首页 > 最新文献

Molecular Systems Design & Engineering最新文献

英文 中文
Empowering tomorrow's medicine: energy-driven micro/nano-robots redefining biomedical applications 赋能未来医学:能源驱动的微型/纳米机器人重新定义生物医学应用
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-02 DOI: 10.1039/D4ME00090K
Subham Preetam, Pingal Pritam, Richa Mishra, Sarvesh Rustagi, Smita Lata and Sumira Malik

Micro/nano-robots (MNRs) have gained attention as a rapidly developing field with significant potential in advanced therapies and futuristic solutions. These self-propelled robots offer a promising strategy to enhance monitoring, overcome diffusion limitations, and interact effectively with target factors. Research in MNRs has become highly influential, especially in addressing critical issues like cancer. The progression from passive micro- and nanomaterials to active MNRs and ultimately to intelligent MNRs has led to advancements in motion abilities, multifunctionality, adaptive responses, swarming behaviour, and communication among robots. Nanorobotics, featuring sophisticated submicron devices made from nanocomponents, holds great promise for revolutionizing the healthcare industry. This review aims to highlight recent progress in propulsion mechanisms, including chemically controlled micromotors, field control, and biohybrid approaches, which serve as power sources for various biomedical and environmental applications. These applications utilize different energy sources such as magnetic, light, auditory, electric, and chemical reactions, particularly in drug delivery systems for cancer treatment. This review also discusses the challenges and future directions in the practical implementation of smart MNRs, paving the way for their real-world applications.

微型/纳米机器人(MNR)作为一个快速发展的领域备受关注,在先进疗法和未来解决方案方面具有巨大潜力。这些自走式机器人为加强监测、克服扩散限制以及与目标因子有效互动提供了一种前景广阔的策略。MNR 研究已具有很大的影响力,尤其是在解决癌症等关键问题方面。从被动的微型和纳米材料到主动的多功能纳米机器人,再到最终的智能多功能纳米机器人,机器人在运动能力、多功能性、自适应反应、蜂群行为和相互通信等方面都取得了进步。纳米机器人的特点是由纳米元件制成的精密亚微米设备,它为医疗保健行业带来了巨大的变革前景。本综述旨在重点介绍推进机制方面的最新进展,包括化学控制微电机、场控制和生物混合方法,这些方法可作为各种生物医学和环境应用的动力源。这些应用利用了不同的能源,如磁、光、听觉、电和化学反应,特别是在治疗癌症的药物输送系统中。综述还讨论了智能微型机器人和纳米机器人在实际应用中面临的挑战和未来发展方向,为它们在现实世界中的应用铺平了道路。
{"title":"Empowering tomorrow's medicine: energy-driven micro/nano-robots redefining biomedical applications","authors":"Subham Preetam, Pingal Pritam, Richa Mishra, Sarvesh Rustagi, Smita Lata and Sumira Malik","doi":"10.1039/D4ME00090K","DOIUrl":"10.1039/D4ME00090K","url":null,"abstract":"<p >Micro/nano-robots (MNRs) have gained attention as a rapidly developing field with significant potential in advanced therapies and futuristic solutions. These self-propelled robots offer a promising strategy to enhance monitoring, overcome diffusion limitations, and interact effectively with target factors. Research in MNRs has become highly influential, especially in addressing critical issues like cancer. The progression from passive micro- and nanomaterials to active MNRs and ultimately to intelligent MNRs has led to advancements in motion abilities, multifunctionality, adaptive responses, swarming behaviour, and communication among robots. Nanorobotics, featuring sophisticated submicron devices made from nanocomponents, holds great promise for revolutionizing the healthcare industry. This review aims to highlight recent progress in propulsion mechanisms, including chemically controlled micromotors, field control, and biohybrid approaches, which serve as power sources for various biomedical and environmental applications. These applications utilize different energy sources such as magnetic, light, auditory, electric, and chemical reactions, particularly in drug delivery systems for cancer treatment. This review also discusses the challenges and future directions in the practical implementation of smart MNRs, paving the way for their real-world applications.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 892-911"},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outstanding Reviewers for Molecular Systems Design & Engineering in 2023 2023 年《分子系统设计与工程》杰出审稿人
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-28 DOI: 10.1039/D4ME90024C

We would like to take this opportunity to thank all of Molecular Systems Design & Engineering (MSDE)'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for MSDE in 2023.

