首页 > 最新文献

Molecular Systems Design & Engineering最新文献

英文 中文
In silico investigation of the interaction between α-synuclein aggregates and organic supramolecular assemblies† α-突触核蛋白聚集体与有机超分子组装体之间相互作用的硅学研究
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-19 DOI: 10.1039/D4ME00071D
Laura Le Bras, Yves L. Dory and Benoît Champagne

α-Synuclein (αSYN), and its tendency to self-aggregate, plays an important role in the development of Parkinson's disease (PD). αSYN aggregates are characterized by a stacking of αSYN chains and an interaction between the stackings to form dimer-like structures. The stability of these supramolecular assemblies is ensured by the presence of numerous residues that adopt “β-strand” and then “β-sheet” conformations, implying multiple interactions within and between the chains of αSYN. Following our previous study on the ability of small organic molecules to form columnar supramolecular assemblies (organic nanotubes, ONs) [Le Bras, L.; Dory, Y. L.; Champagne, B. Computational prediction of the supramolecular self-assembling properties of organic molecules: the role of conformational flexibility of amide moieties. Phys. Chem. Chem. Phys., 2021, 23, 20453–20465], we propose here to unravel the ability of these ONs to interact with αSYN aggregates. More than an interaction, we expect the organic molecules to avoid the complete aggregation process and ideally to induce destabilization of the stacking. Both molecular dynamics simulation and quantum mechanical-based calculations are used to identify the key parameters of the interaction and the resulting (de)stabilization of the assembly.

α-突触核蛋白(αSYN)及其自我聚集倾向在帕金森病(PD)的发病过程中起着重要作用。这些超分子集合体的稳定性得益于大量残基的存在,这些残基采用 "β-链 "和 "β-片 "构象,这意味着αSYN 链内部和链之间存在多种相互作用。继我们之前对小分子有机物形成柱状超分子组装体(有机纳米管,ONs)的能力进行研究之后[Le Bras, L.; Dory, Y. L.; Champagne, B. Computational prediction of the supramolecular self-assembling properties of organic molecules: the role of conformational flexibility of amide moieties.Phys.Chem.Phys.,2021,23,20453-20465],我们建议在此揭示这些 ON 与 αSYN 聚合体相互作用的能力。除了相互作用,我们还希望有机分子能避免完整的聚集过程,最好能诱发堆叠的不稳定性。分子动力学模拟和基于量子力学的计算都被用来确定相互作用的关键参数以及由此产生的组装(去)稳定性。
{"title":"In silico investigation of the interaction between α-synuclein aggregates and organic supramolecular assemblies†","authors":"Laura Le Bras, Yves L. Dory and Benoît Champagne","doi":"10.1039/D4ME00071D","DOIUrl":"10.1039/D4ME00071D","url":null,"abstract":"<p >α-Synuclein (α<strong>SYN</strong>), and its tendency to self-aggregate, plays an important role in the development of Parkinson's disease (PD). α<strong>SYN</strong> aggregates are characterized by a stacking of α<strong>SYN</strong> chains and an interaction between the stackings to form dimer-like structures. The stability of these supramolecular assemblies is ensured by the presence of numerous residues that adopt “β-strand” and then “β-sheet” conformations, implying multiple interactions within and between the chains of α<strong>SYN</strong>. Following our previous study on the ability of small organic molecules to form columnar supramolecular assemblies (organic nanotubes, <strong>ONs</strong>) [Le Bras, L.; Dory, Y. L.; Champagne, B. Computational prediction of the supramolecular self-assembling properties of organic molecules: the role of conformational flexibility of amide moieties. <em>Phys. Chem. Chem. Phys.</em>, 2021, <strong>23</strong>, 20453–20465], we propose here to unravel the ability of these <strong>ONs</strong> to interact with α<strong>SYN</strong> aggregates. More than an interaction, we expect the organic molecules to avoid the complete aggregation process and ideally to induce destabilization of the stacking. Both molecular dynamics simulation and quantum mechanical-based calculations are used to identify the key parameters of the interaction and the resulting (de)stabilization of the assembly.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 11","pages":" 1155-1166"},"PeriodicalIF":3.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and theoretical studies of the conformational behaviour of N-vinylcaprolactam/N-vinylimidazole copolymers in selective solvent† 选择性溶剂中 N-乙烯基己内酰胺/N-乙烯基咪唑共聚物构象行为的合成与理论研究
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-12 DOI: 10.1039/D4ME00085D
A. I. Barabanova, A. V. Vorozheykina, M. K. Glagolev, P. V. Komarov and A. R. Khokhlov

Bulk radical copolymerisation of N-vinylcaprolactam (VCL) and N-vinylimidazole (VI) is studied experimentally and theoretically. It is shown that the copolymer composition is maintained up to high comonomer conversions. This is explained by a constant ratio of concentrations of comonomers in the reaction zone. The copolymers obtained show thermally induced conformational behaviour. In an aqueous medium above 60 °C, they can form compact globular structures with a hydrophobic core of VCL monomer units covered by a hydrophilic corona of VI monomer units, which allows them to be considered as a basis for thermally switchable functional nanostructures.

