Pub Date : 2014-01-01Epub Date: 2014-06-09DOI: 10.1155/2014/674286
B M Vastrad, S E Neelagund
Neomycin production of Streptomyces fradiae NCIM 2418 was optimized by using response surface methodology (RSM), which is powerful mathematical approach comprehensively applied in the optimization of solid state fermentation processes. In the first step of optimization, with Placket-Burman design, ammonium chloride, sodium nitrate, L-histidine, and ammonium nitrate were established to be the crucial nutritional factors affecting neomycin production significantly. In the second step, a 2(4) full factorial central composite design and RSM were applied to determine the optimal concentration of significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important nutrients for the maximum were obtained as follows: ammonium chloride 2.00%, sodium nitrate 1.50%, L-histidine 0.250%, and ammonium nitrate 0.250% with a predicted value of maximum neomycin production of 20,000 g kg(-1) dry coconut oil cake. Under the optimal condition, the practical neomycin production was 19,642 g kg(-1) dry coconut oil cake. The determination coefficient (R (2)) was 0.9232, which ensures an acceptable admissibility of the model.
采用响应面法(RSM)对传统链霉菌NCIM 2418生产新霉素进行了优化。响应面法是一种综合应用于固态发酵工艺优化的强大数学方法。在第一步优化中,采用Placket-Burman设计,确定了氯化铵、硝酸钠、l -组氨酸和硝酸铵是影响新霉素产量的关键营养因子。第二步,采用2(4)全因子中心组合设计和RSM来确定显著变量的最佳浓度。通过对实验数据的多元回归分析,确定了一个二阶多项式。得到的重要营养物质的最适用量为:氯化铵2.00%、硝酸钠1.50%、l -组氨酸0.250%、硝酸铵0.250%,预计最大新霉素产量为2万g kg(-1)干椰子油饼。在此条件下,实际新霉素产量为19642 g kg(-1)干椰子油饼。决定系数(R(2))为0.9232,保证了模型的可接受性。
{"title":"Optimization of Medium Composition for the Production of Neomycin by Streptomyces fradiae NCIM 2418 in Solid State Fermentation.","authors":"B M Vastrad, S E Neelagund","doi":"10.1155/2014/674286","DOIUrl":"https://doi.org/10.1155/2014/674286","url":null,"abstract":"<p><p>Neomycin production of Streptomyces fradiae NCIM 2418 was optimized by using response surface methodology (RSM), which is powerful mathematical approach comprehensively applied in the optimization of solid state fermentation processes. In the first step of optimization, with Placket-Burman design, ammonium chloride, sodium nitrate, L-histidine, and ammonium nitrate were established to be the crucial nutritional factors affecting neomycin production significantly. In the second step, a 2(4) full factorial central composite design and RSM were applied to determine the optimal concentration of significant variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. The optimum values for the important nutrients for the maximum were obtained as follows: ammonium chloride 2.00%, sodium nitrate 1.50%, L-histidine 0.250%, and ammonium nitrate 0.250% with a predicted value of maximum neomycin production of 20,000 g kg(-1) dry coconut oil cake. Under the optimal condition, the practical neomycin production was 19,642 g kg(-1) dry coconut oil cake. The determination coefficient (R (2)) was 0.9232, which ensures an acceptable admissibility of the model. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"674286"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/674286","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32492202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-01-21DOI: 10.1155/2014/495384
Romana Tabassum, Shazia Khaliq, Muhammad Ibrahim Rajoka, Foster Agblevor
The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p , Y p/s , Y p/X , and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL(-1) and 19.5 IU mg(-1) protein, respectively. The optimum temperature and pH for α -amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol(-1), respectively. Both enthalpies (ΔH (∗)) and entropies of activation (ΔS (∗)) for denaturation of α -amylase were lower than those reported for other thermostable α -amylases.
