Sijie Xian, Yuanhui Xiang, Svenja Deichmann and Matthew J. Webber
Glucose-responsive hydrogel systems are increasingly explored for insulin delivery, with dynamic-covalent crosslinking interactions between phenylboronic acids (PBA) and diols forming a key glucose-sensing mechanism. However, commonly used PBA and diol chemistries often have limited responsiveness to glucose under physiological concentrations. This is due, in part, to the binding of PBA to the commonly used diol chemistries having higher affinity than for PBA to glucose. The present study addresses this challenge by redesigning the diol chemistry in an effort to reduce its binding affinity to PBA, thereby enhancing the ability of glucose to compete with these redesigned PBA–diol crosslinks at its physiological concentration, thus improving responsiveness of the hydrogel network. Rheological analyses support enhanced sensitivity of these PBA–diol networks to glucose, while insulin release likewise improves from networks with reduced crosslink affinities. This work thus offers a new molecular design approach to improve glucose-responsive hydrogels for insulin delivery in diabetes management.
{"title":"Enhanced glucose-responsivity of PBA–diol hydrogel networks by reducing crosslink affinity†","authors":"Sijie Xian, Yuanhui Xiang, Svenja Deichmann and Matthew J. Webber","doi":"10.1039/D4ME00106K","DOIUrl":"https://doi.org/10.1039/D4ME00106K","url":null,"abstract":"<p >Glucose-responsive hydrogel systems are increasingly explored for insulin delivery, with dynamic-covalent crosslinking interactions between phenylboronic acids (PBA) and diols forming a key glucose-sensing mechanism. However, commonly used PBA and diol chemistries often have limited responsiveness to glucose under physiological concentrations. This is due, in part, to the binding of PBA to the commonly used diol chemistries having higher affinity than for PBA to glucose. The present study addresses this challenge by redesigning the diol chemistry in an effort to reduce its binding affinity to PBA, thereby enhancing the ability of glucose to compete with these redesigned PBA–diol crosslinks at its physiological concentration, thus improving responsiveness of the hydrogel network. Rheological analyses support enhanced sensitivity of these PBA–diol networks to glucose, while insulin release likewise improves from networks with reduced crosslink affinities. This work thus offers a new molecular design approach to improve glucose-responsive hydrogels for insulin delivery in diabetes management.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 1","pages":" 40-49"},"PeriodicalIF":3.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/me/d4me00106k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shohei Kumagai, Takeru Koguma, Yutaro Arai, Go Watanabe, Hiroyuki Ishii, Jun Takeya and Toshihiro Okamoto
Substituent engineering is a key route to high-performance functional molecular materials in the same way as the development of a π-electron core for organic (opto-)electronics. Here we demonstrate a comparative study between aromatic phenyl- and aliphatic cyclohexyl-terminated side-chain substituents on an electron-deficient π-electron core, 3,4,9,10-benzo[de]isoquinolino[1,8-gh]quinolinetetracarboxylic diimide (BQQDI), to get insights into the impact of intermolecular interactions between the substituents in the solid state on high-performance electron-transport properties. In the BQQDI system, both phenyl- and cyclohexyl-terminated ethyl substituents show similar packing structures, demonstrating the unobvious impact of terminal groups. However, solution-processed single-crystal transistor studies revealed a relatively low electron mobility of cyclohexyl-terminated BQQDI. Based on molecular dynamics simulations, we attribute this discrepancy to dynamic molecular motions coupled with electronic coupling in the solid state. While phenyl groups in the phenylethyl substituent show intermolecular C–H⋯π interactions which lead to less dynamic motions, the cyclohexyl counterpart does not show any specific intermolecular interactions. Hence, a low-dynamic feature thanks to inter-side-chain interactions is promising for excellent charge-transport properties. The present findings underline the crucial role of interactions between substituents in the development of organic materials via side-chain-engineered control of the solid-state dynamic motions.