通过实验和理论研究了 N-乙烯基己内酰胺(VCL)和 N-乙烯基咪唑(VI)的自由基共聚。结果表明,共聚物的组成在共聚单体转换率较高时仍能保持不变。这可以用反应区中共聚单体浓度的恒定比率来解释。获得的共聚物显示出热诱导的构象行为。在温度高于 60 °C 的水介质中,它们可以形成紧凑的球状结构,其疏水的 VCL 单体单元核心被亲水的 VI 单体单元冠层所覆盖,这使得它们可以被视为热转换功能纳米结构的基础。
{"title":"Synthesis and theoretical studies of the conformational behaviour of N-vinylcaprolactam/N-vinylimidazole copolymers in selective solvent†","authors":"A. I. Barabanova, A. V. Vorozheykina, M. K. Glagolev, P. V. Komarov and A. R. Khokhlov","doi":"10.1039/D4ME00085D","DOIUrl":"10.1039/D4ME00085D","url":null,"abstract":"<p >Bulk radical copolymerisation of <em>N</em>-vinylcaprolactam (VCL) and <em>N</em>-vinylimidazole (VI) is studied experimentally and theoretically. It is shown that the copolymer composition is maintained up to high comonomer conversions. This is explained by a constant ratio of concentrations of comonomers in the reaction zone. The copolymers obtained show thermally induced conformational behaviour. In an aqueous medium above 60 °C, they can form compact globular structures with a hydrophobic core of VCL monomer units covered by a hydrophilic corona of VI monomer units, which allows them to be considered as a basis for thermally switchable functional nanostructures.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 1017-1022"},"PeriodicalIF":3.2,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving DNA aptamers against a heart failure protein biomarker using structure-guided random mutation approaches for colourimetric biosensor development† 利用结构引导的随机突变方法改进针对心力衰竭蛋白生物标记物的DNA适配体,以开发比色生物传感器
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-08-01 DOI: 10.1039/D4ME00073K
Donny Marcius, Bejo Ropii, Diah Ayu Safitri, Mokhamad Fakhrul Ulum, Husna Nugrahapraja and Isa Anshori

Aptamers are short single-stranded oligonucleotides, which offer several advantages over antibodies as bioreceptors. The widely used method for generating aptamer sequences, SELEX, has some limitations such as a limited oligonucleotide library used and amplification bias of PCR. Bioinformatics approaches have been shown to optimise and increase aptamer affinity. This research aimed to enhance the affinity of the NT-proBNP (N-terminal pro-brain natriuretic peptide, a biomarker for heart failure)-targeting aptamer acquired from SELEX using computational strategies involving sequence truncation and secondary structure-guided random mutations. DNA aptamers and protein structures are predicted by MC-Fold + 3dDNA and Robetta, respectively, whereas the computational evaluations utilize molecular docking, interaction profiles, and molecular dynamics simulations. The structural and energetic analysis revealed that the in silico optimised aptamer had more stable and robust interactions in binding to the NT-proBNP protein than the SELEX-obtained aptamer. Furthermore, our approach was supported and confirmed by in vitro colourimetric assay based on gold nanoparticle aggregation, evidenced by a detection limit of 0.5 ng mL−1 which is lower than the SELEX-obtained aptamer (2.3 ng mL−1).

