has permitted the reduction of daily thermal amplitude from 17°C at the outside, to only 2°C, at the inside. COP of the new system moves from 1.1 to 4.8 within ambient temperature limits, 25.5°C to 31.5°C. Maximum amplitude of temperature at the indoor room has been of 2°C, with a maximum thermal gradient that has not exceeded 0.5°C/m.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90380026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design, Fabrication and Testing of Ejector for Solar Thermal Cooling System 太阳能热冷却系统喷射器的设计、制造和试验
B. Arthy, T. Kumaresan, C. M. Mithiran, S. Dharaneeswaran, V. Thivakar, P. Balamurugan
The Solar Thermal Cooling System mainly comprises of Solar Panels, Generator, Condenser and Evaporator. In addition an ejector is mounted in the existing system to improve the performance of the system. The Ejector is having a primary and secondary inlet nozzle. In the primary flow nozzle the motive refrigerant will flow with high pressure which comes from generator. The area of the ejector is reduced to increase the pressure by means of venturi effect. Due to high velocity of motive refrigerant, the negative pressure is created inside the suction chamber which in turn sucks the low pressure refrigerant from the evaporator. The mixture of high pressure motive refrigerant and the low pressure refrigerant passes into the condenser at moderate pressure and the cyclic process is continued. The main scope of the project is to fabricate only the ״ejector״.
太阳能热冷却系统主要由太阳能板、发电机、冷凝器和蒸发器组成。此外,在现有系统中安装了一个喷射器,以提高系统的性能。喷射器有一个主要和次要入口喷嘴。在一次流喷嘴中,原动力制冷剂将在来自发电机的高压下流动。利用文丘里效应减小喷射器面积以增加压力。由于原动力制冷剂的高速流动,在吸气腔内产生负压,进而从蒸发器中吸出低压制冷剂。高压动力制冷剂和低压制冷剂的混合物以中压进入冷凝器,循环过程继续进行。该项目的主要范围是制作“喷射器”。
{"title":"Design, Fabrication and Testing of Ejector for Solar Thermal Cooling System","authors":"B. Arthy, T. Kumaresan, C. M. Mithiran, S. Dharaneeswaran, V. Thivakar, P. Balamurugan","doi":"10.37591/JORACHV.V7I1.873","DOIUrl":"https://doi.org/10.37591/JORACHV.V7I1.873","url":null,"abstract":"The Solar Thermal Cooling System mainly comprises of Solar Panels, Generator, Condenser and Evaporator. In addition an ejector is mounted in the existing system to improve the performance of the system. The Ejector is having a primary and secondary inlet nozzle. In the primary flow nozzle the motive refrigerant will flow with high pressure which comes from generator. The area of the ejector is reduced to increase the pressure by means of venturi effect. Due to high velocity of motive refrigerant, the negative pressure is created inside the suction chamber which in turn sucks the low pressure refrigerant from the evaporator. The mixture of high pressure motive refrigerant and the low pressure refrigerant passes into the condenser at moderate pressure and the cyclic process is continued. The main scope of the project is to fabricate only the ״ejector״.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73054811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indoor Room Air Conditioning Using Heat Removal from PV Panels 利用光伏板散热的室内空调
C. Armenta-Déu
The paper describes the characteristics of a novel hybrid system of air conditioning and PV panel used to remove heat from PV panels located on the building roof and to air conditioning the space of the building placed just below. The design of the system is based on the well- known Trombe wall principle with the special characteristic of using a PV panel as front surface “to collect” heat that is transferred to the air chamber. A theoretical simulation has been developed to predict thermal behavior and temperatures of the air chamber and indoor room showing an excellent agreement to experimental results, within a 96.5% accuracy. Carried out tests have proved that forced convection at the air chamber can remove the energy excess at the PV panel, which can be used to increase temperature at the indoor room fulfilling comfort conditions. Top to bottom thermal gradient inside the indoor room is reduced from 5o C to 1o C when using forced convection at the air chamber which improves comfort conditions and maintains temperature within the comfort setup range.