{"title":"Phenyl- versus cyclohexyl-terminated substituents: comparative study on aggregated structures and electron-transport properties in n-type organic semiconductors†","authors":"Shohei Kumagai, Takeru Koguma, Yutaro Arai, Go Watanabe, Hiroyuki Ishii, Jun Takeya and Toshihiro Okamoto","doi":"10.1039/D4ME00110A","DOIUrl":"https://doi.org/10.1039/D4ME00110A","url":null,"abstract":"<p >Substituent engineering is a key route to high-performance functional molecular materials in the same way as the development of a π-electron core for organic (opto-)electronics. Here we demonstrate a comparative study between aromatic phenyl- and aliphatic cyclohexyl-terminated side-chain substituents on an electron-deficient π-electron core, 3,4,9,10-benzo[<em>de</em>]isoquinolino[1,8-<em>gh</em>]quinolinetetracarboxylic diimide (BQQDI), to get insights into the impact of intermolecular interactions between the substituents in the solid state on high-performance electron-transport properties. In the BQQDI system, both phenyl- and cyclohexyl-terminated ethyl substituents show similar packing structures, demonstrating the unobvious impact of terminal groups. However, solution-processed single-crystal transistor studies revealed a relatively low electron mobility of cyclohexyl-terminated BQQDI. Based on molecular dynamics simulations, we attribute this discrepancy to dynamic molecular motions coupled with electronic coupling in the solid state. While phenyl groups in the phenylethyl substituent show intermolecular C–H⋯π interactions which lead to less dynamic motions, the cyclohexyl counterpart does not show any specific intermolecular interactions. Hence, a low-dynamic feature thanks to inter-side-chain interactions is promising for excellent charge-transport properties. The present findings underline the crucial role of interactions between substituents in the development of organic materials <em>via</em> side-chain-engineered control of the solid-state dynamic motions.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 1","pages":" 32-39"},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manish Kumar Dixit, Moupia Mukherjee, Bharat Kumar Sahu, Abul Kalam and Mrigendra Dubey
Herein, we have synthesized an ESIPT inbuilt novel tripodal gelator TH-AIL, which upon dissolution in DMSO followed by the addition of water (1 : 1) leads to the formation of a unique orange fluorescent organohydrogel (0.35% w/v, OHG). The obtained OHG reveals responses towards base NH3 and acid HCl by way of reversible change in fluorescence colour from orange to green along with restorable conversion from gel to sol phase.
{"title":"Dual responsive fluorescence switching of organohydrogel towards base/acid†","authors":"Manish Kumar Dixit, Moupia Mukherjee, Bharat Kumar Sahu, Abul Kalam and Mrigendra Dubey","doi":"10.1039/D4ME00067F","DOIUrl":"https://doi.org/10.1039/D4ME00067F","url":null,"abstract":"<p >Herein, we have synthesized an ESIPT inbuilt novel tripodal gelator <strong>TH-AIL</strong>, which upon dissolution in DMSO followed by the addition of water (1 : 1) leads to the formation of a unique orange fluorescent organohydrogel (0.35% w/v, OHG). The obtained OHG reveals responses towards base NH<small><sub>3</sub></small> and acid HCl by way of reversible change in fluorescence colour from orange to green along with restorable conversion from gel to sol phase.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1210-1214"},"PeriodicalIF":3.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hossein Roohi, Sajedeh Habibipour and Khatereh Ghauri
<p >In this work, the impact of various anions on the physicochemical properties of the designed <em>p</em>-benzoquinone-based dicationic ionic liquids <strong>[BTAD][A1–8]</strong><small><sub><strong>2</strong></sub></small> ([BTAD]<small><sup>2+</sup></small> = [<em>p</em>-C<small><sub>6</sub></small>O<small><sub>2</sub></small>(N<small><sub>3</sub></small>H<small><sub>2</sub></small>)<small><sub>2</sub></small>]<small><sup>2+</sup></small> and A1–8 = [CH<small><sub>3</sub></small>CO<small><sub>2</sub></small>]<small><sup>−</sup></small>, [CF<small><sub>3</sub></small>CO<small><sub>2</sub></small>]<small><sup>−</sup></small>, [N(CN)<small><sub>2</sub></small>]<small><sup>−</sup></small>, [CF<small><sub>3</sub></small>SO<small><sub>3</sub></small>]<small><sup>−</sup></small>, [ClO<small><sub>4</sub></small>]<small><sup>−</sup></small>, [BF<small><sub>4</sub></small>]<small><sup>−</sup></small>, [NTf<small><sub>2</sub></small>]<small><sup>−</sup></small> and [PF<small><sub>6</sub></small>]<small><sup>−</sup></small>) was investigated at the M06-2X/6-31++G(d,p) level of theory in the gas phase and solvent media. Besides, dispersion-corrected M06-2X-GD3, B2PLYP-GD3 and mPW2PLYP-GD2 functionals were employed to calculate the corrected interaction energies. The thermodynamic interaction energies in gas and solvent media, structural