适配体是一种短的单链寡核苷酸,与抗体相比,它作为生物受体具有多种优势。广泛使用的生成适配体序列的方法--SELEX--有一些局限性,如使用的寡核苷酸库有限和 PCR 的扩增偏差。生物信息学方法已被证明可以优化和提高适配体的亲和力。这项研究旨在利用序列截断和二级结构引导的随机突变等计算策略,提高从 SELEX 中获得的 NT-proBNP(N-末端前脑钠尿肽,心力衰竭的一种生物标志物)靶向适配体的亲和力。DNA适配体和蛋白质结构分别由MC-Fold + 3dDNA和Robetta预测,而计算评估则利用了分子对接、相互作用曲线和分子动力学模拟。结构和能量分析表明,在与 NT-proBNP 蛋白结合时,与 SELEX 获得的适配体相比,硅学优化的适配体具有更稳定、更强大的相互作用。此外,我们的方法还得到了基于金纳米粒子聚集的体外比色法的支持和证实,其检测限为 0.5 纳克 mL-1,低于 SELEX 获得的适配体(2.3 纳克 mL-1)。
{"title":"Improving DNA aptamers against a heart failure protein biomarker using structure-guided random mutation approaches for colourimetric biosensor development†","authors":"Donny Marcius, Bejo Ropii, Diah Ayu Safitri, Mokhamad Fakhrul Ulum, Husna Nugrahapraja and Isa Anshori","doi":"10.1039/D4ME00073K","DOIUrl":"10.1039/D4ME00073K","url":null,"abstract":"<p >Aptamers are short single-stranded oligonucleotides, which offer several advantages over antibodies as bioreceptors. The widely used method for generating aptamer sequences, SELEX, has some limitations such as a limited oligonucleotide library used and amplification bias of PCR. Bioinformatics approaches have been shown to optimise and increase aptamer affinity. This research aimed to enhance the affinity of the NT-proBNP (N-terminal pro-brain natriuretic peptide, a biomarker for heart failure)-targeting aptamer acquired from SELEX using computational strategies involving sequence truncation and secondary structure-guided random mutations. DNA aptamers and protein structures are predicted by MC-Fold + 3dDNA and Robetta, respectively, whereas the computational evaluations utilize molecular docking, interaction profiles, and molecular dynamics simulations. The structural and energetic analysis revealed that the <em>in silico</em> optimised aptamer had more stable and robust interactions in binding to the NT-proBNP protein than the SELEX-obtained aptamer. Furthermore, our approach was supported and confirmed by <em>in vitro</em> colourimetric assay based on gold nanoparticle aggregation, evidenced by a detection limit of 0.5 ng mL<small><sup>−1</sup></small> which is lower than the SELEX-obtained aptamer (2.3 ng mL<small><sup>−1</sup></small>).</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 1023-1035"},"PeriodicalIF":3.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142209413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and catalytic application of ZSM-48 zeolite ZSM-48 沸石的合成与催化应用
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-11 DOI: 10.1039/D4ME00076E
Wen Liu, Yanan Wang, Xinbao Zhang, Fucun Chen, Sujuan Xie, Longya Xu, Xiujie Li and Xiangxue Zhu

ZSM-48 is a kind of high-silica zeolite with one dimensional (1D) 10-member ring (10-MR) channel structure. It is well known for its unique pore structure and acid properties, as well as exceptional catalytic performance in various reactions. However, the diffusion limitation and insufficient acid density pose significant challenges to its widespread application and promotion. This review aims to summarize the advancements in enhancing diffusivity and regulating acid properties of ZSM-48 zeolite, as well as its catalytic applications. To alleviate diffusion limitations, the construction of hierarchical ZSM-48 zeolites through post-treatment and in situ strategies is extensively summarized. Ongoing endeavors focus on determining the optimal balance between maintaining structural integrity and improving mass transfer capacity through post-treatment techniques. Concerning acid regulation, various strategies such as the use of a special organic structure directing agent (OSDA), seed-assisted synthesis, zeolite hybridization, and heteroatom doping strategies have been developed. The emphasis on acid regulation in ZSM-48 zeolite involves efforts to design or discover more cost-effective OSDAs. Additionally, researchers are exploring simpler and more economical seed-assisted synthesis routes to produce Al-rich candidates. In terms of catalytic application, extensive research has been conducted on various reactions including hydroisomerization of paraffin, isomerization of xylenes, cracking of hydrocarbons, and methanol conversion to hydrocarbons. Its distinctive catalytic performance is primarily related to the shape-selective advantage conferred by its 1D channel structure. In particular, ZSM-48 zeolite is widely regarded as the leading candidate in paraffin hydroisomerization reactions, attributed to its high proportion of multi-branched isomers in the catalytic products. The present review aims to provide a comprehensive reference for researchers dedicated to the synthesis, modification, and application of ZSM-48 zeolite.