{"title":"Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics.","authors":"Romana Tabassum, Shazia Khaliq, Muhammad Ibrahim Rajoka, Foster Agblevor","doi":"10.1155/2014/495384","DOIUrl":"https://doi.org/10.1155/2014/495384","url":null,"abstract":"<p><p>The thermodynamic and kinetic properties of solids state raw starch digesting alpha amylase from newly isolated Bacillus licheniformis RT7PE1 strain were studied. The kinetic values Q p , Y p/s , Y p/X , and q p were proved to be best with 15% wheat bran. The molecular weight of purified enzyme was 112 kDa. The apparent K m and V max values for starch were 3.4 mg mL(-1) and 19.5 IU mg(-1) protein, respectively. The optimum temperature and pH for α -amylase were 55°C, 9.8. The half-life of enzyme at 95°C was 17h. The activation and denaturation activation energies were 45.2 and 41.2 kJ mol(-1), respectively. Both enthalpies (ΔH (∗)) and entropies of activation (ΔS (∗)) for denaturation of α -amylase were lower than those reported for other thermostable α -amylases. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"495384"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/495384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32168828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-07-22DOI: 10.1155/2014/151952
Krishna Khairnar, Preeti Pal, Rajshree H Chandekar, Waman N Paunikar
Activated sludge plants (ASP) are associated with the stable foaming problem worldwide. Apart from the physical and chemical treatment methods, biological treatment method has been least explored and may prove to be a novel and ecofriendly approach to tackle the problem of stable foam formation. In ASP Nocardia species are commonly found and are one of the major causes for forming sticky and stable foam. This study describes the isolation and characterization of three Nocardia bacteriophages NOC1, NOC2, and NOC3 for the control of Nocardia species. The bacteriophages isolated in this study have shown promising results in controlling foam producing bacterial growth under laboratory conditions, suggesting that it may prove useful in the field as an alternative biocontrol agent to reduce the foaming problem. To the best of our knowledge to date no work has been published from India related to biological approach for the control of foaming.
{"title":"Isolation and characterization of bacteriophages infecting nocardioforms in wastewater treatment plant.","authors":"Krishna Khairnar, Preeti Pal, Rajshree H Chandekar, Waman N Paunikar","doi":"10.1155/2014/151952","DOIUrl":"https://doi.org/10.1155/2014/151952","url":null,"abstract":"<p><p>Activated sludge plants (ASP) are associated with the stable foaming problem worldwide. Apart from the physical and chemical treatment methods, biological treatment method has been least explored and may prove to be a novel and ecofriendly approach to tackle the problem of stable foam formation. In ASP Nocardia species are commonly found and are one of the major causes for forming sticky and stable foam. This study describes the isolation and characterization of three Nocardia bacteriophages NOC1, NOC2, and NOC3 for the control of Nocardia species. The bacteriophages isolated in this study have shown promising results in controlling foam producing bacterial growth under laboratory conditions, suggesting that it may prove useful in the field as an alternative biocontrol agent to reduce the foaming problem. To the best of our knowledge to date no work has been published from India related to biological approach for the control of foaming. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"151952"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/151952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32600090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw.
羧甲基纤维素酶(CMCase)为实现利用稻草作为纤维素生物质的巨大效益提供了关键机会。在来自不同生态位的80株分离菌中,选择了一株被鉴定为芽孢杆菌sp. 313SI的菌株,在静止和振动生长条件下生产CMCase。在两阶段预处理中,先用0.5 M KOH处理秸秆脱除木质素,再用0.1 N H2SO4处理秸秆脱除半纤维素。采用1% (w/v)预处理稻秆,接种量为1% (v/v), pH为8.0,固定条件下生长60 h,羧甲基纤维素酶活性最高为3.08 U/mL;采用0.75% (w/v)预处理底物,接种量为0.4% (v/v), pH为8.0,接种量为30℃,振荡条件下生长48 h,羧甲基纤维素酶活性最高为4.15 U/mL。在两种培养条件下,以羧甲基纤维素为最佳碳源,以硫酸铵和硝酸铵为最佳氮源。本研究为芽孢杆菌313SI利用预处理稻草生产CMCase的优化条件提供了有益的数据。
{"title":"Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions.","authors":"Varsha Goyal, Arpana Mittal, Anish Kumari Bhuwal, Gulab Singh, Anita Yadav, Neeraj Kumar Aggarwal","doi":"10.1155/2014/651839","DOIUrl":"https://doi.org/10.1155/2014/651839","url":null,"abstract":"<p><p>Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"651839"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/651839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32374587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-09-17DOI: 10.1155/2014/698587
Saoussen Ben Khedher, Samir Jaoua, Nabil Zouari
The overcoming of catabolite repression, in bioinsecticides production by sporeless Bacillus thuringiensis strain S22 was investigated into fully controlled 3 L fermenter, using glucose based medium. When applying adequate oxygen profile throughout the fermentation period (75% oxygen saturation), it was possible to partially overcome the catabolite repression, normally occurring at high initial glucose concentrations (30 and 40 g/L glucose). Moreover, toxin production yield by sporeless strain S22 was markedly improved by the adoption of the fed-batch intermittent cultures technology. With 22.5 g/L glucose used into culture medium, toxin production was improved by about 36% when applying fed-batch culture compared to one batch. Consequently, the proposed fed-batch strategy was efficient for the overcome of the carbon catabolite repression. So, it was possible to overproduce insecticidal crystal proteins into highly concentrated medium.