parameters, electrostatic potential maps, natural charge of atoms, charge transfer (CT), electron density properties, potentials of the anodic and cathodic limits (<em>V</em><small><sub>AL</sub></small> and <em>V</em><small><sub>CL</sub></small>), electrochemical windows (ECW), acidity (Δp<em>K</em><small><sub>a1</sub></small> and Δp<em>K</em><small><sub>a2</sub></small>) and reduced gradient density plots (RGD) were examined. Based on the corrected interaction energies, the stability order of <strong>[BTAD][A1–8]</strong><small><sub><strong>2</strong></sub></small> complexes at all levels of theory is <strong>[BTAD][CH</strong><small><sub><strong>3</strong></sub></small><strong>CO</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][CF</strong><small><sub><strong>3</strong></sub></small><strong>CO</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][N(CN)</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][CF</strong><small><sub><strong>3</strong></sub></small><strong>SO</strong><small><sub><strong>3</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][ClO</strong><small><sub><strong>4</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][BF</strong><small><sub><strong>4</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][NTf<
{"title":"The structural, electronic and thermodynamic properties of the designed p-benzoquinone based dicationic ionic liquids: insight from DFT–GD3 and QTAIM†","authors":"Hossein Roohi, Sajedeh Habibipour and Khatereh Ghauri","doi":"10.1039/D4ME00119B","DOIUrl":"https://doi.org/10.1039/D4ME00119B","url":null,"abstract":"<p >In this work, the impact of various anions on the physicochemical properties of the designed <em>p</em>-benzoquinone-based dicationic ionic liquids <strong>[BTAD][A1–8]</strong><small><sub><strong>2</strong></sub></small> ([BTAD]<small><sup>2+</sup></small> = [<em>p</em>-C<small><sub>6</sub></small>O<small><sub>2</sub></small>(N<small><sub>3</sub></small>H<small><sub>2</sub></small>)<small><sub>2</sub></small>]<small><sup>2+</sup></small> and A1–8 = [CH<small><sub>3</sub></small>CO<small><sub>2</sub></small>]<small><sup>−</sup></small>, [CF<small><sub>3</sub></small>CO<small><sub>2</sub></small>]<small><sup>−</sup></small>, [N(CN)<small><sub>2</sub></small>]<small><sup>−</sup></small>, [CF<small><sub>3</sub></small>SO<small><sub>3</sub></small>]<small><sup>−</sup></small>, [ClO<small><sub>4</sub></small>]<small><sup>−</sup></small>, [BF<small><sub>4</sub></small>]<small><sup>−</sup></small>, [NTf<small><sub>2</sub></small>]<small><sup>−</sup></small> and [PF<small><sub>6</sub></small>]<small><sup>−</sup></small>) was investigated at the M06-2X/6-31++G(d,p) level of theory in the gas phase and solvent media. Besides, dispersion-corrected M06-2X-GD3, B2PLYP-GD3 and mPW2PLYP-GD2 functionals were employed to calculate the corrected interaction energies. The thermodynamic interaction energies in gas and solvent media, structural parameters, electrostatic potential maps, natural charge of atoms, charge transfer (CT), electron density properties, potentials of the anodic and cathodic limits (<em>V</em><small><sub>AL</sub></small> and <em>V</em><small><sub>CL</sub></small>), electrochemical windows (ECW), acidity (Δp<em>K</em><small><sub>a1</sub></small> and Δp<em>K</em><small><sub>a2</sub></small>) and reduced gradient density plots (RGD) were examined. Based on the corrected interaction energies, the stability order of <strong>[BTAD][A1–8]</strong><small><sub><strong>2</strong></sub></small> complexes at all levels of theory is <strong>[BTAD][CH</strong><small><sub><strong>3</strong></sub></small><strong>CO</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][CF</strong><small><sub><strong>3</strong></sub></small><strong>CO</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][N(CN)</strong><small><sub><strong>2</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][CF</strong><small><sub><strong>3</strong></sub></small><strong>SO</strong><small><sub><strong>3</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][ClO</strong><small><sub><strong>4</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][BF</strong><small><sub><strong>4</strong></sub></small><strong>]</strong><small><sub><strong>2</strong></sub></small> > <strong>[BTAD][NTf<","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 1","pages":" 50-67"},"PeriodicalIF":3.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Syed Luqman Ali, Awais Ali, Waseef Ullah, Asifullah Khan, Elham Mohammed Khatrawi, Abdul Malik, Aigul Abduldayeva, Aliya Baiduissenova, Hind Jaber Althagafi and Deema Fallatah
