Pub Date : 2024-06-15Epub Date: 2024-06-18DOI: 10.1242/bio.060548
Mélina Baheux Blin, Vincent Loreau, Frank Schnorrer, Pierre Mangeol
Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.
{"title":"PatternJ: an ImageJ toolset for the automated and quantitative analysis of regular spatial patterns found in sarcomeres, axons, somites, and more.","authors":"Mélina Baheux Blin, Vincent Loreau, Frank Schnorrer, Pierre Mangeol","doi":"10.1242/bio.060548","DOIUrl":"10.1242/bio.060548","url":null,"abstract":"<p><p>Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ's straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15Epub Date: 2024-06-05DOI: 10.1242/bio.060307
Mohammed Aamir Sadiq, Ananda Shikhara Bhat, Vishwesha Guttal, Rohini Balakrishnan
Trait polymorphisms are widespread in nature, and explaining their stable co-existence is a central problem in ecology and evolution. Alternative reproductive tactics, in which individuals of one or more sex exhibit discrete, discontinuous traits in response to reproductive competition, represent a special case of trait polymorphism in which the traits are often complex, behavioural, and dynamic. Thus, studying how alternative reproductive tactics are maintained may provide general insights into how complex trait polymorphisms are maintained in populations. We construct a spatially explicit individual-based model inspired from extensively collected empirical data to address the mechanisms behind the co-existence of three behavioural alternative reproductive tactics in males of a tree cricket (Oecanthus henryi). Our results show that the co-existence of these tactics over ecological time scales is facilitated by the spatial structure of the landscape they inhabit, which serves to equalise the otherwise unequal mating benefits of the three tactics. We also show that this co-existence is unlikely if spatial aspects of the system are not considered. Our findings highlight the importance of spatial dynamics in understanding ecological and evolutionary processes and underscore the power of integrative approaches that combine models with empirical data.
{"title":"Spatial structure could explain the maintenance of alternative reproductive tactics in tree cricket males.","authors":"Mohammed Aamir Sadiq, Ananda Shikhara Bhat, Vishwesha Guttal, Rohini Balakrishnan","doi":"10.1242/bio.060307","DOIUrl":"10.1242/bio.060307","url":null,"abstract":"<p><p>Trait polymorphisms are widespread in nature, and explaining their stable co-existence is a central problem in ecology and evolution. Alternative reproductive tactics, in which individuals of one or more sex exhibit discrete, discontinuous traits in response to reproductive competition, represent a special case of trait polymorphism in which the traits are often complex, behavioural, and dynamic. Thus, studying how alternative reproductive tactics are maintained may provide general insights into how complex trait polymorphisms are maintained in populations. We construct a spatially explicit individual-based model inspired from extensively collected empirical data to address the mechanisms behind the co-existence of three behavioural alternative reproductive tactics in males of a tree cricket (Oecanthus henryi). Our results show that the co-existence of these tactics over ecological time scales is facilitated by the spatial structure of the landscape they inhabit, which serves to equalise the otherwise unequal mating benefits of the three tactics. We also show that this co-existence is unlikely if spatial aspects of the system are not considered. Our findings highlight the importance of spatial dynamics in understanding ecological and evolutionary processes and underscore the power of integrative approaches that combine models with empirical data.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15Epub Date: 2024-06-18DOI: 10.1242/bio.060375
Rasmus Hejlesen, Freja Burkarl Scheffler, Clara Garfiel Byrge, Kasper Kjær-Sørensen, Claus Oxvig, Angela Fago, Hans Malte
Zebrafish have become a widely used vertebrate model in physiology and reliable measures of their metabolic rate are needed. We have developed a 3D-printed respirometer and swim tunnel system and used it for obtaining accurate measurement of standard metabolic rate (SMR) and maximal, aerobic metabolic rate (MMR) in zebrafish under rest and maximal exercise, respectively. We compared a slow (stepwise) protocol to a fast (continuous) protocol for determining MMR. The fast protocol yielded slightly (but not significantly) higher oxygen consumption rates than the slow protocol and the data, in contrast to the slow protocol, followed a normal distribution. These findings point to the fast protocol as a fast and reliable method for obtaining accurate values of MMR in zebrafish. We make the 3D drawings for printing the system available to researchers, to help streamline the field of metabolic research in zebrafish and other smaller fish species.