{"title":"Overcome of Carbon Catabolite Repression of Bioinsecticides Production by Sporeless Bacillus thuringiensis through Adequate Fermentation Technology.","authors":"Saoussen Ben Khedher, Samir Jaoua, Nabil Zouari","doi":"10.1155/2014/698587","DOIUrl":"10.1155/2014/698587","url":null,"abstract":"<p><p>The overcoming of catabolite repression, in bioinsecticides production by sporeless Bacillus thuringiensis strain S22 was investigated into fully controlled 3 L fermenter, using glucose based medium. When applying adequate oxygen profile throughout the fermentation period (75% oxygen saturation), it was possible to partially overcome the catabolite repression, normally occurring at high initial glucose concentrations (30 and 40 g/L glucose). Moreover, toxin production yield by sporeless strain S22 was markedly improved by the adoption of the fed-batch intermittent cultures technology. With 22.5 g/L glucose used into culture medium, toxin production was improved by about 36% when applying fed-batch culture compared to one batch. Consequently, the proposed fed-batch strategy was efficient for the overcome of the carbon catabolite repression. So, it was possible to overproduce insecticidal crystal proteins into highly concentrated medium. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"698587"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/698587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32741601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-07-24DOI: 10.1155/2014/319397
Fakhra Amin, Bilqees Bano
Cystatins constitute a superfamily of homologous proteins. The major role of cystatins is to regulate the unwanted proteolysis and to protect the organism against endogenous proteases released from lysosomes, invading microorganisms and parasites that use cysteine proteases to enter the body. Imbalance in regulation of proteolytic activity may lead to a wide range of human diseases. An enormous progress has been made in understanding of protein degradation process under normal and pathological conditions; infact proteases are now clearly viewed as important drug targets. Fluoxetine a selective serotonin reuptake inhibitor (SSRI) is an antidepressant. It is used to treat major depressive disorders. In the present study binding of fluoxetine to cystatin was studied by UV and fluorescence quenching technique. Intrinsic fluorescence of fluoxetine complexed with purified buffalo brain cystatin (BC) was measured by selectively exciting the tryptophan residues. Gradual quenching was observed on complex formation. When cystatin was added to fluoxetine solutions at a molar ratio of 1 : 0.5, it not only quenched more than half of its fluorescence but also reduced the activity of cystatin. Stern-Volmer plots obtained from experiments carried out at 25(°)C showed the quenching of fluorescence to be a collisional phenomenon. Our results suggest the prime binding site for fluoxetine on BC to be at or near tryptophan residues. Fluoxetine quenched the fluorescence by a static process, which specifically indicates the formation of a complex.