ZSM-48 是一种具有一维(1D)10 元环(10-MR)通道结构的高硅沸石。它以其独特的孔隙结构和酸特性以及在各种反应中的优异催化性能而著称。然而,扩散限制和酸密度不足对其广泛应用和推广构成了重大挑战。本综述旨在总结在增强 ZSM-48 沸石的扩散性和调节其酸特性方面的进展及其催化应用。为了缓解扩散限制,本文广泛总结了通过后处理和原位策略构建分层 ZSM-48 沸石的方法。目前的工作重点是通过后处理技术确定保持结构完整性和提高传质能力之间的最佳平衡。在酸调节方面,已开发出多种策略,如使用特殊的有机结构引导剂(OSDA)、种子辅助合成、沸石杂化和杂原子掺杂策略。在 ZSM-48 沸石中进行酸调节的重点是努力设计或发现更具成本效益的 OSDA。此外,研究人员还在探索更简单、更经济的种子辅助合成路线,以生产富铝候选物质。在催化应用方面,对石蜡的加氢异构化、二甲苯的异构化、碳氢化合物的裂解以及甲醇制碳氢化合物等各种反应进行了广泛的研究。其独特的催化性能主要与其一维通道结构所带来的形状选择优势有关。其中,ZSM-48 沸石因其催化产物中多支链异构体比例高而被广泛认为是石蜡加氢异构化反应的主要候选材料。本综述旨在为致力于 ZSM-48 沸石合成、改性和应用的研究人员提供全面的参考。
{"title":"Synthesis and catalytic application of ZSM-48 zeolite","authors":"Wen Liu, Yanan Wang, Xinbao Zhang, Fucun Chen, Sujuan Xie, Longya Xu, Xiujie Li and Xiangxue Zhu","doi":"10.1039/D4ME00076E","DOIUrl":"10.1039/D4ME00076E","url":null,"abstract":"<p >ZSM-48 is a kind of high-silica zeolite with one dimensional (1D) 10-member ring (10-MR) channel structure. It is well known for its unique pore structure and acid properties, as well as exceptional catalytic performance in various reactions. However, the diffusion limitation and insufficient acid density pose significant challenges to its widespread application and promotion. This review aims to summarize the advancements in enhancing diffusivity and regulating acid properties of ZSM-48 zeolite, as well as its catalytic applications. To alleviate diffusion limitations, the construction of hierarchical ZSM-48 zeolites through post-treatment and <em>in situ</em> strategies is extensively summarized. Ongoing endeavors focus on determining the optimal balance between maintaining structural integrity and improving mass transfer capacity through post-treatment techniques. Concerning acid regulation, various strategies such as the use of a special organic structure directing agent (OSDA), seed-assisted synthesis, zeolite hybridization, and heteroatom doping strategies have been developed. The emphasis on acid regulation in ZSM-48 zeolite involves efforts to design or discover more cost-effective OSDAs. Additionally, researchers are exploring simpler and more economical seed-assisted synthesis routes to produce Al-rich candidates. In terms of catalytic application, extensive research has been conducted on various reactions including hydroisomerization of paraffin, isomerization of xylenes, cracking of hydrocarbons, and methanol conversion to hydrocarbons. Its distinctive catalytic performance is primarily related to the shape-selective advantage conferred by its 1D channel structure. In particular, ZSM-48 zeolite is widely regarded as the leading candidate in paraffin hydroisomerization reactions, attributed to its high proportion of multi-branched isomers in the catalytic products. The present review aims to provide a comprehensive reference for researchers dedicated to the synthesis, modification, and application of ZSM-48 zeolite.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 1000-1016"},"PeriodicalIF":3.2,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing novel inhibitor derivatives targeting SARS-CoV-2 Mpro enzyme: a deep learning and structure biology approach† 设计针对 SARS-CoV-2 Mpro 酶的新型抑制剂衍生物:一种深度学习和结构生物学方法
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-10 DOI: 10.1039/D4ME00062E
Tushar Joshi, Shalini Mathpal, Priyanka Sharma, Akshay Abraham, Rajadurai Vijay Solomon and Subhash Chandra

The emerging variants of SARS-CoV-2 have raised serious concerns worldwide due to their infectivity, lethality, and unpredictability. Moreover, the ability of these variants to bypass vaccine protection and immunity has compelled the research community to design novel compounds against SARS-CoV-2. This study focuses on designing novel molecules using artificial intelligence methods for the development of new therapeutics against SARS-CoV-2. Furthermore, these molecules were validated against main protease (Mpro) using in-silico methods. In this study, we used the DeepScreening RNN-based web server to design novel molecules using potential inhibitors of Mpro from CHEMBL4495582. Screened compounds were further validated by molecular docking and molecular dynamics (MD) simulation studies. One hundred molecules were obtained and studied through molecular docking and MD simulations. Additionally, eight molecules, based on their docking scores, were also evaluated for electronic structure properties by conducting Density Functional Theory (DFT) calculations using the B3LYP method and a 6-31G basis set. A total of three compounds, namely L18, L36, and L26, showed very good binding and stability with the active site of the Mpro protein. The results of this study demonstrate that potential molecules can be designed using artificial intelligence methods for the rapid development of drug candidates against SARS-CoV-2, addressing the alarming worldwide situation of emerging deadly SARS-CoV-2 variants. We hope that our study will attract the attention of the scientific community to increase the application of artificial intelligence techniques in the drug discovery process.

