Pub Date : 2014-01-01Epub Date: 2014-03-26DOI: 10.1155/2014/217030
Avilala Janardhan, Arthala Praveen Kumar, Buddolla Viswanath, D V R Saigopal, Golla Narasimha
An actinomycete was isolated from mangrove soil collected from Nellore region of Andhra Pradesh, India, and screened for its ability to produce bioactive compounds. The cultural, morphological, and biochemical characters and 16S rRNA sequencing suggest that the isolated strain is Nocardiopsis alba. The bioactive compounds produced by this strain were purified by column chromatography. The in vitro antioxidant capacity of the isolated compounds (fractions) was estimated and fraction F2 showed very near values to the standard ascorbic acid. The potential fraction obtained by column chromatography was subjected to HPLC for further purification, then this purified fraction F2 was examined by FTIR, NMR, and mass spectroscopy to elucidate its chemical structure. By spectral data, the structure of the isolated compound was predicted as "(Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy)anthracene-9,10-dione."
{"title":"Production of bioactive compounds by actinomycetes and their antioxidant properties.","authors":"Avilala Janardhan, Arthala Praveen Kumar, Buddolla Viswanath, D V R Saigopal, Golla Narasimha","doi":"10.1155/2014/217030","DOIUrl":"https://doi.org/10.1155/2014/217030","url":null,"abstract":"<p><p>An actinomycete was isolated from mangrove soil collected from Nellore region of Andhra Pradesh, India, and screened for its ability to produce bioactive compounds. The cultural, morphological, and biochemical characters and 16S rRNA sequencing suggest that the isolated strain is Nocardiopsis alba. The bioactive compounds produced by this strain were purified by column chromatography. The in vitro antioxidant capacity of the isolated compounds (fractions) was estimated and fraction F2 showed very near values to the standard ascorbic acid. The potential fraction obtained by column chromatography was subjected to HPLC for further purification, then this purified fraction F2 was examined by FTIR, NMR, and mass spectroscopy to elucidate its chemical structure. By spectral data, the structure of the isolated compound was predicted as \"(Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy)anthracene-9,10-dione.\" </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2014 ","pages":"217030"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/217030","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32310018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-04-17DOI: 10.1155/2013/435154
María A Martos, Emilce R Zubreski, Oscar A Garro, Roque A Hours
Wickerhamomyces anomalus is pectinolytic yeast isolated from citrus fruits peels in the province of Misiones, Argentine. In the present work, enzymes produced by this yeast strain were characterized, and polygalacturonase physicochemical properties were determined in order to evaluate the application of the supernatant in the maceration of potato tissues. W. anomalus was able to produce PG in liquid medium containing glucose and citrus pectin, whose mode of action was mainly of endo type. The supernatant did not exhibit esterase or lyase activity. No others enzymes, capable of hydrolyzing cell wall polymers, such as cellulases and xylanases, were detected. PG showed maximal activity at pH 4.5 and at temperature range between 40°C and 50°C. It was stable in the pH range from 3.0 to 6.0 and up to 50°C at optimum pH. The enzymatic extract macerated potato tissues efficiently. Volume of single cells increased with the agitation speed. The results observed make the enzymatic extract produced by W. anomalus appropriate for future application in food industry, mainly for the production of fruit nectars or mashed of vegetables such as potato or cassava, of regional interest in the province of Misiones, Argentine.