{"title":"Antidepressant Fluoxetine Modulates the In Vitro Inhibitory Activity of Buffalo Brain Cystatin: A Thermodynamic Study Using UV and Fluorescence Techniques.","authors":"Fakhra Amin, Bilqees Bano","doi":"10.1155/2014/319397","DOIUrl":"https://doi.org/10.1155/2014/319397","url":null,"abstract":"<p><p>Cystatins constitute a superfamily of homologous proteins. The major role of cystatins is to regulate the unwanted proteolysis and to protect the organism against endogenous proteases released from lysosomes, invading microorganisms and parasites that use cysteine proteases to enter the body. Imbalance in regulation of proteolytic activity may lead to a wide range of human diseases. An enormous progress has been made in understanding of protein degradation process under normal and pathological conditions; infact proteases are now clearly viewed as important drug targets. Fluoxetine a selective serotonin reuptake inhibitor (SSRI) is an antidepressant. It is used to treat major depressive disorders. In the present study binding of fluoxetine to cystatin was studied by UV and fluorescence quenching technique. Intrinsic fluorescence of fluoxetine complexed with purified buffalo brain cystatin (BC) was measured by selectively exciting the tryptophan residues. Gradual quenching was observed on complex formation. When cystatin was added to fluoxetine solutions at a molar ratio of 1 : 0.5, it not only quenched more than half of its fluorescence but also reduced the activity of cystatin. Stern-Volmer plots obtained from experiments carried out at 25(°)C showed the quenching of fluorescence to be a collisional phenomenon. Our results suggest the prime binding site for fluoxetine on BC to be at or near tryptophan residues. Fluoxetine quenched the fluorescence by a static process, which specifically indicates the formation of a complex. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"319397"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/319397","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32625348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-04-24DOI: 10.1155/2014/841353
Vinod Kumar, Gopal Singh, Punesh Sangwan, A K Verma, Sanjeev Agrawal
β -Propeller phytases (BPPhy) are widely distributed in nature and play a major role in phytate-phosphorus cycling. In the present study, a BPPhy gene from Bacillus licheniformis strain was expressed in E. coli with a phytase activity of 1.15 U/mL and specific activity of 0.92 U/mg proteins. The expressed enzyme represented a full length ORF "PhyPB13" of 381 amino acid residues and differs by 3 residues from the closest similar existing BPPhy sequences. The PhyPB13 sequence was characterized in silico using various bioinformatic tools to better understand structural, functional, and evolutionary aspects of BPPhy class by multiple sequence alignment and homology search, phylogenetic tree construction, variation in biochemical features, and distribution of motifs and superfamilies. In all sequences, conserved sites were observed toward their N-terminus and C-terminus. Cysteine was not present in the sequence. Overall, three major clusters were observed in phylogenetic tree with variation in biophysical characteristics. A total of 10 motifs were reported with motif "1" observed in all 44 protein sequences and might be used for diversity and expression analysis of BPPhy enzymes. This study revealed important sequence features of BPPhy and pave a way for determining catalytic mechanism and selection of phytase with desirable characteristics.
{"title":"Cloning, Sequencing, and In Silico Analysis of β-Propeller Phytase Bacillus licheniformis Strain PB-13.","authors":"Vinod Kumar, Gopal Singh, Punesh Sangwan, A K Verma, Sanjeev Agrawal","doi":"10.1155/2014/841353","DOIUrl":"https://doi.org/10.1155/2014/841353","url":null,"abstract":"<p><p>β -Propeller phytases (BPPhy) are widely distributed in nature and play a major role in phytate-phosphorus cycling. In the present study, a BPPhy gene from Bacillus licheniformis strain was expressed in E. coli with a phytase activity of 1.15 U/mL and specific activity of 0.92 U/mg proteins. The expressed enzyme represented a full length ORF \"PhyPB13\" of 381 amino acid residues and differs by 3 residues from the closest similar existing BPPhy sequences. The PhyPB13 sequence was characterized in silico using various bioinformatic tools to better understand structural, functional, and evolutionary aspects of BPPhy class by multiple sequence alignment and homology search, phylogenetic tree construction, variation in biochemical features, and distribution of motifs and superfamilies. In all sequences, conserved sites were observed toward their N-terminus and C-terminus. Cysteine was not present in the sequence. Overall, three major clusters were observed in phylogenetic tree with variation in biophysical characteristics. A total of 10 motifs were reported with motif \"1\" observed in all 44 protein sequences and might be used for diversity and expression analysis of BPPhy enzymes. This study revealed important sequence features of BPPhy and pave a way for determining catalytic mechanism and selection of phytase with desirable characteristics. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"841353"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/841353","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32373104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-04-01DOI: 10.1155/2014/317092
Anderson Baraldo Junior, Diogo G Borges, Paulo W Tardioli, Cristiane S Farinas
β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications.