我们想借此机会感谢《分子系统设计与工程》(MSDE)的所有审稿人,感谢他们帮助维护化学科学文献的质量和完整性。我们还想特别介绍一下 2023 年 MSDE 的杰出审稿人。
{"title":"Outstanding Reviewers for Molecular Systems Design & Engineering in 2023","authors":"","doi":"10.1039/D4ME90024C","DOIUrl":"10.1039/D4ME90024C","url":null,"abstract":"<p >We would like to take this opportunity to thank all of <em>Molecular Systems Design &amp; Engineering</em> (<em>MSDE</em>)'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for <em>MSDE</em> in 2023.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 799-799"},"PeriodicalIF":3.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based epoxy resin property prediction† 基于机器学习的环氧树脂性能预测
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-25 DOI: 10.1039/D4ME00060A
Huiwon Jang, Dayoung Ryu, Wonseok Lee, Geunyeong Park and Jihan Kim

Epoxy resins have been utilized across various industries due to their superior mechanical and chemical properties. However, discovering the optimal design of epoxy resins is challenging because of the large chemical space of polymer systems. In this study, we adopted a data-driven approach to develop an effective prediction system for epoxy resin. In particular, we constructed a database of 789 epoxy resins, encompassing four key properties: density, coefficient of thermal expansion, glass transition temperature, and Young's modulus, obtained through molecular dynamics simulations. We devised descriptors that effectively represent epoxy resins. Ultimately, a machine learning model was trained, successfully predicting properties with reasonable accuracy. Our predictive model is a generalized model that was verified across various types of epoxy resins, making it applicable to all kinds of epoxy and hardener combinations. This achievement enables large-scale screening over numerous polymers, accelerating the discovery process. Further, we conducted an in-depth analysis of the important features that have a high impact on the epoxy resin. This provides valuable insights into the structure–property relationship which can guide researchers in designing new epoxy resins.

环氧树脂具有优异的机械和化学特性,已被广泛应用于各个行业。然而,由于聚合物体系的化学空间很大,发现环氧树脂的最佳设计具有挑战性。在本研究中,我们采用了数据驱动法来开发环氧树脂的有效预测系统。特别是,我们构建了一个包含 789 种环氧树脂的数据库,其中包括通过分子动力学模拟获得的四种关键特性:密度、热膨胀系数、玻璃化温度和杨氏模量。我们设计了能有效代表环氧树脂的描述符。最终,我们训练了一个机器学习模型,成功地预测出了具有合理准确度的特性。我们的预测模型是一个通用模型,已在各种类型的环氧树脂中得到验证,因此适用于所有类型的环氧树脂和固化剂组合。这一成果实现了对众多聚合物的大规模筛选,加快了发现过程。此外,我们还深入分析了对环氧树脂影响较大的重要特征。这为研究人员设计新型环氧树脂提供了结构-性能关系方面的宝贵见解。
{"title":"Machine learning-based epoxy resin property prediction†","authors":"Huiwon Jang, Dayoung Ryu, Wonseok Lee, Geunyeong Park and Jihan Kim","doi":"10.1039/D4ME00060A","DOIUrl":"10.1039/D4ME00060A","url":null,"abstract":"<p >Epoxy resins have been utilized across various industries due to their superior mechanical and chemical properties. However, discovering the optimal design of epoxy resins is challenging because of the large chemical space of polymer systems. In this study, we adopted a data-driven approach to develop an effective prediction system for epoxy resin. In particular, we constructed a database of 789 epoxy resins, encompassing four key properties: density, coefficient of thermal expansion, glass transition temperature, and Young's modulus, obtained through molecular dynamics simulations. We devised descriptors that effectively represent epoxy resins. Ultimately, a machine learning model was trained, successfully predicting properties with reasonable accuracy. Our predictive model is a generalized model that was verified across various types of epoxy resins, making it applicable to all kinds of epoxy and hardener combinations. This achievement enables large-scale screening over numerous polymers, accelerating the discovery process. Further, we conducted an in-depth analysis of the important features that have a high impact on the epoxy resin. This provides valuable insights into the structure–property relationship which can guide researchers in designing new epoxy resins.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 959-968"},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of ionic liquid crystals enabled by [2]rotaxane structure formation† 通过形成 [2]rotaxane 结构设计离子液晶
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-20 DOI: 10.1039/D4ME00034J
Gosuke Washino, Takashi Kajitani, Suzushi Nishimura and Atsushi Shishido

We report a new synthetic concept for converting isotropic ionic molecules into thermotropic ionic liquid crystals by forming [2]rotaxane structures. Our results demonstrate the synthesis of liquid-crystalline (LC) rotaxane from an ionic axle molecule as a mesogen core, and a molecular ring as flexible tails, neither of which possess LC properties. The [2]rotaxane obtained exhibited an interdigitated smectic A phase at around 140 °C. A simple mixture of the axle and the ring, which cannot form a rotaxane structure, did not show an LC phase. A [2]rotaxane compound having a ring with shorter flexible tails did not show an LC phase, either. These comparisons revealed that the integration of the mesogen core and flexible tails of a sufficient length in one molecule via the rotaxane structure enables the emergence of LC nature. Our results prove that the rotaxane structure serves as a connection to spatially introduce flexible tails into the mesogen core, pioneering a new approach to LC molecular design.