本文介绍了一种新型的空调和光伏板混合系统的特点,该系统用于从位于建筑物屋顶的光伏板中去除热量,并对位于建筑物下方的空间进行空调。该系统的设计基于著名的Trombe墙原理,其特殊特点是使用PV面板作为前表面“收集”热量,并将其传递到空气室。对空气室和室内的热行为和温度进行了理论模拟,结果与实验结果非常吻合,精度达到96.5%。已进行的试验证明,空气室的强制对流可以去除光伏板处的过剩能量,用于提高满足舒适条件的室内温度。在空气室采用强制对流,将室内室内自上而下的热梯度从50℃降低到10℃,改善了舒适条件,使温度保持在舒适设置范围内。
{"title":"Indoor Room Air Conditioning Using Heat Removal from PV Panels","authors":"C. Armenta-Déu","doi":"10.37591/JORACHV.V7I3.1016","DOIUrl":"https://doi.org/10.37591/JORACHV.V7I3.1016","url":null,"abstract":"The paper describes the characteristics of a novel hybrid system of air conditioning and PV panel used to remove heat from PV panels located on the building roof and to air conditioning the space of the building placed just below. The design of the system is based on the well- known Trombe wall principle with the special characteristic of using a PV panel as front surface “to collect” heat that is transferred to the air chamber. A theoretical simulation has been developed to predict thermal behavior and temperatures of the air chamber and indoor room showing an excellent agreement to experimental results, within a 96.5% accuracy. Carried out tests have proved that forced convection at the air chamber can remove the energy excess at the PV panel, which can be used to increase temperature at the indoor room fulfilling comfort conditions. Top to bottom thermal gradient inside the indoor room is reduced from 5o C to 1o C when using forced convection at the air chamber which improves comfort conditions and maintains temperature within the comfort setup range.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87208015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The choice of the scheme of air distribution from ventilation and air-conditioning systems in the hall of the small indoor ice rink 小型室内溜冰场大厅通风及空调系统送风方案的选择
S. Rusakov
{"title":"The choice of the scheme of air distribution from ventilation and air-conditioning systems in the hall of the small indoor ice rink","authors":"S. Rusakov","doi":"10.17586/2310-1148-2017-10-2/3-26-34","DOIUrl":"https://doi.org/10.17586/2310-1148-2017-10-2/3-26-34","url":null,"abstract":"","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74881062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ways to increase energy efficiency of buildings and structures 提高建筑物和构筑物能源效率的方法
V. I. Lysev, A. S. Shilin
{"title":"The ways to increase energy efficiency of buildings and structures","authors":"V. I. Lysev, A. S. Shilin","doi":"10.17586/2310-1148-2017-10-2/3-18-25","DOIUrl":"https://doi.org/10.17586/2310-1148-2017-10-2/3-18-25","url":null,"abstract":"","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81474797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The effect of the initial conditions on the functional indicators of microclimate maintenance systems 初始条件对小气候维持系统功能指标的影响
V. I. Lysev, T. A. Parizhskaya
Климатические параметры наружного воздуха всегда изменчивы, как в течение астрономического года, так и в долгосрочной перспективе, что приводит к неопределенности возможных затрат на сооружение систем обеспечения микроклимата. Многообразие объектов и их исходных условий предопределяет множество возможных вариантов технических решений, а противоречивость определяющих показателей и отсутствие рекомендации о способе выполнения количественной оценки влияния выбранных НРП на степень обеспеченности, а также связанных с этим обстоятельством расчетных величин необходимого потребления теплоты на нагрев воздуха в холодный период и холода для снижения температуры наружного воздуха в теплый период года, значительно осложняет выбор. В основе выбора рационального варианта технического решения системы обеспечения микроклимата лежит целенаправленное рассмотрение исходных условий объекта с последующим анализом функциональных показателей возможных (альтернативных) технических решений систем. В связи с зависимостью количества требуемых ресурсов не только от принципиального решения систем, но и от режимов функционирования, предложено оценивать функциональные показатели системы по значениям сезонных коэффициентов обеспеченности, а так же по удельным затратам энергоресурсов. Данный подход пояснен на примере конкретных объектов. Ключевые слова: система обеспечения микроклимата, исходные условия, варианты технических решений, расход наружного приточного воздуха, нагрев и охлаждение воздуха, удельный расход теплоты и холода, расчетные параметры наружного воздуха, коэффициенты обеспеченности.