{"title":"Production of Pectinolytic Enzymes by the Yeast Wickerhanomyces anomalus Isolated from Citrus Fruits Peels.","authors":"María A Martos, Emilce R Zubreski, Oscar A Garro, Roque A Hours","doi":"10.1155/2013/435154","DOIUrl":"https://doi.org/10.1155/2013/435154","url":null,"abstract":"<p><p>Wickerhamomyces anomalus is pectinolytic yeast isolated from citrus fruits peels in the province of Misiones, Argentine. In the present work, enzymes produced by this yeast strain were characterized, and polygalacturonase physicochemical properties were determined in order to evaluate the application of the supernatant in the maceration of potato tissues. W. anomalus was able to produce PG in liquid medium containing glucose and citrus pectin, whose mode of action was mainly of endo type. The supernatant did not exhibit esterase or lyase activity. No others enzymes, capable of hydrolyzing cell wall polymers, such as cellulases and xylanases, were detected. PG showed maximal activity at pH 4.5 and at temperature range between 40°C and 50°C. It was stable in the pH range from 3.0 to 6.0 and up to 50°C at optimum pH. The enzymatic extract macerated potato tissues efficiently. Volume of single cells increased with the agitation speed. The results observed make the enzymatic extract produced by W. anomalus appropriate for future application in food industry, mainly for the production of fruit nectars or mashed of vegetables such as potato or cassava, of regional interest in the province of Misiones, Argentine.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"435154"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/435154","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31445161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biodegradable capacities of fungal strains of Fusarium oxysporum (DSMZ 2018) and Fusarium culmorum (DSMZ 1094) were tested towards racemic mixture of chiral 2-hydroxy-2-(ethoxyphenylphosphinyl) acetic acid-a compound with two stereogenic centres. The effectiveness of decomposition was dependent on external factors such as temperature and time of the process. Optimal conditions of complete mineralization were established. Both Fusarium species were able to biodegrade every isomer of tested compound at 30°C, but F. culmorum required 10 days and F. oxysporum 11 days to accomplish the process, which was continuously monitored using the (31)P NMR technique.
{"title":"Chiral phosphinate degradation by the fusarium species: scope and limitation of the process.","authors":"Natalia Kmiecik, Magdalena Klimek-Ochab, Małgorzata Brzezińska-Rodak, Paulina Majewska, Ewa Zymańczyk-Duda","doi":"10.1155/2013/927361","DOIUrl":"https://doi.org/10.1155/2013/927361","url":null,"abstract":"<p><p>Biodegradable capacities of fungal strains of Fusarium oxysporum (DSMZ 2018) and Fusarium culmorum (DSMZ 1094) were tested towards racemic mixture of chiral 2-hydroxy-2-(ethoxyphenylphosphinyl) acetic acid-a compound with two stereogenic centres. The effectiveness of decomposition was dependent on external factors such as temperature and time of the process. Optimal conditions of complete mineralization were established. Both Fusarium species were able to biodegrade every isomer of tested compound at 30°C, but F. culmorum required 10 days and F. oxysporum 11 days to accomplish the process, which was continuously monitored using the (31)P NMR technique. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"927361"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/927361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31943025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-21DOI: 10.1155/2013/383646
Javier Alonso Iserte, Betina Ines Stephan, Sandra Elizabeth Goñi, Cristina Silvia Borio, Pablo Daniel Ghiringhelli, Mario Enrique Lozano
Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus (10 × 10(4) nucleotides), Baculovirus (0.9 × 10(5) to 1.8 × 10(5) bp), Lactobacillus sp. (1 × 10(6) to 2 × 10(6) bp), and Pseudomonas sp. (4 × 10(6) to 7 × 10(6) bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members.
{"title":"Family-specific degenerate primer design: a tool to design consensus degenerated oligonucleotides.","authors":"Javier Alonso Iserte, Betina Ines Stephan, Sandra Elizabeth Goñi, Cristina Silvia Borio, Pablo Daniel Ghiringhelli, Mario Enrique Lozano","doi":"10.1155/2013/383646","DOIUrl":"https://doi.org/10.1155/2013/383646","url":null,"abstract":"<p><p>Designing degenerate PCR primers for templates of unknown nucleotide sequence may be a very difficult task. In this paper, we present a new method to design degenerate primers, implemented in family-specific degenerate primer design (FAS-DPD) computer software, for which the starting point is a multiple alignment of related amino acids or nucleotide sequences. To assess their efficiency, four different genome collections were used, covering a wide range of genomic lengths: Arenavirus (10 × 10(4) nucleotides), Baculovirus (0.9 × 10(5) to 1.8 × 10(5) bp), Lactobacillus sp. (1 × 10(6) to 2 × 10(6) bp), and Pseudomonas sp. (4 × 10(6) to 7 × 10(6) bp). In each case, FAS-DPD designed primers were tested computationally to measure specificity. Designed primers for Arenavirus and Baculovirus were tested experimentally. The method presented here is useful for designing degenerate primers on collections of related protein sequences, allowing detection of new family members.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":" ","pages":"383646"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/383646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40228637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-01-28DOI: 10.1155/2013/920759
A S Chauhan, N Srivastava, H K Kehri, B Sharma
Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at -20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.