我们报告了一种通过形成 [2]rotaxane 结构将各向同性离子分子转化为热致性离子液晶的新合成概念。我们的研究结果表明,以离子轴分子为介质核心,以分子环为柔性尾部(两者均不具备液晶特性),合成了液晶(LC)罗他烷。获得的 [2]rotaxane 在 140 °C 左右呈现出相互交错的 Smectic A 相。轴和环的简单混合物不能形成罗他烷结构,也没有显示出低密度相。一种具有较短柔性尾部的环的 [2]rotaxane 化合物也没有出现 LC 相。这些比较结果表明,通过轮烷结构将介源核心和足够长的柔性尾端整合在一个分子中,可以产生低浓相。我们的研究结果证明,轮烷结构是将柔性尾巴在空间上引入介源核心的连接纽带,开创了低浓分子设计的新方法。
{"title":"Design of ionic liquid crystals enabled by [2]rotaxane structure formation†","authors":"Gosuke Washino, Takashi Kajitani, Suzushi Nishimura and Atsushi Shishido","doi":"10.1039/D4ME00034J","DOIUrl":"10.1039/D4ME00034J","url":null,"abstract":"<p >We report a new synthetic concept for converting isotropic ionic molecules into thermotropic ionic liquid crystals by forming [2]rotaxane structures. Our results demonstrate the synthesis of liquid-crystalline (LC) rotaxane from an ionic axle molecule as a mesogen core, and a molecular ring as flexible tails, neither of which possess LC properties. The [2]rotaxane obtained exhibited an interdigitated smectic A phase at around 140 °C. A simple mixture of the axle and the ring, which cannot form a rotaxane structure, did not show an LC phase. A [2]rotaxane compound having a ring with shorter flexible tails did not show an LC phase, either. These comparisons revealed that the integration of the mesogen core and flexible tails of a sufficient length in one molecule <em>via</em> the rotaxane structure enables the emergence of LC nature. Our results prove that the rotaxane structure serves as a connection to spatially introduce flexible tails into the mesogen core, pioneering a new approach to LC molecular design.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 826-831"},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer configuration conversion mechanism in dynamically stable interface of silicon anodes† 硅阳极动态稳定界面中的聚合物构型转换机制
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-07 DOI: 10.1039/D4ME00049H
Qiaoqiao Ye, Miaomiao Jiang, Yingbing Zhang, Lei Chen, Yuanyuan Ma and Jianping Yang

Silicon oxide nanospheres (SiOC) have been considered one of the key candidates for the next generation of high-energy-density anode materials. Nevertheless, the intrinsic limitations of their design impede their large-scale commercial deployment, including large volume expansion, poor electrical conductivity, and low initial coulombic efficiency (ICE). The application of a polymer coating represents a beneficial modification. Herein, a composite SiOC anode is synthesized by constructing poly(hexaazatrinaphthalene) (PHATN) on the surface of boron doping-induced self-assembled SiOC nanospheres. The SiOC nanospheres change from a monodisperse structure to a regular and ordered arrangement by self-assembly, which improves the structural stability. A special polymer, PHATN, is selected for its unique structure, which introduces a dynamic conversion mechanism to the material. During the lithium intercalation process, –CN– groups in the PHATN coordinate with Li+ to form –C–N–Li– bonds on the PHATN molecule layer. The dynamic volume change of the PHATN molecule allows room for the volume expansion of SiOC, thus providing excellent protection against structural collapse. After 1000 deep cycles, the capacity of the composite anode can be maintained at 623.7 mA h g−1, showing considerable stability and superior specific capacity. PHATN simultaneously repairs the surface defects of the SiOC assemblies and enhances the performance of the SEI membrane, increasing the ICE from 40% to 50%, which exhibits better electrochemical performance.

氧化硅纳米球(SiOC)一直被认为是下一代高能量密度阳极材料的主要候选材料之一。然而,其设计的内在局限性阻碍了它们的大规模商业应用,包括体积膨胀大、导电性差和初始库仑效率(ICE)低。应用聚合物涂层是一种有益的改进。本文通过在掺硼自组装 SiOC 纳米球表面构建聚(六氮杂萘)(PHATN),合成了一种复合 SiOC 阳极。通过自组装,SiOC 纳米球从单分散结构变为规则有序的排列,从而提高了结构的稳定性。该材料选用了一种特殊的聚合物 PHATN,其独特的结构为材料引入了一种动态转换机制。在锂插层过程中,PHATN 中的 -CN- 基团与 Li+ 配位,在 PHATN 分子层上形成 -C-N-Li- 键。PHATN 分子的动态体积变化为 SiOC 的体积膨胀留出了空间,从而为防止结构崩溃提供了良好的保护。经过 1000 次深度循环后,复合阳极的容量可保持在 623.7 mA h g-1,显示出相当高的稳定性和卓越的比容量。PHATN 同时修复了 SiOC 组件的表面缺陷,并提高了 SEI 膜的性能,将 ICE 从 40% 提高到 50%,从而表现出更好的电化学性能。
{"title":"Polymer configuration conversion mechanism in dynamically stable interface of silicon anodes†","authors":"Qiaoqiao Ye, Miaomiao Jiang, Yingbing Zhang, Lei Chen, Yuanyuan Ma and Jianping Yang","doi":"10.1039/D4ME00049H","DOIUrl":"10.1039/D4ME00049H","url":null,"abstract":"<p >Silicon oxide nanospheres (SiOC) have been considered one of the key candidates for the next generation of high-energy-density anode materials. Nevertheless, the intrinsic limitations of their design impede their large-scale commercial deployment, including large volume expansion, poor electrical conductivity, and low initial coulombic efficiency (ICE). The application of a polymer coating represents a beneficial modification. Herein, a composite SiOC anode is synthesized by constructing poly(hexaazatrinaphthalene) (PHATN) on the surface of boron doping-induced self-assembled SiOC nanospheres. The SiOC nanospheres change from a monodisperse structure to a regular and ordered arrangement by self-assembly, which improves the structural stability. A special polymer, PHATN, is selected for its unique structure, which introduces a dynamic conversion mechanism to the material. During the lithium intercalation process, –C<img>N– groups in the PHATN coordinate with Li<small><sup>+</sup></small> to form –C–N–Li– bonds on the PHATN molecule layer. The dynamic volume change of the PHATN molecule allows room for the volume expansion of SiOC, thus providing excellent protection against structural collapse. After 1000 deep cycles, the capacity of the composite anode can be maintained at 623.7 mA h g<small><sup>−1</sup></small>, showing considerable stability and superior specific capacity. PHATN simultaneously repairs the surface defects of the SiOC assemblies and enhances the performance of the SEI membrane, increasing the ICE from 40% to 50%, which exhibits better electrochemical performance.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 937-946"},"PeriodicalIF":3.2,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying local interpretable model-agnostic explanations to identify substructures that are responsible for mutagenicity of chemical compounds† 应用局部可解释的模型--不可知论解释,确定导致化合物致突变性的亚结构
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-05 DOI: 10.1039/D4ME00038B
Lucca Caiaffa Santos Rosa and Andre Silva Pimentel