新出现的 SARS-CoV-2 变种因其传染性、致命性和不可预测性而引起了全世界的严重关切。此外,这些变种能够绕过疫苗保护和免疫,这迫使研究界设计新型化合物来对抗 SARS-CoV-2。本研究的重点是利用人工智能方法设计新型分子,以开发针对 SARS-CoV-2 的新疗法。此外,这些分子还通过内嵌方法针对主要蛋白酶(Mpro)进行了验证。在这项研究中,我们使用基于 DeepScreening RNN 的网络服务器,利用 CHEMBL4495582 中 Mpro 的潜在抑制剂来设计新型分子。通过分子对接和分子动力学(MD)模拟研究进一步验证了筛选出的化合物。通过分子对接和 MD 模拟研究,共获得 100 个分子。此外,还根据其对接得分,使用 B3LYP 方法和 6-31G 基集进行密度泛函理论(DFT)计算,评估了 8 个分子的电子结构特性。共有三种化合物(即 L18、L36 和 L26)与 Mpro 蛋白的活性位点表现出了很好的结合性和稳定性。这项研究结果表明,利用人工智能方法可以设计出潜在的分子,从而快速开发出抗击 SARS-CoV-2 的候选药物,以应对全球范围内新出现的致命 SARS-CoV-2 变体的严峻形势。我们希望我们的研究能引起科学界的关注,增加人工智能技术在药物发现过程中的应用。
{"title":"Designing novel inhibitor derivatives targeting SARS-CoV-2 Mpro enzyme: a deep learning and structure biology approach†","authors":"Tushar Joshi, Shalini Mathpal, Priyanka Sharma, Akshay Abraham, Rajadurai Vijay Solomon and Subhash Chandra","doi":"10.1039/D4ME00062E","DOIUrl":"10.1039/D4ME00062E","url":null,"abstract":"<p >The emerging variants of SARS-CoV-2 have raised serious concerns worldwide due to their infectivity, lethality, and unpredictability. Moreover, the ability of these variants to bypass vaccine protection and immunity has compelled the research community to design novel compounds against SARS-CoV-2. This study focuses on designing novel molecules using artificial intelligence methods for the development of new therapeutics against SARS-CoV-2. Furthermore, these molecules were validated against main protease (M<small><sup>pro</sup></small>) using <em>in-silico</em> methods. In this study, we used the DeepScreening RNN-based web server to design novel molecules using potential inhibitors of M<small><sup>pro</sup></small> from CHEMBL4495582. Screened compounds were further validated by molecular docking and molecular dynamics (MD) simulation studies. One hundred molecules were obtained and studied through molecular docking and MD simulations. Additionally, eight molecules, based on their docking scores, were also evaluated for electronic structure properties by conducting Density Functional Theory (DFT) calculations using the B3LYP method and a 6-31G basis set. A total of three compounds, namely L18, L36, and L26, showed very good binding and stability with the active site of the M<small><sup>pro</sup></small> protein. The results of this study demonstrate that potential molecules can be designed using artificial intelligence methods for the rapid development of drug candidates against SARS-CoV-2, addressing the alarming worldwide situation of emerging deadly SARS-CoV-2 variants. We hope that our study will attract the attention of the scientific community to increase the application of artificial intelligence techniques in the drug discovery process.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 1063-1076"},"PeriodicalIF":3.2,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the impact of sulfur atom oxidation and donor–acceptor effects on the performance of blue TADF emitters: a detailed computational study† 揭示硫原子氧化和供体-受体效应对蓝色 TADF 发射器性能的影响:一项详细的计算研究
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-04 DOI: 10.1039/D4ME00035H
Singaravel Nathiya

Blue TADF materials demonstrate significant potential for OLED and photovoltaic applications. Nevertheless, systematic studies are essential to explore the relationship between molecular structures and luminescence properties to develop blue-TADF emitters. In this study, a series of new 24 donor–acceptor–donor (D–A–D) type molecules with different electron donors and acceptors are designed theoretically, and their photophysical properties are analyzed by using DFT and TD-DFT methods. We examined the combined impact of sulfur oxidation and the symmetric incorporation of a nitrogen heteroatom, with positional modifications (2-dipyridyl and 3-dipyridyl), within the phenyl ring of the acceptor group. The findings suggest that enhancing both the donating and accepting strength of the molecules results in an orthogonal geometry and a small ΔEST, accompanied by an enhanced charge-transfer (CT) character. Upon sulfur oxidation, the magnitude of SOC decreases, resulting in a reduction of ΔEST attributed to screening and lone pair effects. Through quantum chemical calculations, we have theoretically identified 12 promising blue TADF molecules, featuring small ΔEST, increased SOC magnitude, and higher RISC (∼10+07 s−1) rates. Overall, our current study provides a robust molecular design approach and reliable computational method for designing a blue TADF emitter.