外部空气的气候参数在天文年和长期都是波动的,这使得建造微气候系统的潜在成本不确定。基准对象多样性及其经营者多种可能性选择技术解决方案,而矛盾决定和缺乏推荐方法执行量化指标选择共和人民党保障程度、影响以及相关情况估算所需的热量消耗量在寒冷时期加热空气寒冷为了缓和温暖季节,室外空气温度这使得选择变得更加困难。对微气候系统的技术解决方案的合理选择的基础是对潜在(替代)系统解决方案的功能指标进行有针对性的审查和分析。由于所需要的资源的数量不仅取决于系统的基本决定,而且取决于运行模式,建议根据季节性担保系数的值以及能源的单位成本来评估系统的功能指标。这种方法是通过特定物体的例子来解释的。关键词:微气候保障、原始条件、技术解决方案、室外空气的消耗、热量和冷却、热量和寒冷的比值、室外空气的计算参数、供给系数。
{"title":"The effect of the initial conditions on the functional indicators of microclimate maintenance systems","authors":"V. I. Lysev, T. A. Parizhskaya","doi":"10.17586/2310-1148-2017-10-2/3-3-11","DOIUrl":"https://doi.org/10.17586/2310-1148-2017-10-2/3-3-11","url":null,"abstract":"Климатические параметры наружного воздуха всегда изменчивы, как в течение астрономического года, так и в долгосрочной перспективе, что приводит к неопределенности возможных затрат на сооружение систем обеспечения микроклимата. Многообразие объектов и их исходных условий предопределяет множество возможных вариантов технических решений, а противоречивость определяющих показателей и отсутствие рекомендации о способе выполнения количественной оценки влияния выбранных НРП на степень обеспеченности, а также связанных с этим обстоятельством расчетных величин необходимого потребления теплоты на нагрев воздуха в холодный период и холода для снижения температуры наружного воздуха в теплый период года, значительно осложняет выбор. В основе выбора рационального варианта технического решения системы обеспечения микроклимата лежит целенаправленное рассмотрение исходных условий объекта с последующим анализом функциональных показателей возможных (альтернативных) технических решений систем. В связи с зависимостью количества требуемых ресурсов не только от принципиального решения систем, но и от режимов функционирования, предложено оценивать функциональные показатели системы по значениям сезонных коэффициентов обеспеченности, а так же по удельным затратам энергоресурсов. Данный подход пояснен на примере конкретных объектов. Ключевые слова: система обеспечения микроклимата, исходные условия, варианты технических решений, расход наружного приточного воздуха, нагрев и охлаждение воздуха, удельный расход теплоты и холода, расчетные параметры наружного воздуха, коэффициенты обеспеченности.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74510827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex pilot studies of heathydrodynamic processes of the boiling coolants in mini-(micro) channels 沸腾冷却剂在小(微)通道中流体动力学过程的复杂中试研究
A. Malyshev, K. Kisser, Kouadio Koffi Fabrice
В статье представлен обзор научных исследований теплогидродинамических характеристик при кипении рабочих веществ в мини(микро) каналах. Определены преимущества миниканальных теплообменников с позиции энергоэффективности, надежности, массогабаритных характеристик. Рассмотрены методики проведения теплофизических экспериментов в мини(микро) каналах с разными гидравлическими диаметрами и рабочими веществами, такими как R134a, R410A, водо-воздушные смеси и вода. В статье представлены схемы экспериментальных стендов как с мини-, так и с микроканалами для исследования режимов кипения, а также определения коэффициентов теплоотдачи. Показана целесообразность продолжения исследования теплообмена и гидродинамики в миниканалах, основываясь на комплексном подходе, включающем исследования режимов кипения, истинного паросодержания, локального теплообмена и перепадов давления. Представлена схема экспериментального стенда. Ключевые слова: хладоносители; теплогидродинамические характеристики; кипение хладагентов; миниканальный теплообменник; экспериментальный стенд.