The local interpretable model-agnostic explanations method was applied to identify substructures that represent the mutagenicity of chemical compounds using machine learning models. Random forest and extremely randomized trees were used to build models to be explained using the Hansen and Bursi Ames mutagenicity datasets. The models were analyzed using precision, recall, F1, and accuracy metrics. The aim of this study is to address the challenge of identifying substructures that indicate the mutagenicity of chemical compounds. The goal is to provide stable and consistent explanations for the mutagenicity of chemical compounds, which is crucial for trust and acceptance of the findings, especially in the sensitive field of computational toxicology. This approach is significant as it contributes to the interpretability and explainability of machine learning models, particularly in the context of identifying substructures associated with mutagenicity, thereby advancing the field of computational toxicology. Identifying substructures that represent the mutagenicity of chemical compounds is important because it can help predict the potential toxicity of new chemical compounds. This is particularly relevant in fields such as drug development and environmental toxicology, where the potential risks of exposure to new compounds need to be carefully evaluated. Some examples of chemical compounds that have been identified as mutagenic include epoxides, N-aryl compounds, nitro compounds, aromatic amines, N-oxides, nitro-containing compounds, and polycyclic aromatic hydrocarbons with a bay-region. These examples demonstrate the importance of identifying and studying mutagenic chemical compounds to better understand their potential risks and adverse effects on human health and the environment.

利用机器学习模型,采用局部可解释模型-不可知论解释方法来识别代表化合物致突变性的子结构。使用随机森林和极端随机树建立模型,并利用汉森和布尔西-艾姆斯诱变数据集进行解释。使用精确度、召回率、F1 和准确度指标对模型进行了分析。本研究的目的是应对识别表明化合物致突变性的亚结构这一挑战。其目的是为化合物的致突变性提供稳定一致的解释,这对研究结果的信任度和接受度至关重要,尤其是在敏感的计算毒理学领域。这种方法意义重大,因为它有助于提高机器学习模型的可解释性和可解释性,特别是在识别与致突变性相关的子结构方面,从而推动计算毒理学领域的发展。识别代表化合物致突变性的子结构非常重要,因为这有助于预测新化合物的潜在毒性。这与药物开发和环境毒理学等领域尤其相关,因为这些领域需要仔细评估接触新化合物的潜在风险。已确定为诱变化合物的一些例子包括环氧化物、N-芳基化合物、硝基化合物、芳香胺、N-氧化物、含硝基化合物以及带有畦区的多环芳烃。这些例子说明了识别和研究诱变化合物的重要性,以便更好地了解它们对人类健康和环境的潜在风险和不利影响。
{"title":"Applying local interpretable model-agnostic explanations to identify substructures that are responsible for mutagenicity of chemical compounds†","authors":"Lucca Caiaffa Santos Rosa and Andre Silva Pimentel","doi":"10.1039/D4ME00038B","DOIUrl":"10.1039/D4ME00038B","url":null,"abstract":"<p >The local interpretable model-agnostic explanations method was applied to identify substructures that represent the mutagenicity of chemical compounds using machine learning models. Random forest and extremely randomized trees were used to build models to be explained using the Hansen and Bursi Ames mutagenicity datasets. The models were analyzed using precision, recall, F1, and accuracy metrics. The aim of this study is to address the challenge of identifying substructures that indicate the mutagenicity of chemical compounds. The goal is to provide stable and consistent explanations for the mutagenicity of chemical compounds, which is crucial for trust and acceptance of the findings, especially in the sensitive field of computational toxicology. This approach is significant as it contributes to the interpretability and explainability of machine learning models, particularly in the context of identifying substructures associated with mutagenicity, thereby advancing the field of computational toxicology. Identifying substructures that represent the mutagenicity of chemical compounds is important because it can help predict the potential toxicity of new chemical compounds. This is particularly relevant in fields such as drug development and environmental toxicology, where the potential risks of exposure to new compounds need to be carefully evaluated. Some examples of chemical compounds that have been identified as mutagenic include epoxides, <em>N</em>-aryl compounds, nitro compounds, aromatic amines, <em>N</em>-oxides, nitro-containing compounds, and polycyclic aromatic hydrocarbons with a bay-region. These examples demonstrate the importance of identifying and studying mutagenic chemical compounds to better understand their potential risks and adverse effects on human health and the environment.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 920-936"},"PeriodicalIF":3.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of a thermo/photochromic doped cellulose polymer: a biocompatible film for potential application in cold chain visual tracking† 热/光变色掺杂纤维素聚合物的绿色合成:一种可应用于冷链视觉跟踪的生物相容性薄膜
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-05-31 DOI: 10.1039/D4ME00055B
A. Azzali, M. F. Di Filippo, L. Bertuccioli, S. Lilburn, S. Panzavolta, F. Grepioni and S. d'Agostino