{"title":"Assessing metabolic rates in zebrafish using a 3D-printed intermittent-flow respirometer and swim tunnel system.","authors":"Rasmus Hejlesen, Freja Burkarl Scheffler, Clara Garfiel Byrge, Kasper Kjær-Sørensen, Claus Oxvig, Angela Fago, Hans Malte","doi":"10.1242/bio.060375","DOIUrl":"10.1242/bio.060375","url":null,"abstract":"<p><p>Zebrafish have become a widely used vertebrate model in physiology and reliable measures of their metabolic rate are needed. We have developed a 3D-printed respirometer and swim tunnel system and used it for obtaining accurate measurement of standard metabolic rate (SMR) and maximal, aerobic metabolic rate (MMR) in zebrafish under rest and maximal exercise, respectively. We compared a slow (stepwise) protocol to a fast (continuous) protocol for determining MMR. The fast protocol yielded slightly (but not significantly) higher oxygen consumption rates than the slow protocol and the data, in contrast to the slow protocol, followed a normal distribution. These findings point to the fast protocol as a fast and reliable method for obtaining accurate values of MMR in zebrafish. We make the 3D drawings for printing the system available to researchers, to help streamline the field of metabolic research in zebrafish and other smaller fish species.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 6","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212631/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The mammary gland is a unique organ as most of its development occurs after birth through stages of proliferation, differentiation and apoptosis that are tightly regulated by circulating hormones and growth factors. Throughout development, hormonal cues induce the regulation of different pathways, ultimately leading to differential transcription and expression of genes involved in this process, but also in the activation or inhibition of post-transcriptional mechanisms of regulation. However, the role of microRNAs (miRNAs) in the different phases of mammary gland remodeling is still poorly understood. The objectives of this study were to analyze the expression of miRNA in key stages of mammary gland development in mice and to determine whether it could be associated with hormonal variation between stages. To do so, miRNAs were isolated from mouse mammary glands at stages of adulthood, pregnancy, lactation and involution, and sequenced. Results showed that 490, 473, 419, and 460 miRNAs are detected in adult, pregnant, lactating and involuting mice, respectively, most of them being common to all four groups, and 58 unique to one stage. Most genes could be divided into six clusters of expression, including two encompassing the highest number of miRNA (clusters 1 and 3) and showing opposite profiles of expression, reaching a peak at adulthood and valley at lactation, or showing the lowest expression at adulthood and peaking at lactation. GO and KEGG analyses suggest that the miRNAs differentially expressed between stages influence the expression of targets associated with mammary gland homeostasis and hormone regulation. To further understand the links between miRNA expression and hormones involved in mammary gland development, miRNAs were then sequenced in breast cells exposed to estradiol, progesterone, prolactin and oxytocin. Four, 38, 24 and 66 miRNAs were associated with progesterone, estradiol, prolactin, and oxytocin exposure, respectively. Finally, when looking at miRNAs modulated by the hormones, differentially expressed during mammary gland development, and having a pattern of expression that could be correlated with the relative levels of hormones known to be found in vivo, 16 miRNAs were identified as likely regulated by circulating hormones. Overall, our study brings a better understanding of the regulation of miRNAs throughout mammary gland development and suggests that there is a relationship between their expression and the main hormones involved in mammary gland development. Future studies will examine this role more in detail.