Astrovirus MLB2 (AstV-MLB2) is an emerging gastrointestinal virus causing meningitis and disseminated infections. Currently, there are no vaccine-based therapies available for AstV-MLB2. This study aims to develop multi-epitope vaccine models using candidate proteins from AstV-MLB2. Highly immunogenic epitopes (IC50 < 200 μM) exhibiting conservation, antigenicity, and non-allergenicity were called from these proteins. Additionally, the selection criteria for epitopes were based on their potential to trigger immune cells and stimulate IFN-γ-mediated immune responses. The model vaccine constructs were designed from identified lead epitopes, along with immune-enhancer adjuvants and linker sequences. The proposed vaccine models were assessed for allergenicity, antigenicity, and structural integrity to ensure their safety and effectiveness. The binding potential of the vaccine models to HLA and TLR-4 immune cell receptors was evaluated to identify their capacity to stimulate immune responses. Among several raw constructs, MLB2-V1 and MLB2-V2 were identified as potential vaccine candidates due to their non-allergenic features, enhanced antigenic properties, and structural stability. Both these constructs were extensively evaluated and predicted to effectively bind to and interact with immune cell receptors, potentially triggering cellular and innate immune responses. Additionally, the prioritized constructs were deemed suitable for cloning and expression using recombinant DNA systems. The model vaccine constructs showed promise, warranting further investigation into their immune efficacy against MLB2-mediated infections through experimental assays and clinical trials.
{"title":"Promising vaccine models against astrovirus MLB2 using integrated vaccinomics and immunoinformatics approaches†","authors":"Syed Luqman Ali, Awais Ali, Waseef Ullah, Asifullah Khan, Elham Mohammed Khatrawi, Abdul Malik, Aigul Abduldayeva, Aliya Baiduissenova, Hind Jaber Althagafi and Deema Fallatah","doi":"10.1039/D3ME00192J","DOIUrl":"https://doi.org/10.1039/D3ME00192J","url":null,"abstract":"<p >Astrovirus MLB2 (AstV-MLB2) is an emerging gastrointestinal virus causing meningitis and disseminated infections. Currently, there are no vaccine-based therapies available for AstV-MLB2. This study aims to develop multi-epitope vaccine models using candidate proteins from AstV-MLB2. Highly immunogenic epitopes (IC<small><sub>50</sub></small> < 200 μM) exhibiting conservation, antigenicity, and non-allergenicity were called from these proteins. Additionally, the selection criteria for epitopes were based on their potential to trigger immune cells and stimulate IFN-γ-mediated immune responses. The model vaccine constructs were designed from identified lead epitopes, along with immune-enhancer adjuvants and linker sequences. The proposed vaccine models were assessed for allergenicity, antigenicity, and structural integrity to ensure their safety and effectiveness. The binding potential of the vaccine models to HLA and TLR-4 immune cell receptors was evaluated to identify their capacity to stimulate immune responses. Among several raw constructs, MLB2-V1 and MLB2-V2 were identified as potential vaccine candidates due to their non-allergenic features, enhanced antigenic properties, and structural stability. Both these constructs were extensively evaluated and predicted to effectively bind to and interact with immune cell receptors, potentially triggering cellular and innate immune responses. Additionally, the prioritized constructs were deemed suitable for cloning and expression using recombinant DNA systems. The model vaccine constructs showed promise, warranting further investigation into their immune efficacy against MLB2-mediated infections through experimental assays and clinical trials.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1285-1299"},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Denish Trivedi, Kalyani Patrikar and Anirban Mondal
Graph neural networks (GNN) have been demonstrated to correlate molecular structure with properties, enabling rapid evaluation of molecules for a given application. Molecular properties, including ground and excited states, are crucial to analyzing molecular behavior. However, while attention-based mechanisms and pooling methods have been optimized to accurately predict specific properties, no versatile models can predict diverse molecular properties. Here, we present graph neural networks that predict a wide range of properties with high accuracy. Model performance is high regardless of dataset size and origin. Further, we demonstrate an implementation of hierarchical pooling enabling high-accuracy prediction of excited state properties by effectively weighing aspects of features that correlate better with target properties. We show that graph attention networks consistently outperform convolution networks and linear regression, particularly for small dataset sizes. The graph attention model is more accurate than previous message-passing neural networks developed for the prediction of diverse molecular properties. Hence, the model is an efficient tool for screening and designing molecules for applications that require tuning multiple molecular properties.