{"title":"Characterization of β -Glucosidase Produced by Aspergillus niger under Solid-State Fermentation and Partially Purified Using MANAE-Agarose.","authors":"Anderson Baraldo Junior, Diogo G Borges, Paulo W Tardioli, Cristiane S Farinas","doi":"10.1155/2014/317092","DOIUrl":"https://doi.org/10.1155/2014/317092","url":null,"abstract":"<p><p>β -Glucosidase (BGL) is a hydrolytic enzyme with specificity for a wide variety of glycoside substrates, being an enzyme with a large range of biotechnological applications. However, enzyme properties can be different depending both on the microorganism and the cultivation procedure employed. Therefore, in order to explore potential biocatalytical applications of novel enzymes, their characterization is essential. In this work, a BGL synthesized by a selected strain of Aspergillus niger cultivated under solid-state fermentation (SSF) was partially purified and fully characterized in terms of optimum pH, temperature, and thermostability. The single-step purification using MANAE-agarose in a chromatographic column yielded an enzyme solution with specific activity (17.1 IU/mg protein) adequate for the characterization procedures. Electrophoresis SDS-PAGE and size-exclusion chromatography analysis resulted in an estimated molecular mass of 60 kDa. Higher enzyme activities were found in the range between 40 and 65°C and between pH 4 and 5.5, indicating an interesting characteristic for application in the hydrolysis of lignocellulosic biomass for biofuels production. Thermostability studies of purified BGL resulted in half-lives at 37°C of 56.3 h and at 50°C of 5.4 h. These results provide support for further studies of this enzyme towards revealing its potential biotechnological applications. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"317092"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/317092","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32435011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-11-17DOI: 10.1155/2014/109249
Aditi Dua, Kishor Chauhan, Hilor Pathak
Chemical synthesis of indigo poses harsh environmental hazards and adverse human health effects. This necessitates an environment-friendly and producer-friendly approach for indigo production. The present study was thus significant as it reports an indigenously isolated potential indigo pigment producing culture identified as Pseudomonas sp. HAV-1 with noteworthy antioxidant property. The bioindigo pigment was characterized using various analytical techniques. The pigment production was enhanced from 412 μg mL(-1) to 700 μg mL(-1) by optimizing the growth parameters. Furthermore, the antioxidant property of indigo pigment is hitherto unexplored. This property can significantly append to its therapeutic potential. The bioindigo pigment produced by Pseudomonas sp. HAV-1 depicted 2.2 μM ascorbic acid equivalent antioxidant property. More to the point, the present work addresses a footstep towards green production of indigo.
{"title":"Biotransformation of Indigo Pigment by Indigenously Isolated Pseudomonas sp. HAV-1 and Assessment of Its Antioxidant Property.","authors":"Aditi Dua, Kishor Chauhan, Hilor Pathak","doi":"10.1155/2014/109249","DOIUrl":"https://doi.org/10.1155/2014/109249","url":null,"abstract":"<p><p>Chemical synthesis of indigo poses harsh environmental hazards and adverse human health effects. This necessitates an environment-friendly and producer-friendly approach for indigo production. The present study was thus significant as it reports an indigenously isolated potential indigo pigment producing culture identified as Pseudomonas sp. HAV-1 with noteworthy antioxidant property. The bioindigo pigment was characterized using various analytical techniques. The pigment production was enhanced from 412 μg mL(-1) to 700 μg mL(-1) by optimizing the growth parameters. Furthermore, the antioxidant property of indigo pigment is hitherto unexplored. This property can significantly append to its therapeutic potential. The bioindigo pigment produced by Pseudomonas sp. HAV-1 depicted 2.2 μM ascorbic acid equivalent antioxidant property. More to the point, the present work addresses a footstep towards green production of indigo. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"109249"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/109249","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32889608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-05-05DOI: 10.1155/2014/272814
Monford Paul Abishek, Jay Patel, Anand Prem Rajan
A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come.
{"title":"Algae oil: a sustainable renewable fuel of future.","authors":"Monford Paul Abishek, Jay Patel, Anand Prem Rajan","doi":"10.1155/2014/272814","DOIUrl":"https://doi.org/10.1155/2014/272814","url":null,"abstract":"<p><p>A nonrenewable fuel like petroleum has been used from centuries and its usage has kept on increasing day by day. This also contributes to increased production of greenhouse gases contributing towards global issues like global warming. In order to meet environmental and economic sustainability, renewable, carbon neutral transport fuels are necessary. To meet these demands microalgae are the key source for production of biodiesel. These microalgae do produce oil from sunlight like plants but in a much more efficient manner. Biodiesel provides more environmental benefits, and being a renewable resource it has gained lot of attraction. However, the main obstacle to commercialization of biodiesel is its cost and feasibility. Biodiesel is usually used by blending with petro diesel, but it can also be used in pure form. Biodiesel is a sustainable fuel, as it is available throughout the year and can run any engine. It will satisfy the needs of the future generation to come. It will meet the demands of the future generation to come. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"272814"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/272814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32387175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}