{"title":"Hormonal regulation of miRNA during mammary gland development.","authors":"Cameron Confuorti, Maritza Jaramillo, Isabelle Plante","doi":"10.1242/bio.060308","DOIUrl":"10.1242/bio.060308","url":null,"abstract":"<p><p>The mammary gland is a unique organ as most of its development occurs after birth through stages of proliferation, differentiation and apoptosis that are tightly regulated by circulating hormones and growth factors. Throughout development, hormonal cues induce the regulation of different pathways, ultimately leading to differential transcription and expression of genes involved in this process, but also in the activation or inhibition of post-transcriptional mechanisms of regulation. However, the role of microRNAs (miRNAs) in the different phases of mammary gland remodeling is still poorly understood. The objectives of this study were to analyze the expression of miRNA in key stages of mammary gland development in mice and to determine whether it could be associated with hormonal variation between stages. To do so, miRNAs were isolated from mouse mammary glands at stages of adulthood, pregnancy, lactation and involution, and sequenced. Results showed that 490, 473, 419, and 460 miRNAs are detected in adult, pregnant, lactating and involuting mice, respectively, most of them being common to all four groups, and 58 unique to one stage. Most genes could be divided into six clusters of expression, including two encompassing the highest number of miRNA (clusters 1 and 3) and showing opposite profiles of expression, reaching a peak at adulthood and valley at lactation, or showing the lowest expression at adulthood and peaking at lactation. GO and KEGG analyses suggest that the miRNAs differentially expressed between stages influence the expression of targets associated with mammary gland homeostasis and hormone regulation. To further understand the links between miRNA expression and hormones involved in mammary gland development, miRNAs were then sequenced in breast cells exposed to estradiol, progesterone, prolactin and oxytocin. Four, 38, 24 and 66 miRNAs were associated with progesterone, estradiol, prolactin, and oxytocin exposure, respectively. Finally, when looking at miRNAs modulated by the hormones, differentially expressed during mammary gland development, and having a pattern of expression that could be correlated with the relative levels of hormones known to be found in vivo, 16 miRNAs were identified as likely regulated by circulating hormones. Overall, our study brings a better understanding of the regulation of miRNAs throughout mammary gland development and suggests that there is a relationship between their expression and the main hormones involved in mammary gland development. Future studies will examine this role more in detail.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190577/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15Epub Date: 2024-06-18DOI: 10.1242/bio.060412
Arindam Ray, Yashashwinee Rai, Maneesha S Inamdar
Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.
{"title":"The Endosomal Sorting Complex, ESCRT, has diverse roles in blood progenitor maintenance, lineage choice and immune response.","authors":"Arindam Ray, Yashashwinee Rai, Maneesha S Inamdar","doi":"10.1242/bio.060412","DOIUrl":"10.1242/bio.060412","url":null,"abstract":"<p><p>Most hematological malignancies are associated with reduced expression of one or more components of the Endosomal Sorting Complex Required for Transport (ESCRT). However, the roles of ESCRT in stem cell and progenitor maintenance are not resolved. Parsing signaling pathways in relation to the canonical role of ESCRT poses a challenge. The Drosophila hematopoietic organ, the larval lymph gland, provides a path to dissect the roles of cellular trafficking pathways such as ESCRT in blood development and maintenance. Drosophila has 13 core ESCRT components. Knockdown of individual ESCRTs showed that only Vps28 and Vp36 were required in all lymph gland progenitors. Using the well-conserved ESCRT-II complex as an example of the range of phenotypes seen upon ESCRT depletion, we show that ESCRTs have cell-autonomous as well as non-autonomous roles in progenitor maintenance and differentiation. ESCRT depletion also sensitized posterior lobe progenitors to respond to immunogenic wasp infestation. We also identify key heterotypic roles for ESCRT in position-dependent control of Notch activation to suppress crystal cell differentiation. Our study shows that the cargo sorting machinery determines the identity of progenitors and their adaptability to the dynamic microenvironment. These mechanisms for control of cell fate may tailor developmental diversity in multiple contexts.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212638/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15Epub Date: 2024-06-06DOI: 10.1242/bio.060455
Marius Hoppe, Caroline Spratte, Frederike D Hanke, Kenneth Sørensen
The common sunfish (Lepomis gibbosus) likely relies on vision for many vital behaviors that require the perception of small objects such as detection of prey items or body marks of conspecifics. A previous study documented the single target acuity (STA) for stationary targets. Under many, if not most, circumstances, however, objects of interest are moving, which is why the current study tested the effect of the ecologically relevant parameter motion on sunfish STA. The STA was determined in two sunfish for targets moving randomly at a velocity of 3.4 deg/s. The STA for moving targets (0.144±0.002 deg) was equal to the STA for stationary targets obtained from the same fish individuals under the experimental conditions of this/the previous study. Our results contribute to a comprehensive understanding of fish vision, extending the large data set available on grating acuity.