{"title":"Graph-based networks for accurate prediction of ground and excited state molecular properties from minimal features†","authors":"Denish Trivedi, Kalyani Patrikar and Anirban Mondal","doi":"10.1039/D4ME00113C","DOIUrl":"https://doi.org/10.1039/D4ME00113C","url":null,"abstract":"<p >Graph neural networks (GNN) have been demonstrated to correlate molecular structure with properties, enabling rapid evaluation of molecules for a given application. Molecular properties, including ground and excited states, are crucial to analyzing molecular behavior. However, while attention-based mechanisms and pooling methods have been optimized to accurately predict specific properties, no versatile models can predict diverse molecular properties. Here, we present graph neural networks that predict a wide range of properties with high accuracy. Model performance is high regardless of dataset size and origin. Further, we demonstrate an implementation of hierarchical pooling enabling high-accuracy prediction of excited state properties by effectively weighing aspects of features that correlate better with target properties. We show that graph attention networks consistently outperform convolution networks and linear regression, particularly for small dataset sizes. The graph attention model is more accurate than previous message-passing neural networks developed for the prediction of diverse molecular properties. Hence, the model is an efficient tool for screening and designing molecules for applications that require tuning multiple molecular properties.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1275-1284"},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
So Jung Park, Tristan Myers, Vinson Liao and Arthi Jayaraman
Block copolymer (BCP) self-assembly leads to nanostructured materials with diverse ordered morphologies, some of which are attractive for transport applications. Multiblock AB copolymers are of interest as they offer a larger design parameter space than diblock copolymers allowing researchers to tailor their self-assembly to achieve target morphologies. In this study, we investigate the phase behavior of symmetric AxByAzByAx and BxAyBzAyBx pentablock copolymers (pentaBCPs) where A and B monomers have the same statistical segment length. We use a combination of self-consistent field theory (SCFT) calculations and molecular dynamics (MD) simulations to link the polymer design parameters, namely the fraction of middle block volume to the volume of all blocks of same type, τ, overall volume fraction of A block, fA, and segregation strength, χN, to the equilibrium morphologies and the distributions of chain conformations in these morphologies. In the phase diagrams calculated using SCFT, we observe broader double gyroid windows and the existence of lamellar morphologies even at small values fA in contrast to what has been seen for diblock copolymers. We also see a reentrant phase sequence of double gyroid → cylinder → lamellae → cylinder → double gyroid with increasing τ at fixed fA. The chain conformations adopted in these morphologies are sampled in coarse-grained MD simulations and quantified with distributions of the chain end-to-end distance and fractions of chains whose middle (A or B) and end (A or B) blocks remain within domains of same chemistry (A or B). These analyses show that the pentaBCP chains adopt “looping”, “bridging”, and “hybrid” (both looping and bridging) conformations, with a majority of the chains adopting the hybrid conformation. The spatial distributions for each of the blocks in the pentaBCPs show that blocks of the same type in a chain locally segregate within the same domains, with shorter blocks segregating towards the domain boundaries and longer blocks filling the domain interior. This combined SCFT-MD approach enables us to rapidly screen the extensive pentaBCP design space to identify design rules for transport-favorable morphologies as well as verify the chain conformations and spatial arrangements associated with the theory predicted reentrant phase behavior.