蓝色 TADF 材料在有机发光二极管和光伏应用方面具有巨大潜力。然而,要开发蓝色 TADF 发射器,必须进行系统研究,探索分子结构与发光特性之间的关系。本研究从理论上设计了一系列具有不同电子供体和受体的新型 24 供体-受体-供体(D-A-D)型分子,并采用 DFT 和 TD-DFT 方法分析了它们的光物理性质。我们研究了硫氧化和在受体基团的苯基环上对称加入一个氮杂原子的综合影响,以及位置修饰(2-二吡啶基和 3-二吡啶基)。研究结果表明,增强分子的供体和受体强度会导致正交几何形状和较小的ΔEST,同时增强电荷转移(CT)特性。硫氧化时,SOC 的大小会减小,从而导致ΔEST 的减小,这归因于屏蔽效应和孤对效应。通过量子化学计算,我们从理论上确定了 12 种有前景的蓝色 TADF 分子,它们具有较小的 ΔEST 值、较高的 SOC 值和较高的 RISC(10∼10+07 s-1)速率。总之,我们目前的研究为设计蓝色 TADF 发射器提供了一种稳健的分子设计方法和可靠的计算方法。
{"title":"Unravelling the impact of sulfur atom oxidation and donor–acceptor effects on the performance of blue TADF emitters: a detailed computational study†","authors":"Singaravel Nathiya","doi":"10.1039/D4ME00035H","DOIUrl":"10.1039/D4ME00035H","url":null,"abstract":"<p >Blue TADF materials demonstrate significant potential for OLED and photovoltaic applications. Nevertheless, systematic studies are essential to explore the relationship between molecular structures and luminescence properties to develop blue-TADF emitters. In this study, a series of new 24 donor–acceptor–donor (D–A–D) type molecules with different electron donors and acceptors are designed theoretically, and their photophysical properties are analyzed by using DFT and TD-DFT methods. We examined the combined impact of sulfur oxidation and the symmetric incorporation of a nitrogen heteroatom, with positional modifications (2-dipyridyl and 3-dipyridyl), within the phenyl ring of the acceptor group. The findings suggest that enhancing both the donating and accepting strength of the molecules results in an orthogonal geometry and a small Δ<em>E</em><small><sub>ST</sub></small>, accompanied by an enhanced charge-transfer (CT) character. Upon sulfur oxidation, the magnitude of SOC decreases, resulting in a reduction of Δ<em>E</em><small><sub>ST</sub></small> attributed to screening and lone pair effects. Through quantum chemical calculations, we have theoretically identified 12 promising blue TADF molecules, featuring small Δ<em>E</em><small><sub>ST</sub></small>, increased SOC magnitude, and higher RISC (∼10<small><sup>+07</sup></small> s<small><sup>−1</sup></small>) rates. Overall, our current study provides a robust molecular design approach and reliable computational method for designing a blue TADF emitter.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 1051-1062"},"PeriodicalIF":3.2,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering tomorrow's medicine: energy-driven micro/nano-robots redefining biomedical applications 赋能未来医学:能源驱动的微型/纳米机器人重新定义生物医学应用
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-07-02 DOI: 10.1039/D4ME00090K
Subham Preetam, Pingal Pritam, Richa Mishra, Sarvesh Rustagi, Smita Lata and Sumira Malik

Micro/nano-robots (MNRs) have gained attention as a rapidly developing field with significant potential in advanced therapies and futuristic solutions. These self-propelled robots offer a promising strategy to enhance monitoring, overcome diffusion limitations, and interact effectively with target factors. Research in MNRs has become highly influential, especially in addressing critical issues like cancer. The progression from passive micro- and nanomaterials to active MNRs and ultimately to intelligent MNRs has led to advancements in motion abilities, multifunctionality, adaptive responses, swarming behaviour, and communication among robots. Nanorobotics, featuring sophisticated submicron devices made from nanocomponents, holds great promise for revolutionizing the healthcare industry. This review aims to highlight recent progress in propulsion mechanisms, including chemically controlled micromotors, field control, and biohybrid approaches, which serve as power sources for various biomedical and environmental applications. These applications utilize different energy sources such as magnetic, light, auditory, electric, and chemical reactions, particularly in drug delivery systems for cancer treatment. This review also discusses the challenges and future directions in the practical implementation of smart MNRs, paving the way for their real-world applications.