To mitigate food losses and ensure a robust cold chain in transportation, sensors play a pivotal role in swiftly and visibly monitoring storage conditions. The most commonly used indicators for reporting temperature violations are based on devices capable of signaling when a threshold temperature has been reached or exceeded or on disposable colorimetric sensors. A potential alternative, which uses reusable colorimetric sensors, may come from utilizing systems capable of displaying reversible color changes upon temperature variations; in this regard, molecules exhibiting thermo- and photochromic properties such as N-salicylideneaniline derivatives (anils) have emerged as promising candidates due to the simplicity of their synthesis and their ability to respond to temperature and light stimuli. In this study we have synthesized a family of anils through mechanochemistry, focusing on H/F substituents on the bromoaniline residue. The compounds were fully characterized using XRD and thermal techniques, and their thermo- and photochromic properties were explored via infrared spectroscopy. Among the series, the most suitable compound, i.e., a photochromic one showing a neat color change (from white to red/orange) quickly naked eye-detectable and whose back reaction is slow or virtually negligible at low temperatures, was identified and incorporated into a carboxymethyl cellulose (CMC) biopolymer matrix to produce a composite film, which was further characterized via XRD, thermal analyses and mechanical tests. The selected compound maintained its photochromic behavior upon embedding, and UV irradiation induced a color change in the film from colorless to red, while reversibility was evaluated at different temperatures (−19 °C, 4 °C and RT) using UV-vis spectroscopy. The composite film maintained a deep red color at −19 °C and 4 °C for seven weeks, while rapidly reversing to white/yellowish at room temperature, making it a suitable candidate for the development of sensors for cold chain transport and scenarios requiring rapid visual inspection of storage conditions.

为了减少食品损失并确保运输过程中的冷链稳固,传感器在迅速、明显地监测储存条件方面发挥着关键作用。具有热致变色和光致变色特性的分子以及 N-缩水甘油基苯胺及其衍生物,由于合成简单且能对刺激做出反应,已成为很有前途的候选物质。在这项研究中,我们通过机械化学方法合成了一系列苯胺,重点是溴苯胺残基上的 H/F 取代基。我们找到了一种合适的光致变色化合物,并将其加入到羧甲基纤维素(CMC)生物聚合物基质中,制成了一种光致变色复合薄膜。紫外线辐射使薄膜的颜色从无色变为红色:在不同温度下,通过紫外可见光谱法评估了可逆性。这种复合薄膜在-19 °C和4 °C温度下保持深红色长达七周,而在室温下则迅速变为白色/淡黄色,因此适用于冷链运输和需要快速目测储存条件的场合。
{"title":"Green synthesis of a thermo/photochromic doped cellulose polymer: a biocompatible film for potential application in cold chain visual tracking†","authors":"A. Azzali, M. F. Di Filippo, L. Bertuccioli, S. Lilburn, S. Panzavolta, F. Grepioni and S. d'Agostino","doi":"10.1039/D4ME00055B","DOIUrl":"10.1039/D4ME00055B","url":null,"abstract":"<p >To mitigate food losses and ensure a robust cold chain in transportation, sensors play a pivotal role in swiftly and visibly monitoring storage conditions. The most commonly used indicators for reporting temperature violations are based on devices capable of signaling when a threshold temperature has been reached or exceeded or on disposable colorimetric sensors. A potential alternative, which uses reusable colorimetric sensors, may come from utilizing systems capable of displaying reversible color changes upon temperature variations; in this regard, molecules exhibiting thermo- and photochromic properties such as <em>N</em>-salicylideneaniline derivatives (anils) have emerged as promising candidates due to the simplicity of their synthesis and their ability to respond to temperature and light stimuli. In this study we have synthesized a family of anils through mechanochemistry, focusing on H/F substituents on the bromoaniline residue. The compounds were fully characterized using XRD and thermal techniques, and their thermo- and photochromic properties were explored <em>via</em> infrared spectroscopy. Among the series, the most suitable compound, <em>i.e.</em>, a photochromic one showing a neat color change (from white to red/orange) quickly naked eye-detectable and whose back reaction is slow or virtually negligible at low temperatures, was identified and incorporated into a carboxymethyl cellulose (CMC) biopolymer matrix to produce a composite film, which was further characterized <em>via</em> XRD, thermal analyses and mechanical tests. The selected compound maintained its photochromic behavior upon embedding, and UV irradiation induced a color change in the film from colorless to red, while reversibility was evaluated at different temperatures (−19 °C, 4 °C and RT) using UV-vis spectroscopy. The composite film maintained a deep red color at −19 °C and 4 °C for seven weeks, while rapidly reversing to white/yellowish at room temperature, making it a suitable candidate for the development of sensors for cold chain transport and scenarios requiring rapid visual inspection of storage conditions.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 947-958"},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00055b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Zn(ii) pillared-layer ultramicroporous metal–organic framework with matching molecular pockets for C2H2/CO2 separation† 具有匹配分子口袋的 Zn(II) 柱状层超微多孔金属有机框架,用于分离 C2H2/CO2
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-05-31 DOI: 10.1039/D4ME00066H
Rong Yang, Yu Wang, Tao Zhang, Zhen Xu, Jian-Wei Cao and Kai-Jie Chen