{"title":"Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced.","authors":"A S Chauhan, N Srivastava, H K Kehri, B Sharma","doi":"10.1155/2013/920759","DOIUrl":"https://doi.org/10.1155/2013/920759","url":null,"abstract":"<p><p>Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at -20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"920759"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/920759","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31251767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-26DOI: 10.1155/2013/103960
Francisco Fábio Cavalcante Barros, Ana Paula Resende Simiqueli, Cristiano José de Andrade, Gláucia Maria Pastore
Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.
{"title":"Production of Enzymes from Agroindustrial Wastes by Biosurfactant-Producing Strains of Bacillus subtilis.","authors":"Francisco Fábio Cavalcante Barros, Ana Paula Resende Simiqueli, Cristiano José de Andrade, Gláucia Maria Pastore","doi":"10.1155/2013/103960","DOIUrl":"https://doi.org/10.1155/2013/103960","url":null,"abstract":"<p><p>Bacteria in the genus Bacillus are the source of several enzymes of current industrial interest. Hydrolases, such as amylases, proteases, and lipases, are the main enzymes consumed worldwide and have applications in a wide range of products and industrial processes. Fermentation processes by Bacillus subtilis using cassava wastewater as a substrate are reported in the technical literature; however, the same combination of microorganisms and this culture medium is limited or nonexistent. In this paper, the amylase, protease, and lipase production of ten Bacillus subtilis strains previously identified as biosurfactant producers in cassava wastewater was evaluated. The LB1a and LB5a strains were selected for analysis using a synthetic medium and cassava wastewater and were identified as good enzyme producers, especially of amylases and proteases. In addition, the enzymatic activity results indicate that cassava wastewater was better than the synthetic medium for the induction of these enzymes.</p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":" ","pages":"103960"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/103960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40228634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-11-14DOI: 10.1155/2013/725396
Isiaka Oluwole Oladele, Temitope Akinyemi Adewole
This work was carried out to investigate the influence of cow bone particle size distribution on the mechanical properties of polyester matrix composites in order to consider the suitability of the materials as biomaterials. Cow bone was procured from an abattoir, washed with water, and sun-dried for 4 weeks after which it was crushed with a sledge hammer and was further pulverized with laboratory ball mill. Sieve size analysis was carried out on the pulverized bone where it was sieved into three different sizes of 75, 106, and 300 μm sieve sizes. Composite materials were developed by casting them into tensile and flexural tests moulds using predetermined proportions of 2, 4, 6, and 8%. The samples after curing were striped from the moulds and were allowed to be further cured at room temperature for 3 weeks before tensile and flexural tests were performed on them. Both tensile and flexural strength were highly enhanced by 8 wt% from 75 μm while toughness was highly enhanced by 6 and 8 wt% from 300 μm. This shows that fine particles lead to improved strength while coarse particles lead to improved toughness. The results show that these materials are structurally compatible and are being developed from animal fibre based particle; it is expected to also aid the compatibility with the surface conditions as biomaterials.
{"title":"Influence of cow bone particle size distribution on the mechanical properties of cow bone-reinforced polyester composites.","authors":"Isiaka Oluwole Oladele, Temitope Akinyemi Adewole","doi":"10.1155/2013/725396","DOIUrl":"https://doi.org/10.1155/2013/725396","url":null,"abstract":"<p><p>This work was carried out to investigate the influence of cow bone particle size distribution on the mechanical properties of polyester matrix composites in order to consider the suitability of the materials as biomaterials. Cow bone was procured from an abattoir, washed with water, and sun-dried for 4 weeks after which it was crushed with a sledge hammer and was further pulverized with laboratory ball mill. Sieve size analysis was carried out on the pulverized bone where it was sieved into three different sizes of 75, 106, and 300 μm sieve sizes. Composite materials were developed by casting them into tensile and flexural tests moulds using predetermined proportions of 2, 4, 6, and 8%. The samples after curing were striped from the moulds and were allowed to be further cured at room temperature for 3 weeks before tensile and flexural tests were performed on them. Both tensile and flexural strength were highly enhanced by 8 wt% from 75 μm while toughness was highly enhanced by 6 and 8 wt% from 300 μm. This shows that fine particles lead to improved strength while coarse particles lead to improved toughness. The results show that these materials are structurally compatible and are being developed from animal fibre based particle; it is expected to also aid the compatibility with the surface conditions as biomaterials. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"725396"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/725396","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31943024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-12-01DOI: 10.1155/2013/253286
M Fadel, Abeer A Keera, Foukia E Mouafi, Tarek Kahil
A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved.