这篇文章概述了研究迷你(微)管道中化学品沸腾的热水动力学特征。从能源效率、可靠性、质量特征来看,微型热交换器的好处已经确定。在微型(微)管道中进行热力学实验的方法包括R134a、R410A、水-空气混合物和水。本文介绍了用于研究沸点模式和热系数的微型和微型通道的试验台示意图。根据对沸腾模式、真实蒸汽内容、局部热交换和压力变化的综合方法,在微型通道中继续研究热交换和水动力学是合适的。这是试验台的示意图。关键字:冷却剂;теплогидродинамическ特征;冷却剂沸腾;миниканальн换热器;实验性的展位。
{"title":"Complex pilot studies of heathydrodynamic processes of the boiling coolants in mini-(micro) channels","authors":"A. Malyshev, K. Kisser, Kouadio Koffi Fabrice","doi":"10.17586/2310-1148-2017-10-2/3-12-17","DOIUrl":"https://doi.org/10.17586/2310-1148-2017-10-2/3-12-17","url":null,"abstract":"В статье представлен обзор научных исследований теплогидродинамических характеристик при кипении рабочих веществ в мини(микро) каналах. Определены преимущества миниканальных теплообменников с позиции энергоэффективности, надежности, массогабаритных характеристик. Рассмотрены методики проведения теплофизических экспериментов в мини(микро) каналах с разными гидравлическими диаметрами и рабочими веществами, такими как R134a, R410A, водо-воздушные смеси и вода. В статье представлены схемы экспериментальных стендов как с мини-, так и с микроканалами для исследования режимов кипения, а также определения коэффициентов теплоотдачи. Показана целесообразность продолжения исследования теплообмена и гидродинамики в миниканалах, основываясь на комплексном подходе, включающем исследования режимов кипения, истинного паросодержания, локального теплообмена и перепадов давления. Представлена схема экспериментального стенда. Ключевые слова: хладоносители; теплогидродинамические характеристики; кипение хладагентов; миниканальный теплообменник; экспериментальный стенд.","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88419137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The review and the analysis aero - and thermodynamic processes in an aperture with an air and thermal veil 综述和分析了带有空气和热罩的孔道内的气动和热力学过程
A.Yu. Grigoriev, D. Zhignovskaya
{"title":"The review and the analysis aero - and thermodynamic processes in an aperture with an air and thermal veil","authors":"A.Yu. Grigoriev, D. Zhignovskaya","doi":"10.17586/2310-1148-2016-9-4-6-15","DOIUrl":"https://doi.org/10.17586/2310-1148-2016-9-4-6-15","url":null,"abstract":"","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83647853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of the thermal load of cooling systems refrigeration vehicles 制冷车辆冷却系统热负荷分析
U. D. Rumantcev, F. O. Veselkin
{"title":"Analysis of the thermal load of cooling systems refrigeration vehicles","authors":"U. D. Rumantcev, F. O. Veselkin","doi":"10.17586/2310-1148-2016-9-4-62-70","DOIUrl":"https://doi.org/10.17586/2310-1148-2016-9-4-62-70","url":null,"abstract":"","PeriodicalId":91841,"journal":{"name":"ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88705117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ASHRAE winter conference papers. American Society of Heating, Refrigeration and Air-Conditioning Engineers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1