微型/纳米机器人(MNR)作为一个快速发展的领域备受关注,在先进疗法和未来解决方案方面具有巨大潜力。这些自走式机器人为加强监测、克服扩散限制以及与目标因子有效互动提供了一种前景广阔的策略。MNR 研究已具有很大的影响力,尤其是在解决癌症等关键问题方面。从被动的微型和纳米材料到主动的多功能纳米机器人,再到最终的智能多功能纳米机器人,机器人在运动能力、多功能性、自适应反应、蜂群行为和相互通信等方面都取得了进步。纳米机器人的特点是由纳米元件制成的精密亚微米设备,它为医疗保健行业带来了巨大的变革前景。本综述旨在重点介绍推进机制方面的最新进展,包括化学控制微电机、场控制和生物混合方法,这些方法可作为各种生物医学和环境应用的动力源。这些应用利用了不同的能源,如磁、光、听觉、电和化学反应,特别是在治疗癌症的药物输送系统中。综述还讨论了智能微型机器人和纳米机器人在实际应用中面临的挑战和未来发展方向,为它们在现实世界中的应用铺平了道路。
{"title":"Empowering tomorrow's medicine: energy-driven micro/nano-robots redefining biomedical applications","authors":"Subham Preetam, Pingal Pritam, Richa Mishra, Sarvesh Rustagi, Smita Lata and Sumira Malik","doi":"10.1039/D4ME00090K","DOIUrl":"10.1039/D4ME00090K","url":null,"abstract":"<p >Micro/nano-robots (MNRs) have gained attention as a rapidly developing field with significant potential in advanced therapies and futuristic solutions. These self-propelled robots offer a promising strategy to enhance monitoring, overcome diffusion limitations, and interact effectively with target factors. Research in MNRs has become highly influential, especially in addressing critical issues like cancer. The progression from passive micro- and nanomaterials to active MNRs and ultimately to intelligent MNRs has led to advancements in motion abilities, multifunctionality, adaptive responses, swarming behaviour, and communication among robots. Nanorobotics, featuring sophisticated submicron devices made from nanocomponents, holds great promise for revolutionizing the healthcare industry. This review aims to highlight recent progress in propulsion mechanisms, including chemically controlled micromotors, field control, and biohybrid approaches, which serve as power sources for various biomedical and environmental applications. These applications utilize different energy sources such as magnetic, light, auditory, electric, and chemical reactions, particularly in drug delivery systems for cancer treatment. This review also discusses the challenges and future directions in the practical implementation of smart MNRs, paving the way for their real-world applications.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 892-911"},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outstanding Reviewers for Molecular Systems Design & Engineering in 2023 2023 年《分子系统设计与工程》杰出审稿人
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-28 DOI: 10.1039/D4ME90024C

We would like to take this opportunity to thank all of Molecular Systems Design & Engineering (MSDE)'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for MSDE in 2023.

我们想借此机会感谢《分子系统设计与工程》(MSDE)的所有审稿人,感谢他们帮助维护化学科学文献的质量和完整性。我们还想特别介绍一下 2023 年 MSDE 的杰出审稿人。
{"title":"Outstanding Reviewers for Molecular Systems Design & Engineering in 2023","authors":"","doi":"10.1039/D4ME90024C","DOIUrl":"10.1039/D4ME90024C","url":null,"abstract":"<p >We would like to take this opportunity to thank all of <em>Molecular Systems Design &amp; Engineering</em> (<em>MSDE</em>)'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for <em>MSDE</em> in 2023.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 799-799"},"PeriodicalIF":3.2,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning-based epoxy resin property prediction† 基于机器学习的环氧树脂性能预测
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-25 DOI: 10.1039/D4ME00060A
Huiwon Jang, Dayoung Ryu, Wonseok Lee, Geunyeong Park and Jihan Kim

Epoxy resins have been utilized across various industries due to their superior mechanical and chemical properties. However, discovering the optimal design of epoxy resins is challenging because of the large chemical space of polymer systems. In this study, we adopted a data-driven approach to develop an effective prediction system for epoxy resin. In particular, we constructed a database of 789 epoxy resins, encompassing four key properties: density, coefficient of thermal expansion, glass transition temperature, and Young's modulus, obtained through molecular dynamics simulations. We devised descriptors that effectively represent epoxy resins. Ultimately, a machine learning model was trained, successfully predicting properties with reasonable accuracy. Our predictive model is a generalized model that was verified across various types of epoxy resins, making it applicable to all kinds of epoxy and hardener combinations. This achievement enables large-scale screening over numerous polymers, accelerating the discovery process. Further, we conducted an in-depth analysis of the important features that have a high impact on the epoxy resin. This provides valuable insights into the structure–property relationship which can guide researchers in designing new epoxy resins.