Similar sizes and boiling points of acetylene (C2H2) and carbon dioxide (CO2) make CO2 separation from C2H2/CO2 mixtures challenging. In this work, a pillared-layer ultramicroporous Zn-mipa-datz material featuring a C2H2-matching cavity was successfully prepared to achieve high-efficiency C2H2/CO2 separation. The separation performance of Zn-mipa-datz on C2H2/CO2 mixtures was investigated through gas adsorption isotherms and dynamic breakthrough experiments. Zn-mipa-datz possessed high C2H2 separation efficiency for C2H2/CO2 mixtures. The molecular simulation demonstrated that the strong C2H2–host interaction was achieved by the synergistic effect of C–N electrostatic interactions and C–H⋯N H bonds.

乙炔(C2H2)和二氧化碳(CO2)的尺寸和沸点相似,这使得从 C2H2/CO2 混合物中分离二氧化碳具有挑战性。本研究成功制备了一种具有 C2H2 匹配空腔的层状超微孔 Zn-mipa-datz 材料,以实现 C2H2/CO2 的高效分离。通过气体吸附等温线和动态突破实验研究了 Zn-mipa-datz 对 C2H2/CO2 混合物的分离性能。Zn-mipa-datz 在 C2H2/CO2 混合物中具有很高的 C2H2 分离效率。分子模拟表明,C-N 静电作用和 C-H-N H 键的协同效应实现了强大的 C2H2-宿主相互作用。
{"title":"A Zn(ii) pillared-layer ultramicroporous metal–organic framework with matching molecular pockets for C2H2/CO2 separation†","authors":"Rong Yang, Yu Wang, Tao Zhang, Zhen Xu, Jian-Wei Cao and Kai-Jie Chen","doi":"10.1039/D4ME00066H","DOIUrl":"10.1039/D4ME00066H","url":null,"abstract":"<p >Similar sizes and boiling points of acetylene (C<small><sub>2</sub></small>H<small><sub>2</sub></small>) and carbon dioxide (CO<small><sub>2</sub></small>) make CO<small><sub>2</sub></small> separation from C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> mixtures challenging. In this work, a pillared-layer ultramicroporous <strong>Zn-mipa-datz</strong> material featuring a C<small><sub>2</sub></small>H<small><sub>2</sub></small>-matching cavity was successfully prepared to achieve high-efficiency C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> separation. The separation performance of <strong>Zn-mipa-datz</strong> on C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> mixtures was investigated through gas adsorption isotherms and dynamic breakthrough experiments. <strong>Zn-mipa-datz</strong> possessed high C<small><sub>2</sub></small>H<small><sub>2</sub></small> separation efficiency for C<small><sub>2</sub></small>H<small><sub>2</sub></small>/CO<small><sub>2</sub></small> mixtures. The molecular simulation demonstrated that the strong C<small><sub>2</sub></small>H<small><sub>2</sub></small>–host interaction was achieved by the synergistic effect of C–N electrostatic interactions and C–H⋯N H bonds<small>.</small></p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 7","pages":" 724-728"},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-SELEX modifications with locked nucleic acids (LNA) of a SEA-specific DNA aptamer assisted by in silico modelling† 用锁定核酸 (LNA) 对一种 SEA 特异性 DNA 类似物进行 SELEX 后修饰,并辅以硅学建模
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-05-28 DOI: 10.1039/D4ME00043A
Ricardo Oliveira, Eva Pinho, Nuno Filipe Azevedo and Carina Almeida