{"title":"High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale.","authors":"M Fadel, Abeer A Keera, Foukia E Mouafi, Tarek Kahil","doi":"10.1155/2013/253286","DOIUrl":"https://doi.org/10.1155/2013/253286","url":null,"abstract":"<p><p>A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300 L, 3 m(3), and 12 m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65 m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18% (w/v), inoculum size of 20% (v/v) cell concentration of 3.0 × 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10 kg/65 m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4 g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"253286"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/253286","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31976284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-06-23DOI: 10.1155/2013/704806
Laurence N Warr, André Friese, Florian Schwarz, Frieder Schauer, Ralph J Portier, Laura M Basirico, Gregory M Olson
Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.
{"title":"Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.","authors":"Laurence N Warr, André Friese, Florian Schwarz, Frieder Schauer, Ralph J Portier, Laura M Basirico, Gregory M Olson","doi":"10.1155/2013/704806","DOIUrl":"https://doi.org/10.1155/2013/704806","url":null,"abstract":"<p><p>Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. </p>","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"2013 ","pages":"704806"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/704806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31588597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2013-01-01Epub Date: 2013-02-27DOI: 10.1155/2013/137851
R J Mohd Salim, M I Adenan, A Amid, M H Jauri, A S Sued
The purpose of the study is to evaluate the relationship between the extraction parameters and the metal chelating activity of Centella asiatica (CA) and Erythroxylum cuneatum (EC). The response surface methodology was used to optimize the extraction parameters of methanolic extract of CA and EC with respect to the metal chelating activity. For CA, Run 17 gave optimum chelating activity with IC50 = 0.93 mg/mL at an extraction temperature of 25°C, speed of agitation at 200 rpm, ratio of plant material to solvent at 1 g : 45 mL and extraction time at 1.5 hour. As for EC, Run 13 with 60°C, 200 rpm, 1 g : 35 mL and 1 hour had metal chelating activity at IC50 = 0.3817 mg/mL. Both optimized extracts were further partitioned using a solvent system to evaluate the fraction responsible for the chelating activity of the plants. The hexane fraction of CA showed potential activity with chelating activity at IC50 = 0.090 and the ethyl acetate fraction of EC had IC50 = 0.120 mg/mL. The study showed that the response surface methodology helped to reduce the extraction time, temperature and agitation and subsequently improve the chelating activity of the plants in comparison to the conventional method.
{"title":"Statistical Analysis of Metal Chelating Activity of Centella asiatica and Erythroxylum cuneatum Using Response Surface Methodology.","authors":"R J Mohd Salim, M I Adenan, A Amid, M H Jauri, A S Sued","doi":"10.1155/2013/137851","DOIUrl":"https://doi.org/10.1155/2013/137851","url":null,"abstract":"The purpose of the study is to evaluate the relationship between the extraction parameters and the metal chelating activity of Centella asiatica (CA) and Erythroxylum cuneatum (EC). The response surface methodology was used to optimize the extraction parameters of methanolic extract of CA and EC with respect to the metal chelating activity. For CA, Run 17 gave optimum chelating activity with IC50 = 0.93 mg/mL at an extraction temperature of 25°C, speed of agitation at 200 rpm, ratio of plant material to solvent at 1 g : 45 mL and extraction time at 1.5 hour. As for EC, Run 13 with 60°C, 200 rpm, 1 g : 35 mL and 1 hour had metal chelating activity at IC50 = 0.3817 mg/mL. Both optimized extracts were further partitioned using a solvent system to evaluate the fraction responsible for the chelating activity of the plants. The hexane fraction of CA showed potential activity with chelating activity at IC50 = 0.090 and the ethyl acetate fraction of EC had IC50 = 0.120 mg/mL. The study showed that the response surface methodology helped to reduce the extraction time, temperature and agitation and subsequently improve the chelating activity of the plants in comparison to the conventional method.","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":" ","pages":"137851"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/137851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40228635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}