普通太阳鱼(Lepomis gibbosus)的许多重要行为可能都需要依靠视觉来感知小物体,如发现猎物或同类的身体标记。之前的一项研究记录了对静止目标的单目标敏锐度(STA)。然而,在很多情况下,甚至是大多数情况下,感兴趣的物体都是运动的,这就是为什么本研究要测试生态相关参数运动对太阳鱼单个目标敏锐度的影响。我们测定了两条太阳鱼以 3.4 度/秒的速度随机移动目标时的 STA。运动目标的 STA(0.144±0.002 度)与在本研究/前一项研究的实验条件下从相同鱼类个体获得的静止目标的 STA 相等。我们的研究结果有助于全面了解鱼类的视觉,并扩展了现有的大量光栅敏锐度数据集。
{"title":"Single target acuity for moving targets in the common sunfish (Lepomis gibbosus).","authors":"Marius Hoppe, Caroline Spratte, Frederike D Hanke, Kenneth Sørensen","doi":"10.1242/bio.060455","DOIUrl":"10.1242/bio.060455","url":null,"abstract":"<p><p>The common sunfish (Lepomis gibbosus) likely relies on vision for many vital behaviors that require the perception of small objects such as detection of prey items or body marks of conspecifics. A previous study documented the single target acuity (STA) for stationary targets. Under many, if not most, circumstances, however, objects of interest are moving, which is why the current study tested the effect of the ecologically relevant parameter motion on sunfish STA. The STA was determined in two sunfish for targets moving randomly at a velocity of 3.4 deg/s. The STA for moving targets (0.144±0.002 deg) was equal to the STA for stationary targets obtained from the same fish individuals under the experimental conditions of this/the previous study. Our results contribute to a comprehensive understanding of fish vision, extending the large data set available on grating acuity.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-15Epub Date: 2024-06-25DOI: 10.1242/bio.060420
Eimear Byrne, Robert D Johnston, David Kilroy, Sourav Bhattacharjee
The supracondylar foramen with a (seemingly) osseous peripheral arch noticed on the medio-distal feline humeri had remained disputed among anatomists. Some scholars have argued in favor of homology between this foramen and the supracondyloid foramen formed in presence of the ligament of Struthers in humans. Other theories include its presence as a retinaculum holding the median nerve and brachial artery to their anatomical position in a flexed elbow. Unfortunately, these theories lack investigative rigor. The emergence of non-invasive imaging modalities, such as micro-computed tomography, has enabled researchers to inspect the internal anatomy of bones without dismantling them. Thus, a micro-computed tomographic investigation was conducted on three feline (Felis catus) humeri specimens while the internal anatomy of the supracondylar foramina was examined. Unlike the humerus, the thin peripheral arch of the feline supracondylar foramen failed to elicit any osseous trabeculae or foci of calcification. While adhering to the humeral periosteum at its origin, the non-osseous arch, typical of a muscular tendon, attaches into the bony saddle related to the medial humeral epicondyle suggestive of a tendon or aponeurotic extension of a (vestigial) brachial muscle, with the coracobrachialis longus emerging to be the most likely candidate.
{"title":"An arch worth revisiting: a study on the feline humeral supracondylar foramen and its evolutionary significance.","authors":"Eimear Byrne, Robert D Johnston, David Kilroy, Sourav Bhattacharjee","doi":"10.1242/bio.060420","DOIUrl":"10.1242/bio.060420","url":null,"abstract":"<p><p>The supracondylar foramen with a (seemingly) osseous peripheral arch noticed on the medio-distal feline humeri had remained disputed among anatomists. Some scholars have argued in favor of homology between this foramen and the supracondyloid foramen formed in presence of the ligament of Struthers in humans. Other theories include its presence as a retinaculum holding the median nerve and brachial artery to their anatomical position in a flexed elbow. Unfortunately, these theories lack investigative rigor. The emergence of non-invasive imaging modalities, such as micro-computed tomography, has enabled researchers to inspect the internal anatomy of bones without dismantling them. Thus, a micro-computed tomographic investigation was conducted on three feline (Felis catus) humeri specimens while the internal anatomy of the supracondylar foramina was examined. Unlike the humerus, the thin peripheral arch of the feline supracondylar foramen failed to elicit any osseous trabeculae or foci of calcification. While adhering to the humeral periosteum at its origin, the non-osseous arch, typical of a muscular tendon, attaches into the bony saddle related to the medial humeral epicondyle suggestive of a tendon or aponeurotic extension of a (vestigial) brachial muscle, with the coracobrachialis longus emerging to be the most likely candidate.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15Epub Date: 2024-05-21DOI: 10.1242/bio.060271
Haiqiong Chen, Rinse de Boer, Arjen M Krikken, Fei Wu, Ida van der Klei
Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.