Post-SELEX modifications assisted by in silico modelling are powerful tools to improve the performance of aptamers, by providing a rational approach for the selection of modified-versions of aptamers. In this study, a complete in silico analysis of the three-dimensional structure of a previously selected DNA aptamer (Apt5) against staphylococcal enterotoxin A (SEA) was performed. Locked nucleic acid (LNA) modifications were introduced in key locations and their effect on the aptamer structure and docking were evaluated. Promising LNA aptamers were then synthetized and their dissociation constants (KD), as well as stability, were evaluated. From the in silico analysis, it was possible to identify three promising LNA variations that did not affect drastically the three-dimensional structure and the molecular docking with the toxin. The KD of the LNA aptamers were higher than the DNA aptamer (Apt5: KD = 13 ± 2 nM, LNA13: KD = 157 ± 39 nM, LNA14: KD = 74 ± 24 nM, LNA15: KD = 143 ± 28 nM), but remained in the low nanomolar range. Even so, the KD of LNA14 was not significantly different (P < 0.05) compared to the value of the original aptamer and the introduction of LNA increased its thermal stability, increasing the range of functionality of the original aptamer. However, the introduced modifications were not enough to increase the biological stability of the aptamer, remaining susceptible to a complete degradation by endonucleases and exonucleases in 5 minutes. Altough partial modifications with LNA may not be able to overcome all the limitations of DNA aptamers, post-SELEX modifications assisted by in silico modelling have shown promising results in predicting functional modified aptamers, avoiding a time-consuming and expensive trial and error approach.

通过硅学建模辅助 SELEX 后修饰是提高适配体性能的有力工具,它为选择修饰后的适配体提供了一种合理的方法。在本研究中,我们对之前筛选出的针对葡萄球菌肠毒素 A(SEA)的 DNA 短肽(Apt5)的三维结构进行了完整的硅学分析。在关键位置引入了锁定核酸(LNA)修饰,并评估了它们对适配体结构和对接的影响。然后合成了有前景的 LNA 合酶,并评估了它们的解离常数(KD)和稳定性。通过硅学分析,确定了三种有前景的 LNA 变体,它们不会对三维结构和与毒素的分子对接产生重大影响。LNA 嵌合体的 KD 值高于 DNA 嵌合体(Apt5:KD = 13 ± 2 nM;LNA13:KD = 157 ± 39 nM;LNA14:KD = 74 ± 24 nM;LNA15:KD = 143 ± 28 nM),但仍保持在较低的纳摩尔范围内。即便如此,LNA14 的 KD 与原始适配体的 KD 值相比并无显著差异(P < 0.05),而且 LNA 的引入增加了其热稳定性,扩大了原始适配体的功能范围。然而,引入的修饰并不足以提高链 接酶的生物稳定性,它仍然容易在 5 分钟内被内切酶和外切酶完全降解。虽然用 LNA 进行部分修饰可能无法克服 DNA 类似物的所有局限性,但在硅学建模的辅助下,SELEX 后修饰在预测功能性修饰类似物方面显示出了很好的效果,避免了耗时且昂贵的反复试验方法。
{"title":"Post-SELEX modifications with locked nucleic acids (LNA) of a SEA-specific DNA aptamer assisted by in silico modelling†","authors":"Ricardo Oliveira, Eva Pinho, Nuno Filipe Azevedo and Carina Almeida","doi":"10.1039/D4ME00043A","DOIUrl":"10.1039/D4ME00043A","url":null,"abstract":"<p >Post-SELEX modifications assisted by <em>in silico</em> modelling are powerful tools to improve the performance of aptamers, by providing a rational approach for the selection of modified-versions of aptamers. In this study, a complete <em>in silico</em> analysis of the three-dimensional structure of a previously selected DNA aptamer (Apt5) against staphylococcal enterotoxin A (SEA) was performed. Locked nucleic acid (LNA) modifications were introduced in key locations and their effect on the aptamer structure and docking were evaluated. Promising LNA aptamers were then synthetized and their dissociation constants (<em>K</em><small><sub>D</sub></small>), as well as stability, were evaluated. From the <em>in silico</em> analysis, it was possible to identify three promising LNA variations that did not affect drastically the three-dimensional structure and the molecular docking with the toxin. The <em>K</em><small><sub>D</sub></small> of the LNA aptamers were higher than the DNA aptamer (Apt5: <em>K</em><small><sub>D</sub></small> = 13 ± 2 nM, LNA13: <em>K</em><small><sub>D</sub></small> = 157 ± 39 nM, LNA14: <em>K</em><small><sub>D</sub></small> = 74 ± 24 nM, LNA15: <em>K</em><small><sub>D</sub></small> = 143 ± 28 nM), but remained in the low nanomolar range. Even so, the <em>K</em><small><sub>D</sub></small> of LNA14 was not significantly different (<em>P</em> &lt; 0.05) compared to the value of the original aptamer and the introduction of LNA increased its thermal stability, increasing the range of functionality of the original aptamer. However, the introduced modifications were not enough to increase the biological stability of the aptamer, remaining susceptible to a complete degradation by endonucleases and exonucleases in 5 minutes. Altough partial modifications with LNA may not be able to overcome all the limitations of DNA aptamers, post-SELEX modifications assisted by <em>in silico</em> modelling have shown promising results in predicting functional modified aptamers, avoiding a time-consuming and expensive trial and error approach.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 847-855"},"PeriodicalIF":3.2,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supramolecular assembly of multifunctional protein gels via an N-glycosylation consensus sequence fusion domain† 通过 N-糖基化共识序列融合域超分子组装多功能蛋白质凝胶
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-05-24 DOI: 10.1039/D4ME00029C
Eric D. Hill, Stephen Michel, Natasha R. Sequeira, Benjamin G. Keselowsky and Gregory A. Hudalla