嵌段共聚物(BCP)的自组装可产生具有多种有序形态的纳米结构材料,其中一些对传输应用具有吸引力。与二嵌段共聚物相比,多嵌段 AB 共聚物具有更大的设计参数空间,允许研究人员定制自组装以实现目标形态,因此备受关注。在本研究中,我们研究了对称的 AxByAzByAx 和 BxAyBzAyBx 五嵌段共聚物(pentaBCPs)的相行为,其中 A 和 B 单体具有相同的统计段长度。我们采用自洽场理论(SCFT)计算和分子动力学(MD)模拟相结合的方法,将聚合物设计参数(即中间嵌段体积占同类所有嵌段体积的比例τ、A 嵌段的总体积分数 fA 和偏析强度 χN)与平衡形态以及这些形态中的链构象分布联系起来。在使用 SCFT 计算的相图中,我们观察到了更宽的双陀螺窗口,甚至在 fA 值较小时也存在片状形态,这与二嵌段共聚物的情况截然不同。我们还发现,在固定的 fA 值下,随着 τ 的增大,会出现双陀螺→圆柱→薄片→圆柱→双陀螺的重入相序列。在粗粒度 MD 模拟中对这些形态所采用的链构象进行了采样,并通过链端到端距离的分布以及中间(A 或 B)和末端(A 或 B)块保持在相同化学性质(A 或 B)域内的链的分数进行了量化。这些分析表明,pentaBCP 链采用了 "循环"、"桥接 "和 "混合"(循环和桥接)构象,其中大多数链采用了混合构象。pentaBCP 链中每个嵌段的空间分布显示,链中相同类型的嵌段会局部分离到相同的结构域中,较短的嵌段分离到结构域边界,较长的嵌段则填充到结构域内部。这种 SCFT-MD 组合方法使我们能够快速筛选广泛的 pentaBCP 设计空间,从而确定有利于传输的形态设计规则,并验证与理论预测的重入相行为相关的链构象和空间排列。
{"title":"Self-consistent field theory and coarse-grained molecular dynamics simulations of pentablock copolymer melt phase behavior†","authors":"So Jung Park, Tristan Myers, Vinson Liao and Arthi Jayaraman","doi":"10.1039/D4ME00138A","DOIUrl":"https://doi.org/10.1039/D4ME00138A","url":null,"abstract":"<p >Block copolymer (BCP) self-assembly leads to nanostructured materials with diverse ordered morphologies, some of which are attractive for transport applications. Multiblock AB copolymers are of interest as they offer a larger design parameter space than diblock copolymers allowing researchers to tailor their self-assembly to achieve target morphologies. In this study, we investigate the phase behavior of symmetric A<small><sub><em>x</em></sub></small>B<small><sub><em>y</em></sub></small>A<small><sub><em>z</em></sub></small>B<small><sub><em>y</em></sub></small>A<small><sub><em>x</em></sub></small> and B<small><sub><em>x</em></sub></small>A<small><sub><em>y</em></sub></small>B<small><sub><em>z</em></sub></small>A<small><sub><em>y</em></sub></small>B<small><sub><em>x</em></sub></small> pentablock copolymers (pentaBCPs) where A and B monomers have the same statistical segment length. We use a combination of self-consistent field theory (SCFT) calculations and molecular dynamics (MD) simulations to link the polymer design parameters, namely the fraction of middle block volume to the volume of all blocks of same type, <em>τ</em>, overall volume fraction of A block, <em>f</em><small><sub>A</sub></small>, and segregation strength, <em>χN</em>, to the equilibrium morphologies and the distributions of chain conformations in these morphologies. In the phase diagrams calculated using SCFT, we observe broader double gyroid windows and the existence of lamellar morphologies even at small values <em>f</em><small><sub>A</sub></small> in contrast to what has been seen for diblock copolymers. We also see a reentrant phase sequence of double gyroid → cylinder → lamellae → cylinder → double gyroid with increasing <em>τ</em> at fixed <em>f</em><small><sub>A</sub></small>. The chain conformations adopted in these morphologies are sampled in coarse-grained MD simulations and quantified with distributions of the chain end-to-end distance and fractions of chains whose middle (A or B) and end (A or B) blocks remain within domains of same chemistry (A or B). These analyses show that the pentaBCP chains adopt “looping”, “bridging”, and “hybrid” (both looping and bridging) conformations, with a majority of the chains adopting the hybrid conformation. The spatial distributions for each of the blocks in the pentaBCPs show that blocks of the same type in a chain locally segregate within the same domains, with shorter blocks segregating towards the domain boundaries and longer blocks filling the domain interior. This combined SCFT-MD approach enables us to rapidly screen the extensive pentaBCP design space to identify design rules for transport-favorable morphologies as well as verify the chain conformations and spatial arrangements associated with the theory predicted reentrant phase behavior.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1235-1253"},"PeriodicalIF":3.2,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00138a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142714082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ebony Shire, André A. B. Coimbra, Carlos Barba Ostria, Leonardo Rios-Solis and Diego López Barreiro
Structural proteins like silk, squid ring teeth, elastin, collagen, or resilin, among others, are inspiring the development of new sustainable biopolymeric materials for applications including healthcare, food, soft robotics, or textiles. Furthermore, advances in the fields of soft materials and synthetic biology have a joint great potential to guide the design of novel structural proteins, despite both fields progressing mostly in a separate fashion so far. Using recombinant DNA technologies and microbial fermentations, we can design new structural proteins with monomer-level sequence control and a dispersity of ca. 1.0, based on permutations of tandem repeats derived from natural structural proteins. However, the molecular design of recombinant and repetitive structural proteins is a nontrivial task that is generally approached using low-throughput trial-and-error experimentation. Here, we review recent progress in this area, in terms of structure–function relationships and DNA synthesis technologies. We also discuss experimental and computational advances towards the establishment of rapid prototyping pipelines for this family of biopolymers. Finally, we highlight future challenges to make protein-based materials a commercially viable alternative to current fossil-based polymers.