{"title":"Hansenula polymorpha cells lacking the ER-localized peroxins Pex23 or Pex29 show defects in mitochondrial function and morphology.","authors":"Haiqiong Chen, Rinse de Boer, Arjen M Krikken, Fei Wu, Ida van der Klei","doi":"10.1242/bio.060271","DOIUrl":"10.1242/bio.060271","url":null,"abstract":"<p><p>Pex23 family proteins localize to the endoplasmic reticulum and play a role in peroxisome and lipid body formation. The yeast Hansenula polymorpha contains four members: Pex23, Pex24, Pex29 and Pex32. We previously showed that loss of Pex24 or Pex32 results in severe peroxisomal defects, caused by reduced peroxisome-endoplasmic reticulum contact sites. We now analyzed the effect of the absence of all four Pex23 family proteins on other cell organelles. Vacuoles were normal in all four deletion strains. The number of lipid droplets was reduced in pex23 and pex29, but not in pex24 and pex32 cells, indicating that peroxisome and lipid droplet formation require different Pex23 family proteins in H. polymorpha. In pex23 and pex29 cells mitochondria were fragmented and clustered accompanied by reduced levels of the fusion protein Fzo1. Deletion of DNM1 suppressed the morphological phenotype of pex23 and pex29 cells, suggesting that mitochondrial fusion is affected. pex23 and pex29 cells showed retarded growth and reduced mitochondrial activities. The growth defect was partially suppressed by DNM1 deletion as well as by an artificial mitochondrion-endoplasmic reticulum tether. Hence, the absence of Pex23 family proteins may influence mitochondrion-endoplasmic reticulum contact sites.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15Epub Date: 2024-05-16DOI: 10.1242/bio.060336
Thomas Cansse, Luc Lens, Grace J Sutton, Jonathan A Botha, John P Y Arnould
Despite its wide distribution, relatively little is known of the foraging ecology and habitat use of the black-faced cormorant (Phalacrocorax fuscescens), an Australian endemic seabird. Such information is urgently required in view of the rapid oceanic warming of south-eastern Australia, the stronghold of the species. The present study used a combination of opportunistically collected regurgitates and GPS/dive behaviour data loggers to investigate diet, foraging behaviour and habitat-use of black-faced cormorants during four chick-rearing periods (2020-2023) on Notch Island, northern Bass Strait. Observed prey species were almost exclusively benthic (95%), which is consistent with the predominantly benthic diving behaviour recorded. Males foraged at deeper depths than females (median depth males: 18 m; median depth females: 8 m), presumably due to a greater physiological diving capacity derived from their larger body size. This difference in dive depths was associated with sexual segregation of foraging locations, with females predominantly frequenting shallower areas closer to the coastline. These findings have strong implications for the management of the species, as impacts of environmental change may disproportionally affect the foraging range of one sex and, thereby, reproductive success.
{"title":"Foraging behaviour and habitat use during chick-rearing in the Australian endemic black-faced cormorant (Phalacrocorax fuscescens).","authors":"Thomas Cansse, Luc Lens, Grace J Sutton, Jonathan A Botha, John P Y Arnould","doi":"10.1242/bio.060336","DOIUrl":"10.1242/bio.060336","url":null,"abstract":"<p><p>Despite its wide distribution, relatively little is known of the foraging ecology and habitat use of the black-faced cormorant (Phalacrocorax fuscescens), an Australian endemic seabird. Such information is urgently required in view of the rapid oceanic warming of south-eastern Australia, the stronghold of the species. The present study used a combination of opportunistically collected regurgitates and GPS/dive behaviour data loggers to investigate diet, foraging behaviour and habitat-use of black-faced cormorants during four chick-rearing periods (2020-2023) on Notch Island, northern Bass Strait. Observed prey species were almost exclusively benthic (95%), which is consistent with the predominantly benthic diving behaviour recorded. Males foraged at deeper depths than females (median depth males: 18 m; median depth females: 8 m), presumably due to a greater physiological diving capacity derived from their larger body size. This difference in dive depths was associated with sexual segregation of foraging locations, with females predominantly frequenting shallower areas closer to the coastline. These findings have strong implications for the management of the species, as impacts of environmental change may disproportionally affect the foraging range of one sex and, thereby, reproductive success.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 5","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}