环氧树脂具有优异的机械和化学特性,已被广泛应用于各个行业。然而,由于聚合物体系的化学空间很大,发现环氧树脂的最佳设计具有挑战性。在本研究中,我们采用了数据驱动法来开发环氧树脂的有效预测系统。特别是,我们构建了一个包含 789 种环氧树脂的数据库,其中包括通过分子动力学模拟获得的四种关键特性:密度、热膨胀系数、玻璃化温度和杨氏模量。我们设计了能有效代表环氧树脂的描述符。最终,我们训练了一个机器学习模型,成功地预测出了具有合理准确度的特性。我们的预测模型是一个通用模型,已在各种类型的环氧树脂中得到验证,因此适用于所有类型的环氧树脂和固化剂组合。这一成果实现了对众多聚合物的大规模筛选,加快了发现过程。此外,我们还深入分析了对环氧树脂影响较大的重要特征。这为研究人员设计新型环氧树脂提供了结构-性能关系方面的宝贵见解。
{"title":"Machine learning-based epoxy resin property prediction†","authors":"Huiwon Jang, Dayoung Ryu, Wonseok Lee, Geunyeong Park and Jihan Kim","doi":"10.1039/D4ME00060A","DOIUrl":"10.1039/D4ME00060A","url":null,"abstract":"<p >Epoxy resins have been utilized across various industries due to their superior mechanical and chemical properties. However, discovering the optimal design of epoxy resins is challenging because of the large chemical space of polymer systems. In this study, we adopted a data-driven approach to develop an effective prediction system for epoxy resin. In particular, we constructed a database of 789 epoxy resins, encompassing four key properties: density, coefficient of thermal expansion, glass transition temperature, and Young's modulus, obtained through molecular dynamics simulations. We devised descriptors that effectively represent epoxy resins. Ultimately, a machine learning model was trained, successfully predicting properties with reasonable accuracy. Our predictive model is a generalized model that was verified across various types of epoxy resins, making it applicable to all kinds of epoxy and hardener combinations. This achievement enables large-scale screening over numerous polymers, accelerating the discovery process. Further, we conducted an in-depth analysis of the important features that have a high impact on the epoxy resin. This provides valuable insights into the structure–property relationship which can guide researchers in designing new epoxy resins.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 9","pages":" 959-968"},"PeriodicalIF":3.2,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of ionic liquid crystals enabled by [2]rotaxane structure formation† 通过形成 [2]rotaxane 结构设计离子液晶
IF 3.2 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Pub Date : 2024-06-20 DOI: 10.1039/D4ME00034J
Gosuke Washino, Takashi Kajitani, Suzushi Nishimura and Atsushi Shishido

We report a new synthetic concept for converting isotropic ionic molecules into thermotropic ionic liquid crystals by forming [2]rotaxane structures. Our results demonstrate the synthesis of liquid-crystalline (LC) rotaxane from an ionic axle molecule as a mesogen core, and a molecular ring as flexible tails, neither of which possess LC properties. The [2]rotaxane obtained exhibited an interdigitated smectic A phase at around 140 °C. A simple mixture of the axle and the ring, which cannot form a rotaxane structure, did not show an LC phase. A [2]rotaxane compound having a ring with shorter flexible tails did not show an LC phase, either. These comparisons revealed that the integration of the mesogen core and flexible tails of a sufficient length in one molecule via the rotaxane structure enables the emergence of LC nature. Our results prove that the rotaxane structure serves as a connection to spatially introduce flexible tails into the mesogen core, pioneering a new approach to LC molecular design.

我们报告了一种通过形成 [2]rotaxane 结构将各向同性离子分子转化为热致性离子液晶的新合成概念。我们的研究结果表明,以离子轴分子为介质核心,以分子环为柔性尾部(两者均不具备液晶特性),合成了液晶(LC)罗他烷。获得的 [2]rotaxane 在 140 °C 左右呈现出相互交错的 Smectic A 相。轴和环的简单混合物不能形成罗他烷结构,也没有显示出低密度相。一种具有较短柔性尾部的环的 [2]rotaxane 化合物也没有出现 LC 相。这些比较结果表明,通过轮烷结构将介源核心和足够长的柔性尾端整合在一个分子中,可以产生低浓相。我们的研究结果证明,轮烷结构是将柔性尾巴在空间上引入介源核心的连接纽带,开创了低浓分子设计的新方法。
{"title":"Design of ionic liquid crystals enabled by [2]rotaxane structure formation†","authors":"Gosuke Washino, Takashi Kajitani, Suzushi Nishimura and Atsushi Shishido","doi":"10.1039/D4ME00034J","DOIUrl":"10.1039/D4ME00034J","url":null,"abstract":"<p >We report a new synthetic concept for converting isotropic ionic molecules into thermotropic ionic liquid crystals by forming [2]rotaxane structures. Our results demonstrate the synthesis of liquid-crystalline (LC) rotaxane from an ionic axle molecule as a mesogen core, and a molecular ring as flexible tails, neither of which possess LC properties. The [2]rotaxane obtained exhibited an interdigitated smectic A phase at around 140 °C. A simple mixture of the axle and the ring, which cannot form a rotaxane structure, did not show an LC phase. A [2]rotaxane compound having a ring with shorter flexible tails did not show an LC phase, either. These comparisons revealed that the integration of the mesogen core and flexible tails of a sufficient length in one molecule <em>via</em> the rotaxane structure enables the emergence of LC nature. Our results prove that the rotaxane structure serves as a connection to spatially introduce flexible tails into the mesogen core, pioneering a new approach to LC molecular design.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 8","pages":" 826-831"},"PeriodicalIF":3.2,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Systems Design & Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1