蚕丝、乌贼环齿、弹性蛋白、胶原蛋白或树脂蛋白等结构蛋白正在激发人们开发新型可持续生物聚合物材料,其应用领域包括医疗保健、食品、软机器人或纺织品。此外,软性材料和合成生物学领域的进步在指导新型结构蛋白质的设计方面具有共同的巨大潜力,尽管迄今为止这两个领域的进展大多各自为政。利用 DNA 重组技术和微生物发酵技术,我们可以根据从天然结构蛋白中提取的串联重复序列的排列组合,设计出具有单体级序列控制和约 1.0 分散性的新型结构蛋白。然而,重组和重复结构蛋白的分子设计并非易事,通常需要通过低通量的试错实验来完成。在此,我们从结构-功能关系和 DNA 合成技术的角度回顾了这一领域的最新进展。我们还讨论了在为这一系列生物聚合物建立快速原型管道方面取得的实验和计算进展。最后,我们强调了使基于蛋白质的材料成为目前化石基聚合物的商业可行替代品所面临的未来挑战。
{"title":"Molecular design of protein-based materials – state of the art, opportunities and challenges at the interface between materials engineering and synthetic biology","authors":"Ebony Shire, André A. B. Coimbra, Carlos Barba Ostria, Leonardo Rios-Solis and Diego López Barreiro","doi":"10.1039/D4ME00122B","DOIUrl":"10.1039/D4ME00122B","url":null,"abstract":"<p >Structural proteins like silk, squid ring teeth, elastin, collagen, or resilin, among others, are inspiring the development of new sustainable biopolymeric materials for applications including healthcare, food, soft robotics, or textiles. Furthermore, advances in the fields of soft materials and synthetic biology have a joint great potential to guide the design of novel structural proteins, despite both fields progressing mostly in a separate fashion so far. Using recombinant DNA technologies and microbial fermentations, we can design new structural proteins with monomer-level sequence control and a dispersity of <em>ca.</em> 1.0, based on permutations of tandem repeats derived from natural structural proteins. However, the molecular design of recombinant and repetitive structural proteins is a nontrivial task that is generally approached using low-throughput trial-and-error experimentation. Here, we review recent progress in this area, in terms of structure–function relationships and DNA synthesis technologies. We also discuss experimental and computational advances towards the establishment of rapid prototyping pipelines for this family of biopolymers. Finally, we highlight future challenges to make protein-based materials a commercially viable alternative to current fossil-based polymers.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1187-1209"},"PeriodicalIF":3.2,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00122b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mark S. Bannon, Jeffrey F. Ellena, Aditi S. Gourishankar, Spencer R. Marsh, Dilza Trevisan-Silva, Nicholas E. Sherman, L. Jane Jourdan, Robert G. Gourdie and Rachel A. Letteri
Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. In vitro proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.