Polypeptide fusion tags that can direct the assembly of folded proteins into supramolecular networks are attractive for creating functional biomaterials. A practical challenge is identifying polypeptide sequences that form supramolecular networks in response to specific user-controlled stimuli, which is advantageous for producing polypeptide–protein fusions using cell-based expression hosts. Here, we report an N-glycosylation tag, (GGGSGGGSGGNWTT)10 or “NGT,” that assembles into a supramolecular network at reduced temperatures when fused to a folded protein. For example, NGT fused to superfolder green fluorescent protein (NGTsfGFP) formed materials that emitted green fluorescence in blue light, while NGT fused to NanoLuc luciferase (NGTnL) formed materials that emitted blue light in the presence of the chemical substrate furimazine. Oscillatory rheology established the materials as weak viscoelastic gels that can undergo shear-thinning and self-healing. Gel formation could be disrupted by mutating the asparagines in NGT to glutamines, introducing a chaotropic agent, or modifying the asparagines in NGT with glucose, suggesting a role for hydrogen bonds involving asparagine in supramolecular network formation. A mixture of soluble NGTsfGFP and NGTnL formed a multifunctional gel at reduced temperature that demonstrated bioluminescence resonance energy transfer between the nL and sfGFP domains in the presence of furimazine. Collectively, these data establish NGT as a temperature-responsive polypeptide tag that can be used to create functional biomaterials from soluble fusion proteins synthesized by cell-based hosts.

能引导折叠蛋白质组装成超分子网络的多肽融合标签对创造功能性生物材料很有吸引力。一个实际的挑战是识别能在用户控制的特定刺激下形成超分子网络的多肽序列,这对利用基于细胞的表达宿主生产多肽-蛋白质融合体是有利的。在这里,我们报告了一种 N-糖基化标签 (GGGSGGSGGGNWTT)10 或 "NGT",当它与折叠蛋白融合时,可在较低温度下组装成超分子网络。例如,与超级折叠绿色荧光蛋白(NGTsfGFP)融合的 NGT 形成的材料在蓝光下发出绿色荧光,而与 NanoLuc 荧光素酶(NGTnL)融合的 NGT 形成的材料在化学底物呋喃嗪的存在下发出蓝光。振荡流变学确定了这些材料是弱粘弹性凝胶,可以发生剪切稀化和自我修复。通过将 NGT 中的天冬酰胺突变为谷氨酸、引入混沌剂或用葡萄糖修饰 NGT 中的天冬酰胺,可以破坏凝胶的形成。可溶性 NGTsfGFP 和 NGTnL 的混合物在低温下形成了多功能凝胶,在呋喃嗪的存在下,nL 和 sfGFP 结构域之间发生了生物发光共振能量转移。总之,这些数据证明 NGT 是一种温度响应性多肽标签,可用于利用细胞宿主合成的可溶性融合蛋白制造功能性生物材料。
{"title":"Supramolecular assembly of multifunctional protein gels via an N-glycosylation consensus sequence fusion domain†","authors":"Eric D. Hill, Stephen Michel, Natasha R. Sequeira, Benjamin G. Keselowsky and Gregory A. Hudalla","doi":"10.1039/D4ME00029C","DOIUrl":"10.1039/D4ME00029C","url":null,"abstract":"<p >Polypeptide fusion tags that can direct the assembly of folded proteins into supramolecular networks are attractive for creating functional biomaterials. A practical challenge is identifying polypeptide sequences that form supramolecular networks in response to specific user-controlled stimuli, which is advantageous for producing polypeptide–protein fusions using cell-based expression hosts. Here, we report an <em>N</em>-glycosylation tag, (GGGSGGGSGGNWTT)<small><sub>10</sub></small> or “NGT,” that assembles into a supramolecular network at reduced temperatures when fused to a folded protein. For example, NGT fused to superfolder green fluorescent protein (NGTsfGFP) formed materials that emitted green fluorescence in blue light, while NGT fused to NanoLuc luciferase (NGTnL) formed materials that emitted blue light in the presence of the chemical substrate furimazine. Oscillatory rheology established the materials as weak viscoelastic gels that can undergo shear-thinning and self-healing. Gel formation could be disrupted by mutating the asparagines in NGT to glutamines, introducing a chaotropic agent, or modifying the asparagines in NGT with glucose, suggesting a role for hydrogen bonds involving asparagine in supramolecular network formation. A mixture of soluble NGTsfGFP and NGTnL formed a multifunctional gel at reduced temperature that demonstrated bioluminescence resonance energy transfer between the nL and sfGFP domains in the presence of furimazine. Collectively, these data establish NGT as a temperature-responsive polypeptide tag that can be used to create functional biomaterials from soluble fusion proteins synthesized by cell-based hosts.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 875-884"},"PeriodicalIF":3.2,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Systems Design & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1