{"title":"Multi-site esterification: a tunable, reversible strategy to tailor therapeutic peptides for delivery†","authors":"Mark S. Bannon, Jeffrey F. Ellena, Aditi S. Gourishankar, Spencer R. Marsh, Dilza Trevisan-Silva, Nicholas E. Sherman, L. Jane Jourdan, Robert G. Gourdie and Rachel A. Letteri","doi":"10.1039/D4ME00072B","DOIUrl":"10.1039/D4ME00072B","url":null,"abstract":"<p >Peptides are naturally potent and selective therapeutics with massive potential; however, low cell membrane permeability limits their clinical implementation, particularly for hydrophilic, anionic peptides with intracellular targets. To overcome this limitation, esterification of anionic carboxylic acids on therapeutic peptides can simultaneously increase hydrophobicity and net charge to facilitate cell internalization, whereafter installed esters can be cleaved hydrolytically to restore activity. To date, however, most esterified therapeutics contain either a single esterification site or multiple esters randomly incorporated on multiple sites. This investigation provides molecular engineering insight into how the number and position of esters installed onto the therapeutic peptide α carboxyl terminus 11 (αCT11, RPRPDDLEI) with 4 esterification sites affect hydrophobicity and the hydrolysis process that reverts the peptide to its original form. After installing methyl esters onto αCT11 using Fischer esterification, we isolated 5 distinct products and used 2D nuclear magnetic resonance spectroscopy, reverse-phase high performance liquid chromatography, and mass spectrometry to determine which residues were esterified in each and the resulting increase in hydrophobicity. We found esterifying the C-terminal isoleucine to impart the largest increase in hydrophobicity. Monitoring ester hydrolysis showed the C-terminal isoleucine ester to be the most hydrolytically stable, followed by the glutamic acid, whereas esters on aspartic acids hydrolyze rapidly. LC-MS revealed the formation of transient intramolecular aspartimides prior to hydrolysis to carboxylic acids. <em>In vitro</em> proof-of-concept experiments showed esterifying αCT11 to increase cell migration into a scratch, highlighting the potential of multi-site esterification as a tunable, reversible strategy to enable the delivery of therapeutic peptides.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1215-1227"},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/me/d4me00072b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Youcong Li, Jiahao Dong, Yue Zhao, Lei Gao, Yu-Hao Gu and Shuai Yuan
Metal–organic frameworks (MOFs) are promising platforms for designing photoresponsive materials due to their structural versatility and tunable properties. However, challenges remain in fine-tuning the photoresponsive behavior while maintaining the high stability of MOFs. In this study, we synthesized a MOF containing redox-active pyromellitic diimide (PMDI) groups and unsaturated Zr6 clusters named Zr-PMDI-DMF and fine-tuned its photochromic properties by exchanging the coordination solvent molecules on the Zr sites. Unlike traditional Zr6 clusters with bidentate carboxylate coordination, Zr-PMDI-DMF features monodentate carboxylate coordination with the exposed Zr sites occupied by solvent molecules. We post-synthetically exchanged the coordinated N,N-dimethylformamide (DMF) solvent molecules with 2-(dimethylamino)ethanol (DMAE), N-methyltetrahydropyrrole (NMP), and dimethyl sulfoxide (DMSO) and determined the structures of the coordinated solvent molecules using single-crystal X-ray diffraction. Through photochromic and bleaching cycle experiments, electron paramagnetic resonance spectroscopy, and density functional theory calculations, we found that the coordinated solvents act as electron donors. In contrast, PMDI ligands act as electron acceptors, causing intra-framework electron transfer and photochromism. The rate of the photochromic response correlated with the electron-donating ability of the solvents, following the trend of DMAE > NMP > DMSO > DMF.
{"title":"Controlling the photochromism of zirconium pyromellitic diimide-based metal–organic frameworks through coordinating solvents†","authors":"Youcong Li, Jiahao Dong, Yue Zhao, Lei Gao, Yu-Hao Gu and Shuai Yuan","doi":"10.1039/D4ME00104D","DOIUrl":"10.1039/D4ME00104D","url":null,"abstract":"<p >Metal–organic frameworks (MOFs) are promising platforms for designing photoresponsive materials due to their structural versatility and tunable properties. However, challenges remain in fine-tuning the photoresponsive behavior while maintaining the high stability of MOFs. In this study, we synthesized a MOF containing redox-active pyromellitic diimide (PMDI) groups and unsaturated Zr<small><sub>6</sub></small> clusters named Zr-PMDI-DMF and fine-tuned its photochromic properties by exchanging the coordination solvent molecules on the Zr sites. Unlike traditional Zr<small><sub>6</sub></small> clusters with bidentate carboxylate coordination, Zr-PMDI-DMF features monodentate carboxylate coordination with the exposed Zr sites occupied by solvent molecules. We post-synthetically exchanged the coordinated <em>N</em>,<em>N</em>-dimethylformamide (DMF) solvent molecules with 2-(dimethylamino)ethanol (DMAE), <em>N</em>-methyltetrahydropyrrole (NMP), and dimethyl sulfoxide (DMSO) and determined the structures of the coordinated solvent molecules using single-crystal X-ray diffraction. Through photochromic and bleaching cycle experiments, electron paramagnetic resonance spectroscopy, and density functional theory calculations, we found that the coordinated solvents act as electron donors. In contrast, PMDI ligands act as electron acceptors, causing intra-framework electron transfer and photochromism. The rate of the photochromic response correlated with the electron-donating ability of the solvents, following the trend of DMAE > NMP > DMSO > DMF.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 12","pages":" 1228-1234"},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}